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a b s t r a c t 

Landslides are the indicator of slope instability particularly in mountain terrain and causing different 

types of reimbursements and threats of life and property. The Himalayan terrains are highly susceptible 

to different natural hazards as well as disasters particularly land failure activities mainly due to inherent 

tectonic activities which further enhanced by various Neo-tectonic and Neolithic activities. This scientific 

study provides an enhanced framework for the assessment of proper and precise landslide susceptibil- 

ity in the two districts of Arunachal Pradesh (Tawang and West Kameng) considering both physical and 

anthropogenic factors and various machine learning models (SVM, AdaBoost and XGBoost). At first, land- 

slide inventory maps were developed based on previous landslide events. Here, 70% of the data were 

randomly selected for training and remaining was used for validation and optimization of the models us- 

ing statistical implications and validation assessment methods. The result showed that the high and very 

high landslide susceptible areas are mainly concentrated in the middle portion along the Bhalukpong- 

Bomdia road section. Based on the AUC value and other statistical indicators it has been observed that 

AdaBoost is the most efficient model here (AUC = 0.92). AUC values of SVM and XGBoost are 0.85 and 

0.89 respectively. AdaBoost model identifies that very low susceptibility class occupies 60.22% area and 

very high landslide susceptibility class occupies 15.51% area and it will be considered as more encourag- 

ing method for landslide susceptibility determination in this kind of cases for better accurateness. This 

high accuracy susceptibility map positively helps during the execution of various developmental projects. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Ocean University of China. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Landslide is one of the most distressing and never ending 

eo-environmental hazards which impose serious threats to the 

uman life and economy ( Petley, 2012 ). Landslide describes the 

own ward movement of masses including rocks and minerals, 

oils, organic materials etc. under the gravitational force and it 

s a result of the interaction between driving force and resis- 

ance force ( Bera, 2008 ). Landslides play a significant role in ge- 

morphological evolution of landscape and act as a common dis- 
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strous geo-environmental hazard in hilly or mountainous parts 

f the world and causing billion of economic losses along with 

housands of injuries and causalities in each year ( Galli et al., 

008 ). Basically, landslide is the most common geological or geo- 

orphic hazard which is associated with economic loss (100 bil- 

ion USD globally) and severe effect over natural and social en- 

ironment. Fluid pressure and stress tensions come from various 

ydrological parameters such as changes of precipitation, infiltra- 

ion, infiltration, runoff, dehydration reaction, and wastewater and 

hus fluid-injection can easily exaggerate different forms of slid- 

ng including stable sliding (fault slips) and unstable sliding (earth- 

uake and rainfall induced landslides) ( Iverson and major, 1987 ; 

erzaghi, 1950 ; Handwerger et al., 2013 ; Guglielmi et al., 2015 ; 
of China. This is an open access article under the CC BY-NC-ND license 
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anyas et al., 2022 ). Types of sliding are classified by the rate-and- 

tate friction models and laboratory based critical state soil me- 

hanics ( Schulz et al., 2009 ; Guglielmi et al., 2015 ). Generally, land-

lides are triggered by various geological, geomorphological, hy- 

rological and anthropogenic activities and a single triggering fac- 

or can make hundreds slope failures. In 2015, the Gorkha earth- 

uake affected the central Nepal region (more than 350 0 0 km 

2 

rea) and triggered around 250 0 0 landslides in this Himalayan ter- 

ain ( Roback et al., 2017 ). Information regarding this type of land- 

lides and their spatial distribution is very much important for de- 

elopmental planning and execution of projects, understanding the 

andform evolution, hazard zonation and sometimes it assists to 

redict the landslide probability ( Tanyas et al., 2019 ; Galli et al., 

008 ). Landslide erosion quantification is very much essential 

o understand the relationship among physical erosion processes, 

hemical weathering and consumption ( Gabet, 2007 ). Steep hill 

lopes in mountain areas are removed by the landslides that are 

riven by hydro-geomorphological and geological conditions com- 

iled with river and glacial erosions ( Whipple et al., 1999 ). Climate 

hange is another secondary factor for landslides at hilly areas or 

igh altitude regions due to degradation of permafrost and inces- 

ant melting of glaciers ( Fischer et al., 2006 ). The timing and veloc-

ty of gravity driven landslides is controlled by the internal compo- 

itions and properties of the sliding materials ( Schulz et al., 2009 ). 

urface roughness dating and geochronological techniques are be- 

ng used to determine the exact age of landslide masses and their 

ntensity. Glade (2003) revised the evidences from New-Zealand 

egarding human induced landslide probabilities and its responses 

ith land use change. The primary stage of forecasting of differ- 

nt geological hazards is to identify the predictor’s nature and 

haracter along with geomorphological, geological and extreme cli- 

atic conditions ( Kumar and Anbalagan, 2016 ). Road construction 

n hilly or mountainous terrain is an archetypical example of hu- 

an induced tension on the earth surface. Constructions of road 

etwork, tunnel, bridge and culvert in hilly areas are always as- 

ociated with blasting and excavation that makes the total region 

nstable and effectively decrease the strength and cohesive power 

f the hill slope as well as soil ( Zhao et al., 2018 ). Advance remote

ensing imageries can detect landslide locations, distribution and 

xtension of the land failures ( Xu et al., 2019 ). Recently, a wide

ange of landslide inventory methods or approaches has been de- 

eloped and these are manually extracted of landslide areas on the 

asis of specialist’s visual opinion, image classification approaches, 

ulti-temporal SAR interferometry techniques, applying optical or 

iDAR data from unmanned aerial vehicles and semi-automated 

mage classification methods which are based on machine learning 

lgorithms ( Ghorbanzadeh et al., 2019 ). Approximately 95% land- 

lide incidents in the entire globe were identified from develop- 

ng and underdeveloped countries ( Chung and Fabbri, 2003 ). In In- 

ia, around 15% areas are landslide prone and Himalayan terrain is 

ne of the extreme landslide prone areas ( Rawat and Joshi, 2012 ; 

era, 2007a ). Inadequate investigation of geotechnical and geolog- 

cal aspects unfavourably affects the regional planning and devel- 

pment of existing geo-environmental condition and it leads the 

ill slope instability ( Anbalagan et al., 2008 ). Slope stability anal- 

sis is an essential method for the safely execution of various en- 

ironmental engineering projects worldwide. In mountainous areas 

like Himalaya), slopes are excavated at the time of road construc- 

ion ( Komadja et al., 2021 ). In hilly tract, it is essential to analyse

he parameters that are responsible for slope instability. Generally, 

eology, geomorphology, human activity, climate etc. are the rea- 

onable factors behind the slope instability ( Komadja et al., 2020 ). 

ineralogical and the geotechnical characteristics of debris mate- 

ial showed the particle sizes that are formed from weathering and 

rosion. The engineering geotechnical parameters of slope mate- 

ials decline the stability of slope ( Summa et al., 2018 ). This Hi-
2 
alayan range is characterised by the convergence boundary be- 

ween Indian plate and Eurasia plate associated with active thrusts, 

ineament and faults and such neo-tectonic activities accelerate 

deal land failure conditions ( Sati et al., 2007 ). During rainy sea- 

on the excess water cannot release as a surface runoff while it 

nfiltrates through the lineaments, surface cracks, joints, cleavage, 

edding and porous soils. As a result, the driving force significantly 

ncreases and ultimately landslide occurs. Generally, in mountain 

reas where erosion rate is greater and the rate of weathering 

ill be kinetically limited ( Dixon et al., 2012 ). In tectonically ac- 

ive mountain belts, erosions are mainly driven by bedrock land 

liding and the rate depends on intense rainfall and seismicity 

 Dadson et al., 2003 ; Bera, 2009 ). Bedrock land sliding can pro-

ote the slow percolation of surface runoff in the exceedingly 

ragmented rock or soil debris and develops unfavourable condi- 

ion of weathering ( Shou and Chen, 2021 ). Exposed bed rock mate- 

ials by land sliding erosion indorse effective chemical weathering. 

andslides are termed as important erosion agent in mountainous 

egion or upland landscape areas that are commonly characterised 

y threshold hill slopes, high-relief and relatively narrow river 

orges ( Montgomery and Brandon, 2002 ; Bera, 2008 ). Landslides 

roduce massive amount of debris into river bed and dammed the 

iver channel naturally. Korup and Montgomery ( Korup and Mont- 

omery, 2008 ) identified frequent glacial and debris damming in 

he eastern Himalayan syntax region that created ideal condition 

f head ward erosion of major river channels and dissected the 

dge of the Tibetan plateau ( Korup and Montgomery, 2008 ). In the 

ast decade, different ML models were employed for landslide sus- 

eptibility modelling studies such as frequency ratio ( Kumar and 

nbalagan, 2016 ); Logistic regression ( Lee, 2005 ; Lombardo and 

ai, 2018 ); artificial neural networks ( Chen et al., 2017a ); lin- 

ar discriminant analysis ( Pham and Prakash, 2019 ); neuro-fuzzy 

 Chen et al., 2017a ); support vector machines ( Xu et al., 2012 );

ecision tree ( Wu et al., 2020 ), classification and regression tree 

 Chen et al., 2017b ); Bivariate and multivariate statistical analysis 

 Nandi and Shakoor, 2010 ). In this scientific study, support vector 

achine (SVM), extreme gradient boosting (XGBoost) and Adap- 

ive Boosting (AdaBoost) have been considered for landslide sus- 

eptibility modelling. SVM is a widely used method for landslide 

usceptibility modelling that is based on non-linear transforma- 

ion of the covariates in a high dimensional space and every class 

s linearly separable ( Ballabio and Sterlacchini, 2012 ). AdaBoost is 

 homogeneous ensemble framework and significantly amplifies 

he performance of the prediction model ( Pham et al., 2017 ). The 

ain objective of the study is to identify the appropriate landslide 

usceptible zones in the two westernmost districts of Arunachal 

radesh (Tawang and West Kameng). Such scientific study will 

efinitely assist to administrators and policy makers during the 

xecution of different developmental projects like road construc- 

ion, tunnel structure, building and bridge. Moreover, limitation 

f the study was ground based data unavailability like rock and 

oil strength. There are also some limitations of machine learn- 

ng model based studies. Machine learning requires huge amount 

f data set for training and these are highly susceptible to errors 

 Malik, 2020 ). 

. Study area 

Arunachal Himalaya is the eastern most sector of Himalayan 

ountain range with an extension of 91 °30 ′ E to 96 °E and 26 °28 ′ 
 to 29 °30 ′ N and it includes the eastern Himalayan syntaxis 

 Yin et al., 2006 ; Fig. 1). The study area has been restricted 

ithin the political boundary of Tawang and West Kameng dis- 

ricts of Arunachal Pradesh ( Fig. 1 ). The study area has been 

ivided into different tectonomorphic zones (Shiwalik Himalaya, 

esser Himalaya, Greater Himalaya, Trans Himalaya) that make 
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Fig. 1. Geographical location of the study area. 
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his area more landslide prone ( Singh et al., 2014 ). Physiographi- 

ally, this region is characterised with high altitude, steep slope, 

orge, dissected valleys and ridge with mountain summits. An- 

ual rainfall and temperature of this Himalayan tract vary from 

50 cm-200 cm and 15 °C-30 °C respectively. The climatic charac- 

eristics of Arunachal Pradesh influence by the geographical con- 

itions and this region comes under very high seismic zone (Zone 

) due to its geographic location and tectonic activities. Accord- 

ng to GSI guidelines, landslides are classified into three types 

.e. very large active slide or more than one slide, one active 

andslide and dormant landslide. Dormant landslides are those 

here no active movements are observed. It can be identified 

nly through the previous imprints. Active landslides are easily 

dentified through the freshness of landslide materials in the dis- 

urbed part of the hilly area and displacement masses of land- 

lides more than 100 cubic meters are classified into large land- 

lide ( Singh et al., 2014 ). Singh et al. (2014) investigated the num-

er of landslide occurrences along the important road section of 

he study area (Bhalukpong-Bomdila-Tawang) and they identified 4 

arge active landslides, 21 active landslides and 62 dormant land- 

lides. 

.1. Geology of Arunachal Himalayas 

Arunachal Pradesh has high geological complexity and the en- 

ire region exhibits three different mountain system i.e. (i) Hi- 

alayan range (ii) Naga-Patkai-Arakan range and iii. Mishmi hills. 

ast geological enquiry of this area was totally carried out through 

eld survey but structural and geochronological analyses were 

issing ( Yin, 2006 ). The study area (Tawang and West Kameng dis- 
3 
rict) is the westernmost part of Arunachal Pradesh that is abruptly 

aised from Assam plain. These two districts consist with sedi- 

entary rocks of the Siwalik group and the MBT (main boundary 

hrust) divides this region from the lesser Himalaya ( Fig. 2 ). The 

esser Himalayan range is characterised by various rocks of dif- 

erent geological ages and separated by thrust from one another 

 Singh et al., 2014 ). This stretch occupies by the crystalline forma- 

ion of Se La group that is comprised with Kyanite-sillimanite bear- 

ng garnet-biotite schist, Psammatic gneiss, streaky gneiss, tourma- 

ine bearing leucogranite and amphibolites. It is associated with 

teep hill slope and escarpment which belongs from Archaean and 

alaeozoic geological age ( Mishra, 2007 ; Fig. 2 ). Bomdila group is 

nother important existing rock system in this region that is char- 

cterised by argillaceous, arenaceous, metamorphites and penecon- 

emporaneous basic volcanic rocks and it is also categorised into 

hree key geological formations ( Bhushan et al., 1991 ). Dedza For- 

ation consists of carbonate rocks along with minor quantity 

f black slates while Dirang formation comprises with garnet- 

uscovite-biotite schist, sericite quartzite, tourmaline marble and 

arbonate phyllite ( Srivastava et al., 2011 ). The gneissic and schist 

ormations of this region consist with different folds, symmet- 

ic and asymmetric structures, fault scars, shear plains and differ- 

nt linear and non-linear structures. Mesoscopic shear zones have 

een identified in this area over schists and migmatitic gneisses 

 Srivastava et al., 2011 ). Here, the Gondwana super group has been 

uperimposed on the quartzite-carbonate-phyllite sequence that is 

ermed as “Buxa Group” ( Singh et al., 2014 ). A sudden change of 

eomorphic character has been observed along the local and re- 

ional discontinuities. Topography of Tawang section is character- 

zed by very steep slopes with glacial geomorphic features. The 
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Fig. 2. Geological map showing the geological framework of the western Arunachal Pradesh. 
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udden geomorphic change in this region attributed with faults 

nd thrusts ( Srivastava et al., 2011 ). The discontinuity between Se 

a and Tawang sector is known as Tawang thrust that is roughly 

arallel with the main central thrust (MCT). Another important 

hrust has been traced apart from Tawang thrust based on satel- 

ite observation in the south of Se La pass that separates the Se 

a sector with Senge sector. Se La thrust has also been detected 

n the basis of highly presence of Knick points and sudden re- 

raction of drainage system that comes from high altitudinal areas 

 Kumar, 1997 ). 

. Methods and materials 

.1. Information gain ratio (InGR) 

Information gain ratio (InGR) is a principal method for analy- 

is of the implication of the influential factors or the parameters 

f a predicted model. The information gain ratio statistic can sig- 

ificantly select the features of the used prediction model that is 

ccomplished to identify the high ranking parameters for the sus- 

eptibility prediction studies or researches ( Bui et al., 2020 ). This 

tatistical method gives the InGR values for the each causative fac- 

or to evaluate the applicability. High InGR value signifies main fac- 

or whereas the low InGR value shows low significant factor. The 

nGR method has been applied here to find out the usefulness of 

he used factors using the equation. 

ain rat io ( x, z ) = 

Ent ropy ( z ) − ∑ n 
1 

∑ n 
i =1 

| Z i | | Z | Emt ropy ( Z i ) 

−∑ n 
i =1 

| Z i | | Z | log | Z i | | Z | 
(1) 

Here, Z with Z i 1 = 1 , 2 , 3 . . . . . . .n subsets, the attribute x is be-

onging. 

For selection of the appropriate factor in the case of predictive 

odelling, Johnston et al. (2018) have given the proper way to find 

ut the existing multi-collinearity problem in the causative factors 

 The VIF (variance inflation factors) value greater than 10 and Tol- 

rance value less than 0.1 specify the multi-collinearity problem 

 Johnston et al., 2018 ; Table 2). The Tolerance value and VIF value
4

an compute by the following equation. 

 olerance = 1 − R 

2 J (2) 

 IF = 

(
1 

T olerance 

)
(3) 

Here, R 2 J also indicates coefficient of determination of the re- 

ression equation. 

.2. Landslide conditioning factors 

To achieve better and accurate landslide susceptibility model, 

election of proper landslide conditioning factors is a vital step 

 Table 1 ). For this research, total 16 conditioning factors have been 

elected based on previous literatures, related studies and also field 

nvestigation (geology, slope, aspect, profile curvature, plain curva- 

ure, lineament, elevation, soil, distance from road, distance from 

iver, rainfall, NDVI, NDWI, distance from epicentre, drainage den- 

ity, LULC; Figs. 3 and 4 ). 

.2.1. Topographical factors 

DEM (Digital Elevation Model) is a basic element to analyse 

he nature of the terrain of a particular area and it is also used 

or precise prediction of landslide susceptibility. The characteris- 

ics of DEM have direct impact over geomorphic factors, attitude 

nd magnitude of slope, surface characteristics (elevated and un- 

ulated surfaces), convexity and concavity ( Burrough, 1988 ). Vari- 

tion of relief can deliberately influence the intensity and degree 

f landslide ( Pradhan, 2017a ). In this research, the relief of the 

tudy area ranges from 115 m to 6402 m and plays most impor- 

ant controller of the occurrence of landslide hazards. Slope is an- 

ther principal factor of landslide and land instability. Generally, 

teep slope condition can decrease the soil strength. In this re- 

earch, slope ranges from 0 to 75.70 degree that indicates more 

otential energy available for mass movement. Terrain curvature 

s another geomorphic character that can regulate the soil erosion 

rocess through the divergence and convergence process of wa- 

er flow ( Erener and Düzgün, 2010 ; Bera, 2010 ). Previous studies 
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Table 1 

Database (source, type and method) of the landslide conditioning factors used in this research. 

Conditioning factors Source Variable type Classification method 

Altitude Digital Elevation Model (ASTER DEM) ( https: 

//earthdata.nasa.gov/learn/articles/new- aster- gdem ) 

Continuous (DEM based) Natural breaks 

Slope Continuous (DEM based) Natural breaks 

Aspect Continuous (DEM based) Azimuth classification 

Plain curvature Continuous (DEM based) Natural breaks 

Profile curvature Continuous (DEM based) Natural breaks 

Lineament density Continuous (DEM based) Natural breaks 

River density Continuous (DEM based) Natural breaks 

Distance from river Continuous (DEM based) Manual 

Soil Food and Agricultural organization ( https://www.fao.org/ 

soils-portal/data-hub/soil-maps-and-databases/ 

harmonized- world- soil- database- v12/en/ ) 

Discrete (Digital image) Soil classification 

NDVI (Normalized 

Difference Vegetation 

Index) 

Landsat 8 (OLI_TIRS) ( https://earthexplorer.usgs.gov/ ) Continuous (Satellite image based) Natural breaks 

NDWI (Normalized 

Difference Water Index) 

Continuous (Satellite image based) Natural breaks 

LULC (Land use and Land 

Cover) 

Discrete (Satellite image based) Supervised classification 

Rainfall NASA power access ( https: 

//power.larc.nasa.gov/data- access- viewer/ ) 

Continuous (Other factor) Natural breaks 

Distance from epi-centre Geological Survey of India ( https://www.gsi.gov.in/ ) Continuous (Other factor) Manual 

Geology Discrete (Digital image based) Geological classification 

Distance from road Google earth pro Continuous (Digital image based) Manual 
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ividly showed that there was a high correlation between landslide 

nd different geo-environmental factors (those influence the land- 

lide process; Regmi et al., 2010 ). Different slope aspect associated 

actors such as, solar radiation, wind condition, rainfall condition; 

iological conditions can play as a triggering factor of the process 

f landslide ( Sevgen et al., 2019 ). 

.2.2. Geological factors 

Lithology, soil group, lineament and distance from earthquake 

picentre have been taken as geological factors in this research. 

ithological variations of a region have a significant impact over 

ifferent types of geo-environmental hazards. The rock structure, 

trength, porosity and permeability also control the process of 

andslide ( Erener et al., 2017 ; Bera, 2007a ). Processes of Landslide 

re characterised by individual lithological characteristics because 

ach unit of lithology reflects its own response to weathering and 

rosion or jointly the process of denudation ( Duna et al., 2018 ). 

rominent lineament including joints, faults, fractures also make 

ocks more fragile. The river networks follow the lineament di- 

ection and accelerate toe erosion as well as process of landslide 

 Pradhan and Kim, 2020 ). The landslide incidents are greatly con- 

rolled by soil and rock strength, porosity and permeability and co- 

esiveness ( Althuwaynee et al., 2014 ). 

.2.3. Hydrological factors 

Drainage density, distance from river, rainfall and NDWI are se- 

ected as hydrological factors in this research. Various hydrolog- 

cal factors play a vital role in the occurrence of landslides par- 

icularly in the Himalayan terrain. The drainage proximity map 

as been generated through Euclidean distance tool in GIS plat- 

orm. Drainage density means the total length of drainage within 

he pixel. Higher density of drainage specifies greater surface flow 

nd low percolation ( Pradhan and Kim, 2020 ).Water flow can lead 

he transportation of sediment and reduces the strength of slope 

y toe erosion which allows the process of landslide in hilly re- 

ion ( Highland and Bobrowsk, 2008 ). High drainage density ac- 

elerates rapid soil and land erodibility ( Pradhan et al., 2017b ; 

era, 2007b ). Rainfall induced landslides are the natural phenom- 

na in the hilly terrain areas. Rainfall can extensively change the 

ydraulic pressure, strength of soil mass and lithology that ex- 

ggerates the downward movement of rock and debris along the 
5 
lope due to the gravitational action ( Wang et al., 2020 ). Higher 

agnitude of rainfall is also associated with high intensity of land- 

lide. The quantitative analysis of rainfall threshold value consid- 

red as a landslide influencer. Landslide may occur when the rain- 

all crosses its certain amount of threshold value ( Gariano et al., 

019 ; Bera, 2007b ). 

.2.4. Land related factors 

Distance from road, NDVI and land use land cover has been 

aken as land related factors here. Every area has its own land 

se land cover characteristics. Hilly region, bare land, road and 

ettlement region are stated as landslide prone in past studies 

 Ozdemir and Altural, 2013 ). In this research land use land cover 

ap has been produced using Landsat 8 satellite images along 

ith seven distinct classes (open land, vegetation, scrub, water- 

ody, settlement, bare land and snow cover area). Reduction of 

egetation cover (due to human activities in a regional scale) is 

 significant controller of the occurrence of shallow landslides 

 Glade, 2003 ). Human activities are also influential for the land- 

lide occurrence because they always affect the land use land 

over of that particular area ( Al-Najjar et al., 2021 ). Vegetation al- 

ays plays a fundamental role in stabilizing the water flow and 

ncreases the resistance force along with soil cohesion property 

 Sidle and Ochiai, 2006 ). The root system of trees acts as anchor 

nd improves the soil strength along with shear resistance, at the 

ame time it can reduce the moisture of soil in a certain context 

 Pandey et al., 2019 ; Bera, 2007a ). Cut down of trees and exca-

ation of soil is the common activities during the construction of 

oads or any developmental activities which are highly associated 

ith landslide ( Al-Najjar et al., 2021 ). 

.3. Application of machine learning models 

.3.1. Extreme Gradient Boosting (XGBoost) 

Decision tree based methods are the cutting-edge techniques in 

he case of small and medium range set of data ( Al-Najjar et al., 

021 ). The XGBoost was developed based on gradient boosting 

oncept that is very much regularized and can overcome the over- 

tting problem. Gradient boosting is a boosting algorithm that 

s mainly used to minimize the biasness or errors in the ma- 

hine learning model and it is an ensemble machine learning 

https://earthdata.nasa.gov/learn/articles/new-aster-gdem
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://earthexplorer.usgs.gov/
https://power.larc.nasa.gov/data-access-viewer/
https://www.gsi.gov.in/
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Fig. 3. Landslide conditioning factors (a) Aspect, (b) profile curvature, (c) plain curvature, (d) lineament density, (e) elevation, (f) slope, (g) soil type, (h) distance from river, 

(i) distance from road. 
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echnique for the regression and classification ( Dada et al., 2019 ). 

his recently developed tree based method (XGB) has gained a 

reat significance in the recent model based susceptibility stud- 

es ( Sonobe et al., 2017 ). This method was established in 2016 as

 research project associated with high prediction ability because 

he weightage of this method is based on unexpected errors from 

he training process. XGB method has a great advantage compared 

ith other parallel methods because it provides best usage and 

ow computational cost ( Georganos et al., 2017 ; Liu et al., 2018 ).

GBoost is an optimized extension of gradient boosting. The XG- 

oost model can minimize the regularized objective function that 

s computed using this formula. 

 ( φ) = 

∑ 

i 

l( ̂  y i y i ) + 

∑ 

k 

�( f k ) (4) 

Here, the first term is the loss functions whereas y i and 

̂ y i are 

he target and predicted variables respectively. 

For reduction the over fitting and complexity problem, the be- 

ow mention equation has been used, 

( f ) = γ T + 

1 

2 

λ| | w | | 2 (5) 
6 
Here, T signifies the no. of leaves in the tree and w indicates 

he score of each leaf. 

The objective function has been minimized using the given 

quation, 

 

( t ) = 

n ∑ 

i =1 

l(y i , ̂  y i ) + f t ( x i ) ) + �( f t ) (6) 

In case of accelerate the optimization process, the second order 

aylor expansion has been used in the objective. 

After eliminating the constant, a simple objective function has 

een developed applying this formula. 

 

 

( t ) = 

n ∑ 

i =1 

[ g i f t ( x i ) + 

1 

2 

h i f 
2 
t ( x i ) ] + �( f t ) (7) 

Several algorithms are available in case of XGB modelling for 

ccurate split efficiency (weighted quartile sketch, approximate, 

parsity-aware split finding etc.). 

.3.2. Support Vector Machine (SVM) 

Support vector machine is a kernel based method which is 

onsidered in supervised machine learning algorithm consider- 
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Fig. 4. Landslide conditioning factors (a) NDVI, (b) NDWI, (c) Rainfall, (d) drainage density, € LULC, (f) distance from epicentre and (g) geology. 
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ng Vapnik-Chervonenk is (VC) dimension and statistical theory 

 Vapnik and Cortes, 1995 ; Chervonenkis, 2013 ). It is classified 

ased on optimal hyper-plain that maximizes the area of the 

lasses and the data nearest to the hyper-plain (It completely 

eparates the vectors into two distinct classes and maximizes 

he margins of training datasets) is called the support vectors 

 Pourghasemi et al., 2013 ). SVM model is suitable for the lesser 

umber of dataset and its primary aim is to build and separating 

he data on the basis of hyper-plain ( Xu et al., 2012 ). This machine

earning algorithm has been used to resolve two important aspects. 

irstly, it finds a proper way to compute the correlation between 

he input vectors. Secondly, it designs a linear structure by merg- 

ng the output of training samples ( Wang et al., 2020 ). Linear sep-

ration condition follows, 

 = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . . . , ( x n , y n ) } (8) 

Here, x 1 ∈ X � R m , y 1 ∈ { 1 , −1 } , and i = 1 , 2 , . . . .n. it can be sep-

rated by a hyper-plain, it follows, 

 

w.x ) + b = 0 , w ∈ R 

n , b ∈ R (9) 

Here, b signifies the scaler base whereas (.) represents the 

caler operation. 
7

Similar input sample has greater contribution in output. In the 

ase of original nearest neighbour classifier, it is expressed as, 

l 
 

i =1 

y i , λi ∗ K ( x, x i ) (10) 

Here, l signifies training sample and y i denotes the result of 

raining samples. 

.3.3. Adaptive Boosting (AdaBoost) 

AdaBoost is widely used ensemble machine learning algorithm 

hat was proposed by Freund and Schapire (1997) . It is a boost- 

ng algorithm that consists a series of classifiers and every classi- 

er in this ensemble learning method attempts to precisely classify 

he dataset ( Kadavi et al., 2018 ). AdaBoost is an ensemble boosting 

lgorithm that is notably applied to amplify the predictive capa- 

ility in various machine learning methods such as, support vec- 

or machine, random forest, tree based models etc. ( Wang et al., 

009 ). This classifier uses adaptive resampling technique at the 

ime of selection of training samples. AdaBoost algorithm has been 

chieved by the changes of data distribution that determines the 

eight of every sample based on correct classification of the sam- 

les in the training set and exactness of the previous entire clas- 
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Table 2 

Result of the multi-collinearity statistics of the used 

causative factors. 

Factors Multi collinearity statistics 

Tolerance VIF 

River density 0.699 1.431 

Altitude 0.317 3.151 

NDWI 0.243 4.117 

Aspect 0.446 2.014 

LULC 0.669 1.495 

Lineament density 0.862 1.16 

Distance from river 0.571 1.904 

Distance from road 0.723 1.384 

NDVI 0.218 4.592 

Plain curvature 0.529 1.891 

Distance from epi-centre 0.329 3.781 

Profile curvature 0.55 1.819 

Rainfall 0.293 3.413 

Geology 0.556 1.887 

Soil 0.565 1.77 

Slope 0.614 1.678 
ification ( Wu et al., 2020 ). For the iteration, this algorithm devel- 

ps a new training dataset that is the sample dataset of the given 

raining dataset. Subsequently, a base classifier ( S t ) also uses in 

ew training dataset for learning. The error of S t ( E s ) has been cal-

ulated by the equation 

 s = 

∑ 

i : s t � = y i 
w s (11) 

The following steps have been maintained during learning pro- 

ess, 

 i +1 = w i . exp ( −β.z i ) (12) 

Here, β and z i have been determined using the following equa- 

ion, 

= 0 . 5 ln 

(
1 − E s 

E s 

)
(13) 

 i = 

1 i f S t ( x i ) = y i 
−1 i f S t ( x i ) � = y i 

(14) 

The calculated weights are normalized by the following equa- 

ion, 

 i + 1 = 

w i + 1 ∑ n 
i =1 w i + 1 

(15) 

In the last stage, the boosting algorithm integrates all the re- 

ults of the classification. 

.4. Comparison of the implemented models 

To compare the implemented models, two different non- 

arametric tests have been considered in this research (Wilcoxon 

igned Rank test and Friedman test). The non-parametric test does 

ot require any special distribution pattern of the datasets. If the 

ata does not follow the normal distribution pattern, this kind 

f tests will be very helpful to interpret the inferential statistics 

 Martínez-Álvarez et al., 2013 ). Friedman test assumes that there 

s no substantial change in the model efficiency if the significance 

evel of Alpha is 0.05 ( Beasley and Zumbo, 2003 ). Wilcoxon Signed 

ank test has been performed to assess the pair-wise statistical dif- 

erences between the models. In the case of this research p-value 

nd z -value have been utilized to evaluate the significant differ- 

nces among them. Here, the null hypothesis will be rejected if 

he value of p is greater than 5% level of significance and the value

f z is greater than the critical value of z ( + 1.96 and -1.96). 

Friedman test follows, 

 R = [ 
12 

NK ( K + 1 ) 

K ∑ 

j=1 

R 

2 
j ] − 3 N ( K + 1 ) (16) 

Here, R j refers sum of the ranks. N & K refer number of blocks 

nd treatments 

The Wilcoxon signed rank test follows, 

 = 

N r ∑ 

i =1 

[ sgn ( x 2 ,i − x 1 ,i ) .R i (17) 

gn refers the Sign function. x 2 ,i , x 1 ,i signify corresponding rank 

airs. 

.5. Accuracy assessment 

In this research, different model performance methods have 

een evaluated using confusion matrix. Various statistical indices 

uch as sensitivity, specificity, positive predictive value (PPV), neg- 

tive predictive value (NPV), prevalence, detection rate were used 

o assess the model accuracy. Total four types of possibility (true 
8

ositive (TP), true negative (TN), false negative (FN), false positive 

FP)) have been applied to estimate the statistics. Higher values of 

he statistics signify better accuracy of the model and vice versa. 

 P V = 

T P 

F P + T P 
(18) 

P V = 

T P 

T P + F N 

(19) 

ensit i v it y = 

T P 

T P + F N 

(20) 

peci f icity = 

T N 

F P + T N 

(21) 

Here, T P shows true positive, T N shows true negative, F N signi- 

es false negative and F P shows false positive. 

ROC is another important statistical device designed for the ex- 

mination of the degree of validation for applied machine learning 

odels that contain two dimensions such as events and non-event 

henomena. This curve is plotted on the basis of 1-specificity ( x 

xis) and sensitivity ( y axis). The predictive capability of the exe- 

uted model can be classified using the value of area under curve 

(AUC-ROC). The ROC-AUC follows the given equation, 

 AUC = 

n ∑ 

k =1 

( X K+1 − X K ) 

(
S K + 1 − S K+1 − S K 

2 

)
(22) 

Here, S AUC signifies the area under curve (AUC). X K and S K rep- 

esent 1-specificity and sensitivity respectively. 

. Results 

.1. Multi collinearity assessment 

Multi collinearity assessment is knowingly used to diminish the 

iasness of the model. The outcomes of multi collinearity assess- 

ent test illustrate that there is no existence of multi collinear- 

ty among the variables because the tolerance and VIF values of 

he factors are not surpassed there threshold limit or critical limit. 

ighest and lowest values of variance inflation factors are 4.59 and 

.16 respectively on the other hand the highest and lowest toler- 

nce values are 0.86 and 0.22 respectively ( Table 2 ). It suggested 

hat altitude has highest importance value among the other land- 

lide conditioning factors (72.72) followed by river density (68.91), 

istance from road (60.85), geology (57.48), NDVI (54.19). Profile 
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Fig. 5. Landslide susceptibility maps using machine learning models, (a) Adaptive Boosting (AdaBoost), (b) Support Vector Machine (SVM) and (c) Extreme Gradient Boosting 

(XGBoost). 

Table 3 

Analysis the landslide conditioning factors using informa- 

tion gain ratio (InGR). 

Landslide conditioning factors Average merit (AM) 

River density 0.141 

Altitude 0.187 

NDWI 0.021 

Aspect 0.007 

LULC 0.097 

Lineament density 0.011 

Distance from river 0.021 

Distance from road 0.114 

NDVI 0.057 

Plain curvature 0.003 

Distance from epi-centre 0.009 

Profile curvature 0 

Rainfall 0.064 

Geology 0.089 

Soil 0.014 

Slope 0.078 
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Fig. 6. Bar graph showing the area wise proportion of the susceptibility classes. 
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urvature has the lowest amount of importance for landslide (2.17) 

articularly in landslide susceptible study. The influence of the 

andslide conditioning factors has been appraised through InGR 

tatistics. Altitude (0.187), river density (0.141) etc. have high InGR 

alue that indicates better predictive capability whereas profile 

urvature (0.0 0 0) and aspect (0.007) have low InGR value that in- 

icates minimal relevancy ( Table 3 ). 

.2. Landslide vulnerability analysis 

In this scientific study, various machine learning methods (SVM, 

GBoost, AdaBoost) have been applied to prepare the actual land- 

lide susceptibility maps in two western districts of Arunachal Hi- 

alayas. The landslide susceptibility maps have been classified into 

ve different landslide probable zones in ArcGIS platform on the 

asis of natural break raster classification method (very low, low, 

oderate, high and very high) ( Fig. 5 ). In the case of support vec-

or machine model, very low, low, moderate, high and very high 

usceptibility classes have been occupied 3682.06 (50.24%), 1196.51 

16.33%), 819.53 (11.18%), 685.7 (9.36%) and 945.26 (12.90%) re- 

pectively ( Figs. 5 b, 6 ). In case of extreme gradient boosting 

ethod, very low, low moderate, high and very high susceptibil- 

ty classes have been occupied 4091.41 (55.82%), 1081.57 (14.76%), 

84.04 (7.97%), 538.19 (7.34%) and 1033.85 (14.11%) respectively 

 Figs. 5 c, 6 ). Similarly, adaptive boosting model shows that very 

ow, low moderate, high and very high susceptibility classes have 

een occupied 4413.42 (60.22%), 804.38 (10.98%), 497.73 (6.79%), 

76.78 (6.51%), 1136.76 (15.51%) respectively ( Figs. 5 a, 6 ). The ma- 
9 
hine learning models significantly identified some middle part 

nd south and south eastern parts which are more vulnerable for 

andslide hazard particularly the areas of Urgeling, Tawang, Rump, 

omdila, Dirang, Senge, Balemu, Tippi town, Baisakhi etc. 

.3. Comparison of landslide susceptible models 

In this scientific study, test datasets of landslide susceptibility 

odels have been employed to compare the models with each 

ther. The Friedman test reveals that the level of confidence (p 

alue) is less than 0.05 which clearly indicates the rejection of null 

ypothesis and models are statistically difference in terms of their 

erformance ( Table 5 ). AdaBoost model has the highest mean rank 

hat may be considered finest performing model here. For pair- 

ise comparison of the applied models, Wilcoxon-Signed rank test 

as been applied. The result of Wilcoxon-Signed rank clearly por- 

rays that pairs of the models are statistically different in terms of 

heir performance (p value is less than 0.05 and z value surpass 

he threshold or critical value -1.96 to + 1.96) ( Table 6 ). 

.4. Model validation 

Validation of the models as well as the accuracy can be shown 

hrough the receiver operating curve (ROC) and the value of area 

nder curve (AUC). The value of AUC can easily symbolize the pre- 

iction capability of the model and it is considered as a quantita- 

ive value for model validation and comparison ( Table 4 ). The AUC 

alues of the testing dataset of the models SVM, XGBoost and Ad- 

Boost are 0.85, 0.89 and 0.92, respectively ( Fig. 7 ). Although all 

he models provide reasonable result but AdaBoost performs bet- 

er accuracy in terms of AUC value. Other statistical accuracy in- 
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Table 4 

Performance evaluation of the machine learning based landslide susceptibility models (AUC values) 

with respective standard error and confidence interval. 

Models AUC value Std. Error a Asymptotic Sig. b Asymptotic 95% Confidence Interval 

Lower Bound Upper Bound 

AdaBoost 0.921 0.016 0 0.887 0.961 

SVM 0.855 0.032 0 0.793 0.917 

XGBoost 0.893 0.02 0 0.859 0.938 

Table 5 

Result of the Friedman test of LSMs associated with mean rank along with chi- 

square and significance value. 

Models Mean ranks Chi-square Significance 

XGBoost 1.99 7.473 0.024 

AdaBoost 2.12 

SVM 1.88 

Table 6 

Comparison of the applied machine learning models using Wilcoxon signed-rank 

test. 

Models XGBoost - AdaBoost SVM - XGBoost SVM - AdaBoost 

Z -2.599 b -2.331 c -3.148 c 

Asymp. Sig. (2-tailed) 0.009 0.02 0.002 

b Based on positive ranks. 
c Based on negative ranks. 

Fig. 7. Validation assessment of the applied ML models through ROC curve and AUC 

analysis. 
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Table 7 

Comparison of different accuracy indicators of the applied models. 

Accuracy indicators SVM XGBoost AdaBoost 

Sensitivity 0.8133 0.92 0.9267 

Specificity 0.9014 0.87 0.9171 

Positive pred value 0.8948 0.8942 0.9263 

Negative pred value 0.8219 0.8978 0.9067 

Prevalence 0.5972 0.6372 0.5772 

Detection rate 0.4593 0.5338 0.5083 
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icators such as sensitivity, specificity, positive pred value, nega- 

ive pred value, prevalence, detection rate have been applied here. 

he values of these statistical indicators are 0.8133, 0.9014, 0.8948, 

.8219, 0.5972 and 0.4593; 0.920 0, 0.870 0, 0.8942, 0.8978, 0.6372 

nd 0.5338; 0.9267, 0.9171, 0.9263, 0.9067, 0.5772 and 0.5083 for 

he model SVM, XGBoost and AdaBoost respectively ( Table 7 ). Ad- 

Boost has relatively higher values of the performance indicator 

tatistics that indicating the ability of AdaBoost model to learn the 

omplex relationship as well as correlation among the geospatial 

haracteristics and the incidence of landslides. 
10 
. Discussion 

Identification technique of future probable landslide areas or 

uture landslide potential areas is an suitable tool for land use 

lanning and decision making particularly in hilly or mountain- 

us terrain ( Park et al., 2013 ). In this research three highly ac- 

epted machine learning algorithms (SVM, XGBoost and AdaBoost) 

ave been applied for spatial analysis of landslide susceptibility. 

uge number of methods is being applied in different parts of 

he world for precise mapping of landslide. These are analysed 

o find out the complex relationship between predictors or in- 

ependent factors with the dependent variable. Landslide factors 

re selected on the basis of literature and field study then multi- 

ollinearity check has been adopted to investigate whether there 

s any existence of multi-collinearity problem. Model comparison 

as been done through different statistical test (Friedman test and 

ilcoxon-Signed rank) and it significantly shows that models have 

 statistical significant different in context of their statistical anal- 

sis and outcomes. It has identified that altitude; river density and 

istance from road are the most influencing factors for landslide. 

ll statistical model prediction indicators including AUC, sensitiv- 

ty, specificity, positive pred vale, negative pred value, prevalence, 

etection rate show that AdaBoost model has a better prediction 

bility and high goodness-of-fit than other applied models. The 

dvantage of AdaBoost model is that it can act as a Meta classi- 

er and maintains a balance between diversity and accuracy and 

t reduces the data over fitting problem in the training dataset. In 

he case of supervise machine learning algorithm, the model over- 

tting problem cannot be avoided completely. Based on the bias 

raining data the overfitting problem will occur and it can reduce 

he accuracy of the model ( Bu and Zhang, 2020 ). This problem 

ill arise when the model components are appraised against the 

rong reference distribution. Kawabata and Bandibas (2009) con- 

idered that geology is the most vital parameter in the occur- 

ence of landslide. Kıncal et al. (2009) also showed that lithology 

as the greatest impact for the occurrence landslide in hilly ter- 

ain. Except lithology other import completing factors are altitude, 

iver density, slope, vegetation etc. Hong et al. (2007) also iden- 

ified that altitude, geology; slope, soil texture and structure are 

ost substantial factors of landslide. Like other parts of Himalaya, 

runachal Himalaya exhibits different well-known tectonomorphic 

ones (lesser, greater and Trans-Himalayan zones) and all these 

egments exist along the Bhalukpong-Bomdila-Tawang road sec- 

ion ( Singh et al., 2014 ). Land use and land cover has a direct
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Fig. 8. Some active landslide incidents happened in various pockets of western Arunachal (Source: Arunachal 24.in). 
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mpact over the triggering and activation of landslide ( Lu et al., 

015 ). With the changing pattern of human activity, the land use 

f a region is being changed simultaneously and high impact of 

uman activity leads slope instability processes ( Lu et al., 2015 ). 

n the western parts of Arunachal Pradesh, the higher Himalayan 

ocks area termed as Se La group which is distinct with the rock of 

omdila group (the crystallines of lesser Himalayan) in the south 

y the MCT (main central thrust) ( Singh et al., 2014 ). The Bomdila

roup consists of low grade penecontemporaneous basic volcanic 

ocks, argillaceous metamorphites and large scale igneous intrusive 

 Bhushan et al., 1991 ). This region consists with Subansiri forma- 

ion, Tenga formation, Dedza formation, Dirang formation etc. and 

uring field survey it has been observed that Bomdila group has 

he highest probability of landslide occurrence. The Tenga forma- 

ion is characterised by mafic metavolcanics, quartzite and phyl- 

ites while the Dedza formation is compacted with carbonate rocks 

long with a little quantity of black slate. The Dirang formation is 

omposed by muscovite-biotite schist, tourmaline marble, sericite 

uartzite and carbonate phyllite ( Srivastava et al., 2011 ). MCT in 

runachal Pradesh is under strain and recognized as high duc- 

ile shaving areas that are unveiling more than a single thrust 

lane ( Bhattacharjee and Nandy, 2008 ). Multi-dimensional first 

nd second generation structural imprints have been exposed on 

hese lithological formations along Bhalukpong-Bomdila-Tawang 

oad section. These formations are highly landslide prone due to 

ow degree of strength and excessive stress (heavey loaded vehi- 

les) is being imposed throughout year due to important interna- 

ional tourist destination. Rainwater can easily penetrate through 

hese vulnerable structures during rainy months as a result most 

f the landslides occur during the monsoonal period. Dry spell 

s also partially responsible for landslide particularly western part 

f Arunachal Himalayas. The MBT passes through the study area 

nd the continuous pressure of Indian plate towards the north- 
11
rn side is always fallen in this region that makes huge landslide 

rone condition. Most of the lineaments are trending parallel to 

BT and playing a vital role for landslides incidents ( Rawat and 

oshi, 2012 ). During the field survey, it has been observed that the 

pslope areas as well as steep areas are recurrent landslide prone 

nd the outcrops are much crumbled ( Fig. 8 ). The incised river 

errace, hanging valley, steep slope, escarpment, fault scarp and 

orges are contained the signature of tectonic activities within the 

tudy area. In Arunachal Pradesh, Jhum cultivation and high rate of 

eforestation are the significant anthropogenic factors which accel- 

rate landslide ( Rawat and Joshi, 2012 ). Selection of proper land- 

lide types and assessment of appropriate landslide models are 

ery much difficult work and these will highly control the final 

utcome map of landslide susceptibility. The selected causative fac- 

ors are carefully considered based on their relative significance 

nd data adequacy. The accurate landslide susceptibility mapping 

n a regional scale depends on various influencers but it will be 

uite difficult in terms of different perspective of the researchers. 

. Conclusions 

This study exhibits that remote sensing based landslide prob- 

bility models play a vital role in the precise mapping of land- 

lide susceptibility zonation mapping. Here, three different ma- 

hine learning based approaches (SVM, AdaBoost and XGBoost) 

ave been used for landslide susceptibility mapping in Tawang and 

est Kameng district of Arunachal Pradesh. There are some limi- 

ations of machine learning model based studies. Machine learn- 

ng requires huge amount of data set for training and these are 

ighly susceptible to errors ( Malik, 2020 ). The results attain from 

achine learning may have errors due to the statistical reason- 

ng. The systems generate the data based on previous results and 

he data that was loaded previously. Landslides are considered as 
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ne of the gravest natural hazard that imposes threats for both life 

nd property. Short term and long term solutions are more nec- 

ssary to combat against these daunting challenges. The landslide 

ulnerability map recently becomes popular in the context of land- 

lide prone area delineation and management. This kind of studies 

an definitely help to implement different kinds of management 

trategies such as proper land use management, afforestation, pol- 

cy making and barrier construction etc. The landslide susceptibil- 

ty study of western Arunachal reveals that relief, river density, ge- 

logy are the most influencing factors than anthropogenic activ- 

ties. Various unconsolidated based geological formations in this 

egion are very much susceptible for landslide occurrence and in 

he recent years, shifting (Jhum cultivation) cultivation along with 

igh rate of deforestation on this rugged Himalayan terrain exag- 

erates the magnitude of landslide. The AdaBoost model has the 

ighest prediction rate or success rate compared to other used 

odels. Therefore, AdaBoost model has been considered most op- 

imized model here. From this scientific study, researchers will get 

ifferent future research directions and wings. Consequently, new 

ybrid models will develop to reduce the direct and indirect land- 

lide risk particularly in Himalayan terrain. These research findings 

s well as strategies will be very much important for future de- 

elopment and sustainable livelihood of the people. Selection of 

ppropriate method can assist to combat against this kind of geo- 

nvironmental hazards. It is very difficult to stop completely such 

eo-hazard in tectonically active mountainous belt of Himalaya. 

herefore, various management techniques such as hard, soft and 

io-engineering should be implemented for very high and high 

andslide prone zones particularly at the vicinity of build environ- 

ent ( Bera, 2007 ). 
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