2024
  • Non-ICIMOD publication

Share

0 Views
Generated with Avocode. icon 1 Mask color swatch
0 Downloads

Retrieval of high-resolution melting-season albedo and its implications for the Karakoram Anomaly

  • Fuming Xie
  • Shiyin Liu
  • Yu Zhu
  • Xinyi Qing
  • Shucheng Tan
  • Yongpeng Gao
  • Miaomiao Qi
  • Ying Yi
  • Hui Ye
  • Muhammad Mannan Afzal
  • Xianhe Zhang
  • Jun Zhou
  • Summary

Glacial responses to climate change exhibit considerable heterogeneity. Although global glaciers are generally thinning and retreat, glaciers in the Karakoram region are distinct in their surging or advancing, exhibiting nearly zero or positive mass balance—a phenomenon known as the Karakoram Anomaly. This anomaly has sparked significant scientific interest, prompting extensive research into glacier anomalies. However, the dynamics of the Karakoram anomaly, particularly its evolution and persistence, remain insufficiently explored. In this study, we employed Landsat reflectance data and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 albedo products to developed high-resolution albedo retrieval models using two machine learning (ML) regressions––random forest regression (RFR) and back-propagation neural network regression (BPNNR). The optimal BPNNR model (Pearson correlation coefficient [r] = 0.77–0.97, unbiased root mean squared error [ubRMSE] = 0.056–0.077, RMSE = 0.055–0.168, Bias = −0.149 ∼ −0.001) was implemented on the Google Earth Engine cloud-based platform to estimate summer albedo at a 30-m resolution for the Karakoram region from 1990 to 2021. Validation against in-situ albedo measurements on three glaciers (Batura, Mulungutti and Yala Glacier) demonstrated that the model achieved an average ubRMSE of 0.069 (p < 0.001), with RMSE and ubRMSE improvements of 0.027 compared to MODIS albedo products. The high-resolution data was then used to identify firn/snow extents using a 0.37 threshold, facilitating the extraction of long-term firn-line altitudes (FLA) to indicate the glacier dynamics. Our findings revealed that a consistent decline in summer albedo across the Karakoram over the past three decades, signifying a darkening of glacier surfaces that increased solar radiation absorption and intensified melting. The reduction in albedo showed spatial heterogeneity, with slower reductions in the western and central Karakoram (−0.0005–0.0005 yr−1) compared to the eastern Karakoram (−0.006 ∼ −0.01 yr−1). Notably, surge- or advance-type glaciers, avalanche-fed glaciers and debris-covered glaciers exhibited slower albedo reduction rates, which decreased further with increasing glacier size. Additionally, albedo reduction accelerated with altitude, peaking near the equilibrium-line altitude. Fluctuations in the albedo-derived FLAs suggest a transition in the dynamics of Karakoram glaciers from anomalous behavior to retreat. Most glaciers exhibited anomalous behavior from 1995 to 2010, peaking in 2003, but they have shown signs of retreat since the 2010s, marking the end of the Karakoram anomaly. These insights deepen our understanding of the Karakoram anomaly and provide a theoretical basis for assessing the effect of glacier anomaly to retreat dynamics on the water resources and adaptation strategies for the Indus and Tarim Rivers.

 

Note:

Access to full text available from the source until November 11, 2024