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Mapping Glacial Lakes Using Historically Guided
Segmentation Models

Anthony Ortiz, Weiyushi Tian , Tenzing Chogyal Sherpa , Finu Shrestha , Mir Matin , Rahul Dodhia,
Juan M. Lavista Ferres , and Kris Sankaran

Abstract—In this article, we compare several approaches to
segmenting glacial lakes in the Hindu Kush Himalayas in order
to support glacial lake area mapping. More automatic mapping
could support risk assessments of Glacial Lake Outburst Floods,
a type of natural hazard that poses a risk to communities and
infrastructure in valleys below glacial lakes. We propose and eval-
uate several approaches that incorporate labels from a 2015 survey
using Landsat 7 ETM+ SLC-off imagery to guide segmentation
on newer higher resolution satellite images such as Sentinel 2 and
Bing Maps imagery, comparing them also to approaches that do
not use this form of weak prior. We find that a guided version
of U-Net and a properly initialized form of morphological snakes
are most effective for these two datasets, respectively, each pro-
viding between an 8–10% intersection-over-union improvement
over existing U-Net segmentation approaches. An error analysis
highlights the strengths and limitations of each method. We design
visualizations to support the discovery of lakes of potential con-
cern, including an interactive exploratory interface. All the codes
supporting our study are released in public repositories.

Index Terms—Climate change, deep learning, glacial lakes,
glacier mapping, morphological snakes.

I. INTRODUCTION

THIS article focuses on the mapping of glacial lakes us-
ing historically guided semantic segmentation models and

satellite imagery. Glaciers all over the world are currently thin-
ning and retreating at a remarkable rate as a result of the changing
climate [6]. The melting of glaciers often accumulates to form
glacial lakes between the frontal moraine and the retreating
glacier or on the surface of the lower section of the glacier [8].
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These lakes are dammed by moraine complexes, which are often
unstable and have a potential to breach. A Glacial Lake Outburst
Flood (GLOF) event occurs when a dam holding a glacial lake
collapses. The resulting rush of water and accumulated debris
can cause significant damage to nearby communities destroying
human lives and infrastructure. GLOFs have led to more than
12 000 deaths and destroyed roads, bridges, hydroelectric devel-
opments, and entire villages [4], [20]. The accurate delineation
and mapping of glacial lakes across multiple timepoints is re-
quired for determining the risks of such GLOF events [8] and
developing GLOF mitigation strategies.

Different organizations around the world, including the In-
ternational Centre for Integrated Mountain Development (ICI-
MOD), have been working on creating glacial lake invento-
ries [3], [8], [11], [12], [14], [18], [22], [24], [26], [30]. Until
now, most of these inventories have been opting for manual
methods of delineating glacial lakes using optical or synthetic
aperture radar (SAR) imagery [3], [8], [12], [15], [24]. There
have also been several studies that have applied semiautomated
approaches for segmenting glacial lakes [9], [11], [18], [23],
[26]. For example, Shugar et al. [22] manually defined Normal-
ized Difference Vegetation Index and Normalized Difference
Salinity Index thresholds to isolate candidate lakes and then
further filtered them based on discriminating factors, like the
slope within and adjacent to the lake. This enabled the con-
struction of a global catalog, albeit one based on more manual
features. A more image-processing-oriented pipeline was used
by Maharjan et al. [11], who generated superpixels on satellite
imagery using an object-based segmentation model from the
eCognition software application [16]. These superpixels on the
surface of glacial lakes were then manually selected, and the rest
were removed.

For the Hindu Kush Himalayan (HKH) region, the ICIMOD
developed an inventory of 3624 glacial lakes covering the three
major basins from Nepal, Tibet, and India, of which 47 were
classified as at high-risk for GLOF events, based on lake and
dam characteristics, source glacier activity, and surrounding
morphology [8], [11]. To accomplish this, Landsat 7 ETM+
SLC-off remote sensing imagery was segmented using a Nor-
malized Difference Water Index as the input to an object-based
segmentation model, also from eCognition. The segments other
than glacial lake were manually selected. The missing lakes or
lake segments covered with clouds or shadows were manually
added and refined using image scenes from a different date.
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Once the final glacial lakes were prepared, their area was com-
puted. Comparing the area and expansion rate of the lakes across
years provides one indication of GLOF risk.

The glacial lake inventories are only infrequently updated.
This is because 1) identifying lakes and delineating their bound-
aries is a time-consuming and laborious process and 2) Landsat
imagery has 30-m resolution, making smaller changes in glacial
lake area impossible to distinguish. Since updates are infrequent,
it is difficult to observe trends in lake properties. New lakes may
have entered into a high-risk state, while those thought to be
high-risk may have stabilized. While there are only 47 lakes
currently classified as high-risk, there is a much larger number
that may need to be screened periodically.

Researchers have shown interest on developing algorithms to
fully automate glacial lake mapping. Li and Sheng [10] proposed
an automated glacial lake delineation algorithm based on hier-
archical image segmentation and digital elevation maps [10]. In
this algorithm, each glacial lake is delineated using segmentation
value, and the topographic features derived from digital elevation
models are used to separate mountain shadows from glacial
lakes. However, this method is highly sensitive to changes on
image conditions. More recently, researchers started exploring
the use of deep learning models to outline glacial lakes. For
example, Qayyum et al. [19] trained a U-Net model [21] to
segment glacial lakes using PlanetScope imagery. Chen [5] also
used U-Net to segment supra-glacial lakes in the Himalayas
using SAR images, while Wu et al. [28] trained a U-Net variant
using a combination of optical and SAR imagery as input.

In this article, we design and evaluate several approaches
to incorporate historical glacial lake information and guide
segmentation on newer and higher resolution satellite and aerial
imagery from Sentinel 2 and Bing Maps, comparing them to
approaches that do not use this form of weak prior, like those
previously described. Specifically, we extend three existing
segmentation algorithms—morphological snakes, U-Net, and
DELSE—in a way that allows them to leverage that fact that
lakes only change gradually over time. The three segmentation
methods that we adapt have been chosen to be representative of
both the image-processing- and deep-learning-based segmenta-
tion algorithms. We document performance of these extensions
together with their parent algorithm on two glacial lake datasets
with varying temporal and spatial resolution structure. We find
that a guided version of U-Net and a properly initialized form of
morphological snakes are most effective for these two datasets,
respectively, each providing between an 8–10% intersection-
over-union (IoU) improvement over a standard U-Net used in
previous work. We note that none of the segmentation algorithms
applied in this article are available in standard GIS software
applications, like QGIS or eCognition, and we have released
a repository with code for our proposed prior-guided methods
as well as the U-Net, DELSE, and morphological snakes algo-
rithms used in experimental comparisons. We also develop an
interactive visualization tool to create a solution to map glacial
lakes at very high resolution.

Our contribution is threefold.
1) We design methods that incorporate historical glacial lakes

information at lower resolution to guide segmentation on
higher resolution Sentinel 2 and Bing Maps imagery.

2) We evaluate several approaches from across the image pro-
cessing and deep learning literature, and we show that our
guided segmentation-based extensions greatly outperform
other glacial lake mapping approaches.

3) We design visualizations and an interactive exploratory in-
terface to facilitate the discovery glacial lakes of potential
risk.

II. METHODS

The general lake mapping problem is a multitemporal seg-
mentation problem with imagesxit ∈ RW×H×D of lake i across
Ni times t. Pixel-level annotations of the lake at time t are
encoded in yit ∈ {0, 1}W×H . The segmentation task is to supply
a new annotation ŷit∗ given a new observation xit∗ .

In our application, we encounter additional constraints. First,
label availability varies across timepoints t. We have access
to a large number of labels yit for earlier timepoints, corre-
sponding to the 2015 comprehensive survey conducted by the
ICIMOD [11]. However, very few labels are available at more
recent timepoints, and for most t, no labels are available. The
second constraint is that, for some newer higher resolution
sensors, only recent imageryxit is available. This nonuniformity
in label availability over time complicates the use of standard
multitemporal segmentation strategies, precluding the applica-
tion of methods like ConvLSTM for the segmentation of earth
observation time series [29]. A challenge of this study is to
understand how to effectively use historical annotations within
this context. We next discuss five strategies drawing from across
the image processing literature, making use of weak supervision
to varying degrees.

A. U-Net and Historically Guided U-Net

U-Net is a standard convolutional neural network architecture
recently used for the glacial lake segmentation problem [7], [13],
[19], [21]. In its standard form, the U-Net architecture does not
directly make use of historical annotation. The method learns
a mapping between xit and matched labels yit, which can be
applied to recent images x∗, but without attempting to match
x∗ to past labels. Specifically, U-Net is a deep learning model
with an encoder–decoder architecture. Each image is first passed
through an encoder. This is a series of convolutional filters that
helps the model learn long-range dependence between pixels.
The encoder finishes in a bottleneck layer, which includes com-
pressed high-level features of the input image. Next, a decoder
module passes this compressed representation through a series of
deconvolutional filters, upsampling back to the original image
dimension in order to make per-pixel predictions. In order to
support the use of lower level color and texture features, the
architecture includes skip connections between encoder and
decoder layers, allowing these features to bypass the bottleneck.
Parameters in this model are found by optimizing a segmentation
loss function across image minibatches.

We additionally consider a historically guided version of
U-Net, which adds a new channel to xit including a partially
ablated label A(yit′) from a time t′ ≤ t. The ablation is needed
to prevent the model from simply “copying” the past label to
the current timepoint, a strategy that may work artificially well
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for unchanging lakes, but which fails to uncover the changes in
lake boundary that are of interest. We set A(yit) to be a reverse
buffered version of polygons induced by yit, shrunken equally
in all directions until the covered area is reduced to 40% of the
original area.

U-Net requires a training phase to associate image features
with pixel labels, and this can be time consuming (for datasets
of the scale considered below, typically between 1 and 2 h). How-
ever, once a model is trained, predictions can be made on new
images efficiently (“<” 5 s). This makes the model easy to apply
for generating predictions on large image collections. We note
that the historically guided U-Net has a larger memory footprint
than the baseline. This is because xit has been supplemented
with an additional input channel. For some hardware, it may be
necessary to reduce training batch sizes to control memory. In
our experiments below, however, this was not necessary.

B. Morphological Snakes

Active contour methods frame image segmentation as a
variational problem [2], [17]. Each image defines an energy
functional, and the boundaries that define a segmentation can
be associated with an energy. Curves that closely follow edges
and bound regions of similar pixels will have low energy, while
curves that cross edges or contain patches with different image
statistics will have high energy. In this way, a segmentation can
be found for each image xi by identifying a set of boundary
curves Ci with low overall energy.

Formally, the morphological snakes algorithm parameterizes
an evolving sequence of 2-D segmentation boundaries using
a sequence of mappings ϕτ : R2 → R. The zero-level set of
ϕτ defines the segmentation at iteration τ . That is, pixels lay-
ing in {x : ϕτ (x) < 0} are classified as lake at iteration τ .
Note that this level-set formulation allows the segmentation
of disconnected regions. To find a segmentation with minimal
energy, the level set ϕτ is evolved by iteratively applying three
operations—dilation, erosion, and curvature flow—which grow,
shrink, and smooth out the segmentation boundary, respectively.
The strength of these operations is determined by local image
statistics in order to more closely follow object boundaries. We
refer to [2] for implementation details; our experiments use the
open-source library [25]. This method requires an initialization
ϕ0 to define preliminary image statistics that should be reflected
by the final segmented object. We initialize ϕ0 with the level-set
function derived from the same ablated labels A(yit′) used in
the historically guided U-Net.

Since the morphological snakes algorithm does not require
pattern matching across the entire input dataset, it does not
require a training phase, and predictions can be made in parallel
across lakes. The price to pay is that generating each new
prediction requires a small independent optimization problem.
In this sense, the method is portable when viewed from the
scale of isolated lakes, but potentially costly when attempting
to draw inference over a large collection of images. We note
that, since the algorithm requires an initial boundary even in its
standard usage, there is no change in computational cost when
incorporating historical labels.

C. Deep Level-Set Evolution

We also apply the DELSE algorithm, a level-set method that
is able to learn update rules based on deep data-specific fea-
tures [27]. Like morphological snakes algorithm, this algorithm
takes advantage of a coarse, approximate labeling to guide a full
segmentation. It also defines a sequence of level-set functions
ϕτ (x) in pixel space that is negative if and only if it lies inside
the class of interest.

In addition to imagery xi, DELSE expects extreme-point
supervision for each polygon. These are the four points defin-
ing a bounding box of the polygon label. These points are
rasterized into an image of the same dimension as the image
of interest xi; specifically, a Gaussian-blur resampling is ap-
plied. Call the rasterized extreme-point labels wi. The DELSE
algorithm initializes a level set ϕ0 = fθ1(xi, wi) approximat-
ing the locations of polygons. Then, it evolves this surface
ϕτ+1 = ϕτ + Uθ2(xi, ϕτ ) for T steps using an update function
Uθ2 . Note that, due to the vanishing gradient problem, T is
typically chosen in the range 3–5. This is many fewer iterations
than used in the morphological snakes algorithm; however, the
learned initialization ϕ0 can be closer to the truth than the initial
level sets given to morphological snakes. Both the initialization
fθ1 and update Uθ2 are given ResNet architectures. This allows
the evolution to take advantage of learned image features. We
refer to [27] for details about the architecture and loss function.

We also consider a variant of the DELSE algorithm that
incorporates weak supervision. Rather than requiring the model
to learn an initialization ϕ0, we may initialize using a reverse
buffered historical labelA(yit′), for some t′ ≤ t, as in our histor-
ically guided U-Net and morphological snakes implementations.
We only require that this model learns an update function Uθ;
we remove both the network component fθ1 and its associated
loss.

Of the methods compared, the DELSE model is the least
computationally portable. This is a consequence of its richer
parameterization, which requires modules for predicting both
the initial level set and the update rules and, hence, increases the
memory load. However, we note that the addition of historical
guidance reduces the computational load, since the module for
predicting the initial level set is no longer necessary.

III. EXPERIMENTS

We conduct two experiments to evaluate the accuracy and
computational tradeoffs associated with alternative approaches
to historical guidance in glacial lakes mapping. In the first
experiment, historical labels are used to support predictions
across a series of timepoints in a new moderate resolution
modality. Specifically, we use imagery from Sentinel 2 from
2015–2016 for training, 2021 for evaluation, and 2015–2021
to infer overall trends. In the second experiment, these labels
support prediction using a new high-resolution modality at a
single future timepoint. These images are generated by MAXAR
satellites and were obtained through Bing Maps in 2021.

In both the experiments, we train models using the ICIMOD
inventory of glacial lakes in the Himalayas [11]. These labels
were collected through the manual selection and correction
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of automatically generated hyperpixels generated on Landsat
7 ETM+ SLC-off imagery. The resulting labels are polygons
whose vertices encode lake boundaries. A histogram of lake
sizes derived from this survey is provided in Appendix Fig. 9.
A total of 3624 lake boundaries are available.

Since they were curated using Landsat 7 images, these labels
will not exactly match either the Sentinel 2 or Bing imagery used
for training. For Sentinel 2, even after filtering to 2015–2016,
differences in cloud cover, ice cover, and registration can lead to
inconsistencies. For Bing imagery, only the most recent scenes
are available, and lakes have likely changed from 2015 to 2021.
Noisy labels can often lead to sensible models, which is why we
train models in spite of the discrepancy [1]. However, they may
lead to biased evaluations.

For this reason, we have curated additional polygon labels
associated with the most recent imagery from Sentinel 2 and
Bing Maps associated with randomly selected lake IDs, restrict-
ing only to those lake IDs that were not sampled by Sentinel in
2015–2016 or which were absent from the Bing Maps training
and validation sets. Specifically, 139 and 50 lakes were ran-
domly selected from among these Sentinel 2 and Bing Maps
candidates, respectively. The most recently available lake image
satisfying the same filtering criteria used in the experiments
below was then labeled. Since our interest is primarily on the use
of historical labels to improve predictions on more recent data
sources, and since many fewer are available here compared to the
ICIMOD inventory, these labels are only used for evaluation, not
training.

A. Evaluation

For either set of labels, we use the following metrics to evalu-
ate segmentation and inferred glacial lake boundary quality. Let
ŷ ∈ {0, 1}H×W denote predictions for an image after thresh-
olding associated probability assignments. Let y ∈ {0, 1}H×W

denote ground truth. We compute the following metrics:

1) IoU:
∑

ij yij ŷij∑
ij max(yij ,ŷij)

, the number of correctly labeled pix-

els (intersection) divided by the number of pixels belong-
ing either to the prediction or ground truth (union);

2) Precision:
∑

ij yij ŷij∑
ij ŷij

, the fraction of predicted lake pixels

that are correct;
3) Recall:

∑
ij yij ŷij∑

ij yij
, the fraction of true lake pixels that are

correctly recovered;
4) Fréchet distance: Let PV be a function that approximates

the region labeled 1 in a binary mask by a polygon with V
vertices. For an imageu, it returns a set of vertices pv(u) =
(phv (u), p

w
v (u)) ∈ PV (u). Then, the Fréchet distance be-

tween y and ŷ is defined as infπ∈ΠV

∑V
v=1 ‖pv(y)−

pπv
(ŷ)‖2, where ΠV is the set of all permutations of

1, . . . , V .
We compute two variants of the Fréchet distance. The first,

Fréchet (px), is based on the raw pixel coordinates of labels
in the image, while the second, Fréchet (m), converts distances
to the physical meters between pairs of points in the image.
The first approach is suited to algorithmic evaluation, while
the second has a clearer practical interpretation. The Fréchet
distance serves as a proxy for the difficulty of dragging vertices

in predicted polygons to the closest location that lies on the
true boundary, a task that would be necessary before releasing
the final lake boundaries for downstream use. For methods
that return probabilistic assignments to each pixel, we compute
and report these metrics over a grid of probability thresholds
from 0.05, 0.1, . . . , 0.95, choosing an optimal threshold using
imagery in the validation set.

B. Time Course

In the first experiment, we collect time courses of Sentinel 2
imagery for each lake. Specifically, for each lake of interest,
we query up to the clearest ten images for each year from
2015 to 2021. We discard images with more than 5% cloud
cover, 70% snow cover, or 20% missing values. Owing to the
resolution level of publicly available training imagery, only the
40% largest lakes are used in analysis. This includes all 47
that were previously designated as potentially dangerous [11].
Sample collection is more frequent in recent years—the number
of available timepoints per lake per year is given in Appendix
Fig. 10. Each image is cropped to a square enveloping the 10%
buffered polygon associated with the 2015 lake label. If the
cropped image is smaller than 500 pixels on one end, it is rescaled
so that its smallest edge is 500 pixels across.

We split all imagery from 2015 to 2016 into training, vali-
dation, and test sets according to geographic basin. The basins
associated with each set are chosen randomly; the correspon-
dence is given in Appendix A. A total of 271, 47, and 85
lakes belong to these sets, respectively. The 2015–2016 test
set is complementary to the newly labeled test set and re-
flects performance on images from the same period used for
training. All models are trained on the same set of train-
ing images. Hyperparameters were chosen by comparing IoU
on training and validation sets. Training details are given in
Appendix B.

C. Modality Updating

In the second experiment, we explore the use of historical
labels when generating lake boundary predictions on modal-
ity with much higher resolution than those used to generate
training labels. This reflects the problem of creating labels on
novel image sources when past projects have already generated
labeled datasets based on previously available potentially lower
quality sources. Specifically, we download 3624 Bing Maps
tiles centered around the centroids of historical lake labels. The
timepoints received for each lake are those that are the most
recently available as of August 2021. At the highest available
resolution, some lakes do not fit into a single tile. Therefore, we
adapt the zoom level of the downloaded imagery according to
the 2015 lake size. This ensures that 1) large lakes are contained
within the downloaded imagery and 2) smaller lakes can be
viewed at high resolution.

We apply the same basin-level splits as used in the time
course experiment. A total of 2128, 350, and 1146 images
are available for training, validation, and testing, respectively.
The discrepancy in sample sizes compared to the previous
experiment reflects that 1) Sentinel 2 imagery is not avail-
able for all lakes in 2015–2016 and 2) small lakes are not
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TABLE I
MODEL PERFORMANCE ON BING AND SENTINEL 2 IMAGERY USING HISTORICAL LABELS FROM 2015 PROVIDED BY THE ICIMOD

TABLE II
MODEL PERFORMANCE ON BING AND SENTINEL 2 IMAGERY ON LABELED RECENT IMAGERY

discarded in this experiment, since image resolution is higher.
All the hyperparameters are chosen by evaluating IoU on train-
ing and validation sets. Training details are again deferred to
Appendix B.

IV. RESULTS

Table I shows the performance of the different models on
Sentinel 2 and Bing Maps imagery held out test sets. The labels
used for this evaluation were obtained from the ICIMOD glacial
lake inventory and were created using 30-m-resolution Landsat
7 satellite imagery from 2015. These ground truth labels are not
always accurate and/or aligned with Bing or Sentinel imagery
since they were created using lower resolution images. This
Sentinel 2 test set was restricted to scenes from 2015 to 2016 for
better alignment with the ground truth. Since Bing Maps does
not offer historical imagery, the Bing test set includes the most
recent imagery for each glacial lake on the test set.

Table II shows the performance of the different models for
both Bing Maps and Sentinel 2 imagery datasets. This evaluation
was conducted on the held-out test set manually labeled by the
authors on recent imagery.

We discuss some takeaways from these results. First, we note
that, in general, no model is uniformly superior to others across
all the metrics. The only possible exception is the morphological
snakes model applied to Bing Imagery, which is the best on
all the metrics except recall. The model with best recall, his-
torically guided DELSE, has unacceptably low precision. The
U-Net model generally has lower precision than other models,
especially on Bing imagery. The Fréchet distance is sensitive
to the inclusion of false positive predictions far from the target
lake prediction, explaining the poor performance of U-Net and
DELSE with respect to this metric.

In general, performance on Sentinel 2 is better than for Bing.
This may seem counterintuitive, because Sentinel 2 images are
lower resolution. The training set for this experiment is also
smaller. However, at lower resolution, lakes tend to appear more
homogeneous. At higher resolution, differences in texture and
color across the lake become visible—for example, deep and

shallow water can be distinguished—and these more subtle
variations may be difficult for models to learn. Furthermore, for
all models, performance deteriorates for the labeled imagery on
recent lakes. This is expected for historically guided models,
since prior information may be less relevant when reaching
further into the future. For other models, it may reflect increased
difficulty of the randomly chosen recent subset.

V. ERROR EVALUATION

We next explore the reasons for performance differences
observed in Tables I and II. In Figs. 1 and 2, we visualize
lake-level performance across several metrics in both the ex-
periments. Based on labels generated from recent imagery, we
compute the average IoU across all the models for each lake. This
summarizes the overall difficulty of each lake. We then compute
the0.2, 0.4, . . . , 0.8quantiles of lake performance and randomly
select five representative lakes from each bin. Performance on
these lakes is encoded as lines within each panel, and the baseline
size of the lake in 2015 is encoded by the size of the points. The
analogous figures generated for the ICIMOD inventory labels
and Sentinel/Bing test sets are shown in Appendix Figs. 11
and 12.

For both Sentinel 2 and Bing Maps imagery evaluated with
recent labels, all the models achieve high performance at the 0.8
quantile (panel on the far right), except for the DELSE model
with historical labels. For the remaining models, differences in
average performance seem attributable to the most challenging
lakes, especially those in the lowest two to three quantiles of
average IoU (panels on the left). This suggests that, for lakes
with the highest resolution and the clearest contours, any of
these models can be applied successfully, and that the more
challenging lakes in quantiles 1–3 are responsible for the per-
formance differences observed in Tables I and II. For example,
for both Sentinel 2 and Bing Maps imagery, the precision of
the U-Net model substantially worsens in performance quantiles
1–3, despite having comparable precision to all the other models
in quantiles 4 and 5. Furthermore, the historically guided U-Net



ORTIZ et al.: MAPPING GLACIAL LAKES USING HISTORICALLY GUIDED SEGMENTATION MODELS 9231

Fig. 1. Comparison of lakewise performance across models when evaluating with newly labeled Sentinel 2 imagery. Each column corresponds to one quantile of
lake performance (lowest to highest performance from left to right), and each row is a performance metric. The five lines in each panel correspond to five randomly
selected lakes within that quantile. Models are sorted from those with lowest average IoU to those with the highest average IoU.

Fig. 2. Analog of Fig. 2 generated for newly labeled high-resolution imagery. Models are again sorted from those with lowest to highest average IoU, though
note that the order has changed.

and morphological snakes models achieve high IoU even within
the most challenging quantile (far left panel).

For Bing imagery, performance is generally poorest on small
lakes. Lake size has relatively less influence on performance in
the Sentinel 2 dataset. For Sentinel 2 imagery, the morphological
snake and U-Net with labels perform comparably, though the
morphological snake model typically has slightly larger varia-
tion in IoU and recall.

Tables shown in Figs. 3 and 4 provide the predictions as-
sociated with one randomly selected lake from each quantile
in Figs. 1 and 2, respectively. These visual examples allow us
to qualitatively inspect the sources of differential quantitative
performance found in Tables I and II when averaging across all

lakes. More accurate models would have predicted lake pixels
that closely match those in the “Truth” column across all rows,
which correspond to different levels of difficulty, in the sense
of having different average IoU. Indeed, consistent with the
overall metrics reported in the table, we find that the historically
guided U-Net does not deteriorate as severely as other models
in more challenging situations, like when images are obscured
by snow or clouds (quantile 1 in Fig. 3) or are captured at low
resolution (quantile 3 in Fig. 3). Both the DELSE and U-Net
segmentations are prone to false positives (quantiles 1 and 2
in Fig. 3). Morphological snakes segmentations tend to have
rougher boundaries than those made by U-Net and DELSE
models, in spite of the smoothness regularization terms included
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Fig. 3. Comparison of errors made across models on Sentinel 2 imagery. Models are arranged along columns. Each row provides a randomly selected lake whose
average error lie between the first (highest error, top row) through fifth (lowest error, bottom row) quantiles. In these images, regions with clouds (row 1) or at low
resolution (row 3) tend to lead to elevated error in models without access to historical labels. The GL_ID column provides glacial lake IDs as defined in ICIMOD’s
2015 inventory [11].

in their objective functions. On Bing Maps imagery, it appears
that the U-Net has not learned to predict lake ice regions as lake
(quantiles 2 and 3 in Fig. 4). The historically guided DELSE
model makes only minimal changes to its initialization. This
explains the high precision and low recall observed above. For
this strategy to be work, it seems that a way of increasing
the number of iterations used in the DELSE algorithm will
need to be developed. In cases where the lake has disappeared,
methods that are provided the historical label can mistakenly
hallucinate the existence of a lake (quantile 1 in Fig. 4). That
is, based on other training examples, the model has learned to
always predict that the initialization must belong to the lake,
despite evidence to the contrary given by the image. In fact, the
morphological snakes, DELSE, and guided U-Net models grow
the initialization slightly.

Only U-Net and DELSE predict noncontiguous lake regions
(quantiles 1 and 5 in Fig. 4 and quantile 4 in Fig. 3). This is
an advantage if the goal is to discover new lakes, but may not
be desirable if the goal is to update contours of a previously
observed one. The DELSE predictions are much sharper on Bing
Maps compared to Sentinel 2 imagery. This may reflect the fact
that it includes a ResNet encoder pretrained on natural images,
whose more well-defined features may be more relevant in the
higher resolution setting. It may also reflect the larger sample
size in the modality updating experiment. Further examples
of lake predictions corresponding to error quantiles using the
ICIMOD inventory are given in Appendix Figs. 13 and 14.

VI. INTERACTIVE VISUALIZATION

We next use model results to analyze trends in glacial lake sur-
face area in the HKH region. To support queries about temporal
patterns, we have designed an interactive visualization system.
The interface has three linked components: a selection panel, a
time-series view, and an imagery table. An annotated version of
this interface is given in Figs. 5 and 6. It can also be accessed
online at tinyurl.com/3rtrdrx2. The selection panel is separated
into three tabs. The first tab allows the user to filter down to
specific basins or glacial lake IDs of interest. The lake selection
options are updated conditionally on the basins chosen. The
second tab allows the user to filter to selected lake IDs. The
third tab allows the user to choose a trend of interest, and the
lake ID selection options also update accordingly. The range of
area shown in the time series can be adjusted by moving the
slider bar at the top of the selection panel. All the selections
can be reset by pressing the “Reset” button at the bottom of the
selection panel.

Below the selection panel, the time-series view shows inferred
lake areas over time from the predictions of the historically
guided U-Net, though, in principle, any source of label pre-
dictions could be substituted. When the user brushes lakes
within this plot, the color of the brushed point is changed
to red, and the associated imagery is displayed in Fig. 6.
Each row of this table corresponds to one lake; columns give
timepoints. Hovering over an image shows the specific date

tinyurl.com/3rtrdrx2
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Fig. 4. Comparison of errors made across models on high-resolution Bing imagery. Models and average error rates are arranged as in Fig. 3. The morphological
snakes model achieves the highest average IoU on this dataset.

Fig. 5. Screenshot from the selection panels of the trend analysis visualization application. Users can select lakes for inspection using either static properties or
model-predicted lake areas. The selected lakes populate the table shown in Fig. 6.
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Fig. 6. Screenshot from the lake time-series visualization from the trend analysis visualization application. Given a highlighted set of lakes, the table updates to
show the corresponding time series of imagery. The application provides a structured approach to exploring model-predicted lake areas.

at which the scene was sensed. The interface is designed to
support the exploration of lake images with properties of in-
terest, including geographical location and trends in inferred
size.

VII. TREND ANALYSIS

To summarize trends in predicted lake areas, we have fitted a
collection of linear regression models between sample collection
date and predicted lake areas from the historically guided U-Net.
Specifically, for each lake with at least four observations, we fit
the model

log (Areai) = βintercept + βslopeDatei

where Datei counts the number of days since January 1, 2015.
The estimated β̂slope terms describe the linear component

of any trends that may exist for each lake. Fig. 7 shows a
volcano plot of the estimated effects, displaying standardized
slopes against their associated p-value. Estimates made using
a wider temporal range and with more samples will have lower
standard errors and more significant p-values. Points in the upper
left and right corners correspond to glacial lakes where a large
significant effect has been detected. The fact that more negative
β̂slope estimates are observed suggests that more glacial lakes
have decreasing than increasing areas. However, we note that the
point close to (0, 0) contains the majority of glacial lakes—most
lakes do not change in any detectable way over the time span of
the experiment.

Two of the lakes with significant increasing trends are
shown in Fig. 8. The lower boundary of glacial lake

Fig. 7. Volcano plot of estimated glacial lake area changes. Lakes at the bottom
of the “V” do not have detectable trends in glacial lake area. Those on the upper
right (left) have significant increasing (decreasing) areas. Two example glacial
lakes labeled here are shown in Fig. 8.

Fig. 8. Example Sentinel-2 imagery of growing glacial lakes identified using
Fig. 7 and the interactive visualization tool. Only two timepoints are displayed.
The image for lake GL086379E28392N appears higher resolution because the
original lake area is larger.
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Fig. 9. Lake areas derived from the 2015 survey [11]. Note that the x-axis is
on a log scale. Only the top 40% of lakes are kept, corresponding to an area
cutoff of 0.019.

Fig. 10. Sentinel 2 imagery collection date. More imagery is available in recent
years. Since labels were created in a 2015 study, only images from 2015 to 2016
were used for training and evaluation.

GL086379E28392N has clearly expanded, while lake
GL087401E28768N has grown in all the directions.

VIII. DISCUSSION

We have studied methods for incorporating historical labels
to guide glacial lake segmentation on more recently sampled im-
agery. Our work provides a template for earth observation tasks
that could benefit from transferring labels from one modality to
another. We have applied both state-of-the-art level-set evolution
methods and simple preprocessing strategies. For Sentinel 2 im-
agery, we have found that a concatenation of partially obscured
historical labels as an extra channel to U-Net performs well,
mainly by reducing the number of false positive assignments to
shadow or snow, since these potential distractors tend to be far
from historical lake labels. For Bing Maps imagery, we found
that initializing a morphological snake at a shrunken version of
the historical label was effective. However, both the approaches
could be misled to produce false positives segmentations when
the true lakes are no longer enclosed in the initialization.

We analyzed predictions from the historically guided U-Net
model on Sentinel 2, identifying several glacial lakes whose

areas have noticeably increased since 2015, the last time the
glacial lake inventory was formally curated. Though most lakes
have remained relatively stable over the time span of our data,
we observed more lakes with decreasing, rather than increasing,
trends. To more easily analyze lake area trends, we developed
an interface to support visual queries. We believe these methods
will support more frequent inventory and analysis of glacial lake
areas in the HKH, providing source material for GLOF risk
assessment.

In practice, not all the lakes of interest have been captured
by historical surveys. Future work will concentrate on a closer
coupling between the discovery of new lakes and boundary
updating for previously identified ones. For example, a model for
detecting lakes can be coupled with an interface for supplying
and automatically refining weak, partial labels, similar to those
used to guide predictions in this study.

Furthermore, we observed several limitations of the existing
methods, suggesting avenues for further study. All the mod-
els except for the morphological snakes model struggled with
high-resolution imagery, where a single lake might include sev-
eral subtly distinguishable textures. The highly parameterized
DELSE model failed to outperform a simple modification of
U-Net, perhaps due to the limited sample size of the datasets
studied.

Code for modeling, interactive visualization, and trend anal-
ysis is available in online repositories tinyurl.com/44wdtw24,
tinyurl.com/2p8e5svy, tinyurl.com/2p8e5svy. With the excep-
tion of proprietary Bing Maps imagery used in the modality
updating experiment, all data, labels, and predictions associated
with this study are available. Links are given in Appendix C.

APPENDIX A
DATA DETAILS

The mapping between train, validation, and test basins is given
as follows:

1) Train: Arun, Bheri, Budhi Gandaki, Dudh Koshi, Humla,
Indrawati, Kali, Kali Gandaki.

2) Validation: Karnali, Kawari, Likhu, Marsyangdi, Mugu,
Seti.

3) Test: Sun Koshi, Tama Koshi, Tamor, Tila, Trishuli, West
Seti.

APPENDIX B
TRAINING DETAILS

In the following, we provide model training details for the
time course experiment.

1) For both the U-Net and DELSE models, one epoch con-
sists of looping over every image in the training set, in
random order. For each image, a random 400× 400 patch
is selected.

2) The U-Net models were trained for 200 epochs with batch
size of 8.

3) For the U-Net models, a stochastic gradient descent opti-
mizer with a learning rate of 5e-4 was used.

4) The DELSE models were trained for 200 epochs with a
batch size of two and three refinement iterations per batch.

tinyurl.com/44wdtw24
tinyurl.com/2p8e5svy
tinyurl.com/2p8e5svy
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Fig. 11. Analog of Fig. 1 for the error with respect to 2015 ICIMOD labels for lakes within the Sentinel test set.

Fig. 12. Analog of Fig. 2 for the error with respect to 2015 ICIMOD labels for lakes within the Bing test set. These 2015 labels are more plentiful, but not as
accurate on the recently collected Bing imagery.

5) A weighted cross-entropy loss was used for training U-
Net.

6) For both the U-Net and DELSE models, gradient clipping
was used with a maximum gradient norm of 10.

7) Each head of the DELSE model was trained for 10 000
iterations before joint training.

8) For DELSE models, a stochastic gradient descent opti-
mizer with a learning rate of 1e-4 was used.
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Fig. 13. Example lake predictions taken from the quantiles shown in Appendix Fig. 11. The ground truth shown here are those from the 2015 ICIMOD survey.
The lake from the highest error quantile is masked by a no-data region of a Sentinel 2 tile.

Fig. 14. Example lake predictions taken from the quantiles shown in Appendix Fig. 12. These are the labels that were used to train the models in the Modality
Updating experiment in Section III. Note that labels sometimes no longer match the associated image; for example, in the first row, the lake has disappeared. This
is because the labels from this inventory were prepared using Landsat 7.
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In the following, we provide training details for the modality
updating experiment.

1) For both the U-Net and DELSE models, one epoch con-
sists of looping over every image in the training set, in
random order. For each image, a random 400× 400 patch
is selected.

2) The U-Net models were trained for 60 epochs with batch
size of 8.

3) For the U-Net models, a stochastic gradient descent opti-
mizer with a learning rate of 5e-4 was used.

4) The DELSE models were trained for 60 epochs with a
batch size of two and three refinement iterations per batch.

5) A weighted cross-entropy loss was used for training U-
Net.

6) For both the U-Net and DELSE models, gradient clipping
was used with a maximum gradient norm of 10.

7) Each head of the DELSE model was trained for 6000
iterations before joint training.

8) For DELSE models, a stochastic gradient descent opti-
mizer with a learning rate of 3e-4 was used.

APPENDIX C
DATA DOCUMENTATION

Download scripts
1) All Sentinel 2 imagery were downloaded through the Plan-

etary Computer using this script, https://bit.ly/3LfrDAr,
and these helper functions, https://bit.ly/3rOLFtT.

Vector Label Data
1) ICIMOD inventory: Vector labels curated by the 2015

inventory are available in the ICIMOD regional database
at https://bit.ly/3Mt7irA.

2) Curated evaluation labels: Labels on recent Sentinel 2
and Bing imagery used for evaluation in this study are
available at https://bit.ly/3k6kBlB.

Images and Rasterized Labels
1) Sentinel: Sentinel 2 imagery with ICIMOD inventory

labels are given at https://bit.ly/3rPjcEj. The subfolder
splits contains the resized transformed images asso-
ciated with the training, validation, and testing splits.
Each split is contained in its own folder. Each image
can be associated with a rasterized label in the labels
subfolders of the raw and split data.

2) Sentinel 2 imagery and labels from the review conducted
by the authors are available at https://bit.ly/3KdxYv3.

3) Imagery from Bing Maps are proprietary and cannot be
shared publicly.

Predictions
1) Metrics for all the models, lakes, and train/validation/test

subsets at all probability thresholds are given in this folder
https://bit.ly/3xOdTc8.

2) Predictions for all the models and datasets are saved as
both raster and vector data in zipped archives https://bit.
ly/3KbXl08. The name of the archive specifies the name
of the dataset and the model.

3) Predictions converted to black and white images, which
were used in the error analysis above, are stored in this
archive https://bit.ly/36N83gc.

APPENDIX D
REPRODUCIBILITY

A Docker image with all necessary software preinstalled is
available at https://dockr.ly/37BZvt0. It includes the packages
listed in this install script https://bit.ly/3MpzlIz.
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