2021
  • Non-ICIMOD publication

Share

765 Views
Generated with Avocode. icon 1 Mask color swatch
0 Downloads

Sectorwise Assessment of Glacial Lake Outburst Flood Danger in the Indian Himalayan Region

  • Mal S.; Allen S.K.; Frey H.; Huggel C.; DImri A.P.
  • Summary

Climate change and associated glacier recession have led to the formation of new glacial lakes and the expansion of existing ones across the Himalayas. Many pose a potential glacial lake outburst flood (GLOF) threat to downstream communities and infrastructure. In this paper, 4418 glacial lakes in the Indian Himalayan Region and 636 transboundary lakes are analyzed. We consider hazard, exposure, and integrated danger levels using robust geographic information system-based automated approaches. The hazard level of lakes was estimated based on the potential for avalanches to strike the lake, size of the lake and its upstream watershed, and distal slope of its dam. Exposure levels were calculated by intersecting cropland, roads, hydropower projects, and the human population with potential GLOF trajectories. Then, GLOF danger was determined as a function of hazard and exposure. The study demonstrates that Jammu and Kashmir (JK) is potentially the most threatened region in terms of total number of very high and high danger lakes (n = 556), followed by Arunachal Pradesh (AP) (n = 388) and Sikkim (SK) (n = 219). Sectorwise, JK faces the greatest GLOF threat to roads and population, whereas the threat to cropland and hydropower is greatest in AP and SK, respectively. Transboundary lakes primarily threaten AP and, to a lesser extent, Himachal Pradesh (HP). For Uttarakhand (UK), the impacts of potential future glacial lakes, expected to form during rapid ongoing glacier recession because of climate change, are explored. Finally, a comparison of current results with previous studies suggests that 13 lakes in SK, 5 in HP, 4 in JK, 2 in UK, and 1 in AP are of highest priority for local investigation and potential risk reduction measures. Current results are of vital importance to policymakers, disaster management authorities, and the scientific community. © 2021 International Mountain Society. All rights reserved.