2020
  • ICIMOD publication

Share

424 Views
Generated with Avocode. icon 1 Mask color swatch
124 Downloads

Quantifying the impacts of anthropogenic activities and climate variations on vegetation productivity changes in China from 1985 to 2015

  • Shahid Naeem
  • Yongqiang Zhang
  • Jing Tian
  • Faisal Mueen Qamer
  • Aamir Latif
  • Pranesh Kumar Paul
  • Summary
Accurate assessment of vegetation dynamics provides important information for ecosystem management. Anthropogenic activities and climate variations are the major factors that primarily influence vegetation ecosystems. This study investigates the spatiotemporal impacts of climate factors and human activities on vegetation productivity changes in China from 1985 to 2015. Actual net primary productivity (ANPP) is used to reflect vegetation dynamics quantitatively. Climate-induced potential net primary productivity (PNPP) is used as an indicator of climate change, whereas the difference between PNPP and ANPP is considered as an indicator of human activities (HNPP). Overall, 91% of the total vegetation cover area shows declining trends for net primary productivity (NPP), while only 9% shows increasing trends before 2000 (base period). However, after 2000 (restoration period), 78.7% of the total vegetation cover area shows increasing trends, whereas 21.3% of the area shows decreasing trends. Moreover, during the base period, the quantitative contribution of climate change to NPP restoration is 0.21 grams carbon per meter square per year (gC m−2 yr−1) and to degradation is 2.41 gC m−2 yr−1, while during the restoration period, climate change contributes 0.56 and 0.29 gC m−2 yr−1 to NPP restoration and degradation, respectively. Human activities contribute 0.36 and 0.72 gC m−2 yr−1 during the base period, and 0.63 and 0.31 gC m−2 yr−1 during the restoration period to NPP restoration and degradation, respectively. The combined effects of climate and human activities restore 0.65 and 1.11 gC m−2 yr−1, and degrade 2.01 and 0.67 gC m−2 yr−1 during the base and restoration periods, respectively. Climate factors affect vegetation cover more than human activities, while precipitation is found to be more sensitive to NPP change than temperature. Unlike the base period, NPP per unit area increases with an increase in the human footprint pressure during the restoration period. Grassland has more variability than other vegetation classes, and the grassland changes are mainly observed in Tibet, Xinjiang, and Inner Mongolia regions. The results may help policy-makers by providing necessary guidelines for the management of forest, grassland, and agricultural activities.