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A B S T R A C T   

Climate change is increasing the risk of glacial lake outburst floods (GLOFs) in many of the world’s most 
vulnerable and high mountain regions. Simultaneously, remote sensing technologies now facilitate continuous 
monitoring of glacial lake evolution around the globe, although accurate and reliable automated glacial lake 
mapping from satellite data remains challenging. In this study, a Second-order Attention Network (SoAN) is 
devised for the automated segmentation of lakes from satellite imagery. In particular, a novel Second-order 
Attention Module (SoAM) is proposed to capture the long-range spatial dependencies and establish channel 
attention derived from the covariance representations of local features. Furthermore, as the dimensions of the 
input and output tensors are identical and it simply relies on matrix calculations, the proposed SoAM can be 
embedded into different positions of a given architecture while maintaining similar reference speed. The 
designed network is implemented on Landsat-8 imagery and outputs are compared against representative deep 
learning models, demonstrating improved results with a Dice of 81.02% and a F2 Score of 85.17%.   

1. Introduction 

Over recent decades, glacier ice melt rate has significantly increased 
due to global warming (Blunden et al., 2020; Shugar et al., 2020). A 
number of studies have suggested that glaciers in the Hindu Kush 
Himalaya (HKH), as in other parts of the world have been shrinking 
(Bajracharya et al., 2020; Maharjan et al., 2018; Nie et al., 2017). As a 
direct consequence of ice melt, new or expanded glacial lakes are found 
in such high mountain regions, increasing the risk of glacial lake 
outburst floods (GLOFs) and in-turn posing a significant threat to 
downstream communities and infrastructure. Since 1950s, in excess of 
50 GLOFs have already been recorded in the HKH region and there may 
be more unrecorded or undocumented (Veh et al., 2018). The damage 
caused by GLOFs is often more catastrophic than hydrometeorological 
floods as peak discharges can surpass monsoonal river discharge by 
several orders of magnitude. Studies have shown that HKH GLOFs have 
the highest death toll worldwide (Veh et al., 2020). Moreover, it has 
been estimated that the glaciers in Nepal lost almost a quarter of their 

total area from the 1980s to 2010, and the number of glacial lakes 
increased by 11% (Maharjan et al., 2018; Bajracharya et al., 2014). The 
expansions of new and existing glacial lakes has led to higher risks of 
GLOFs, and it is therefore crucial to document and regularly monitor the 
spatio-temporal evolution of glacial lake in the HKH region. 

Large-scale studies of glaciers and glacial lakes in the HKH started in 
the 1980s using topographic maps, aerial photographs and field in
vestigations. During the years 1999 and 2005, the International Centre 
for Integrated Mountain Development (ICIMOD) made an inventory of 
glaciers and lakes in five HKH countries (China, Nepal, Bhutan, India 
and Pakistan), using topographic maps and available satellite imagery, 
including Landsat TM, IRS, SPOT (Maharjan et al., 2018). A total of 
8,790 lakes were identified, 203 of which were identified as potentially 
dangerous(Ives et al., 2010). Further mapping of glacial lakes and 
assessment of GLOF risks was conducted in Nepal during 2009, using 
Landsat imagery captured in 2005 and 2006. 1,466 lakes were mapped, 
21 of them identified as in a critical state (Mool et al., 2011). A more 
recent study found 3,624 glacial lakes in the Koshi, Gandaki, and Karnali 
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basins of Nepal, China and India, and identified 47 potentially 
dangerous lakes in that region. The study utilised 2015 to 2018, Landsat- 
8 Operational Land Imager (OLI) Top of the Atmosphere (TOA) products 
(Bajracharya et al., 2020). 

It has been demonstrated that remote sensing is an effective tech
nology to map glacial lakes at a regular frequency (Song et al., 2014). 
Although various optical and radar data can today be used for glacier 
and lake mapping and monitoring, many studies still rely on Landsat 
imagery thanks to its wide coverage and long serving history (Bhardwaj 
et al., 2015; Nie et al., 2017; Veh et al., 2018; Qayyum et al., 2020; 
Wangchuk and Bolch, 2020). Image band index calculation, together 
with histogram thresholding constitutes the most commonly-applied 
techniques implemented with optical data for identifying and delin
eating water bodies. Among several indices the Normalized Difference 
Water Index (NDWI; Gao (1996)) and the Normalized Difference Snow 
Index (NDSI; Salomonson and Appel (2004)), which is also known as the 
Modified NDWI (Xu, 2006; Chen et al., 2017), are the most established 
indices used for both glacier and lake mapping (Bhardwaj et al., 2015; 
Chen et al., 2017). Those indices combine the shortwave infrared 
(SWIR) with the near infrared (NIR) bands in which water absorbs that 
part of the electromagnetic spectrum, and the visible green band in 
which water is highly reflective. The Normalized Difference Vegetation 
Index (NDVI) has also been jointly used alongside the aforementioned 
indices as it can highlight the presence of vegetation either on land or in 
water. Typically, if the index value exceeds a preset threshold, the pixel 
is considered as water. However, such rule-based methods can be 
inaccurate at the boundaries of water bodies where mixed spectral in
formation of land, vegetation, water and snow may be present. A single 
threshold value is therefore usually inadequate to distinguish water or 
snow from the adjacent land (Chen et al., 2017). To refine the results at 
the boundaries of various land cover classes, and thereby achieve sub- 
pixel accuracy, previous studies combined rule-based methods either 
with other algorithms (e.g. the non-local active contour algorithm in 
Chen et al. (2017) and the hierarchical rule-based classification in Guo 
et al. (2021)) or with machine learning methods (Veh et al., 2018; Zhang 
et al., 2020). Rishikeshan and Ramesh (2018) proposed a morphological 
operator based approach that outperformed the maximum likelihood 
classification for water body extraction. 

With the evolution of cloud computing platforms (e.g. Google Earth 
Engine (GEE) (Gorelick et al., 2017; Tamiminia et al., 2020)), that allow 
the analysis of freely available historic satellite image series, the 
implementation of machine learning algorithms for water extent map
ping (Pekel et al., 2016) and glacial lake detection (Veh et al., 2018) has 
gained increased attraction in the remote sensing community. For 
instance, random forest (RF) is one of the most commonly used machine 
learning classifiers in glacier studies (Wangchuk and Bolch, 2020) and 

is, embedded into the GEE platform thereby enabling a straight forward 
implementation. Even though previous studies showed that RF can 
provide accuracy levels better than 90% in glacial lake segmentation, 
especially when appropriate band indices are used as auxiliary attributes 
for training the classifier (Veh et al., 2018; Zhang et al., 2020), mixed 
spectral noise caused by shadows, clouds and ice still remains a funda
mental challenge. As seen in Wu et al. (2020), when optical (e.g. 
Landsat-8) and radar (e.g.Sentinel-1 Synthetic Aperture Radar (SAR)) 
images were incorporated into the RF classifier training, RF could better 
distinguish between shadows and frozen lakes, however the RF 
approach still provided poor results over regions with low spectral 
reflection. 

More recently, following the advancement of deep learning based 
image understanding, remote sensing studies have shifted from easy-to- 
implement classic machine learning methods towards convolutional 
neural networks (CNNs) (Zhu et al., 2017). CNNs have been demon
strated to show improved results over classical machine learning, 
especially when mapping large geographical areas with varying 
geomorphological terrain characteristics (Xie et al., 2020). This shift is 
also evidenced by the high number of publications using CNNs with 
Earth Observation data in image segmentation applications since 2012 
(Hoeser and Kuenzer, 2020; Hoeser et al., 2020). Li et al. (2022) pro
vided a comprehensive review of water body classification methods 
from optical remote sensing imagery, and demonstrated the advantages 
and opportunities of deep learning-based methods over non-deep 
learning-based methods. In relation to glacier and glacial lake map
ping, the U-Net (Ronneberger et al., 2015; Baraka et al., 2020), SegNet 
(Long et al., 2015) and DeepLabV3+ (Chen et al., 2018) CNN archi
tectures have proven particularly popular. The U-Net and SegNet 
models, alongside their variants, are encoder-decoder architectures and 
DeepLabV3 + is an improved variant of a naive-encoder to an encoder- 
decoder architecture. Even though such architectures were initially 
designed to cope with traditional computer vision datasets (e.g. small- 
size images used in medical studies), it has been shown that they can 
also handle the diverse properties found in Earth Observation imagery 
(e.g. optical versus SAR, dense and heterogeneous classes etc.) (Hoeser 
and Kuenzer, 2020). 

Studies reported over the last two years (Table 1) have successfully 
demonstrated that the aforementioned encoder-decoder model variants 
provide a substantial baseline for automatic segmentation implemented 
in glacier research. Despite high performance in segmentation results, 
several limitations exist. These include: a) misclassifications at sharp 
boundaries between glaciers and icebergs (Zhang et al., 2021), between 
glacial lake features that are slightly frozen and blue ice or wet snow 
(Dirscherl et al., 2021), and at glacial lake edges with mixed pixels of ice, 
clouds, debris or dry/wet snow (Xie et al., 2020), even with very high 
spatial resolution imagery (e.g. in Qayyum et al. (2020)); b) technical 
challenges when dealing with training datasets at inconsistent temporal 
and spatial scales especially when imagery is derived from different 
sources such as optical and radar (Wu et al., 2020); and c) suboptimal 
results when mountainous shadows are not entirely masked out (Wu 
et al., 2020), or in cases of high variability in glacier retreat rates and 
feature formation of glacial lakes as found in the Nepal Himalayas (Xie 
et al., 2020). 

Moreover, the studies listed in Table 1 all utilised existing encoder- 
decoder architectures and their contributions mainly focused on the 
use of multiple satellite data sources and/or very high spatial resolution 
imagery, as well as the comparative analysis of the adopted model’s 
learning capability with or without a large amount of training data. As 
far as research on glacial lake mapping is concerned, the development of 
a neural network itself is still limited. Whilst additional deep learning 
modules have been combined with the aforementioned encoder-decoder 
architectures and implemented within Earth Observation (e.g. attention 
modules for object detection in Yang et al. (2018) and for river seg
mentation in Xia et al. (2019)), as yet there is no such model develop
ment or architecture combination for glacial lake segmentation 

Table 1 
Recent studies that investigate the use of deep learning methods for mapping 
and monitoring of the spatio-temporal evolution of glaciers and glacial lakes.  

Reference Study site Image source Deep learning 
method 

Zhang et al. 
(2021) 

Greenland glaciers Landsat-8; ALOS-1; 
TSX; Sentinel-1 

DeepLabV3+

Dirscherl 
et al. 
(2021) 

Supraglacial lakes in 
Antarctica 

Sentinel-1 Modified U-Net 

Cheng et al. 
(2021) 

Glacial terminus in 
Greenland 

Landsat-8; Sentinel- 
1; TerraSAR-X 

DeepLabV3 +
Xception 

Qayyum et al. 
(2020) 

Glacial lakes in the 
HKH region 

PlanetScope VGG U-Net; 
Efficient U-Net 

Wu et al. 
(2020) 

Glacial lakes in 
south-eastern Tibet 

Landsat-8; Sentinel- 
1 

Modified U-Net 

Xie et al. 
(2020) 

Glaciers in 
Karakoram; 
Himalayas 

Landsat-8; ALOS GlacierNet: 
Modified SegNet 

Baraka et al. 
(2020) 

Glaciers in the HKH 
region 

Landsat-7; SRTM U-Net  
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applications. 
Recently, the HarDNet-MSEG network (Huang et al., 2021) was 

proposed for polyp segmentation, which uses the encoder part of its 
predecessor HarDNet and the new decoder part analogous to Cascaded 
Partial Decoder (i.e., the Receptive Field Block (RFB) Module and the 
Dense Aggregation, as described in Section 3.2.1. Taking advantages of 
the low memory traffic of HarDNet and the effectiveness of the Cascaded 
Partial Decoder, HarDNet-MSEG can outperform existing well-known 
architectures in terms of segmentation accuracy and inference speed, 
including U-Net and its variants, and DeepLabV3+. However, the main 
purpose of introducing a structure similar to the Cascaded Partial 
Decoder is to use rapid inference for detecting salient objects, and the 
segmentation accuracy of the model is expected to be further improved. 
In addition, the effectiveness of deploying HarDNet-MSEG into glacier 
lake segmentation from satellite imagery is still unknown, as it involves 
the processing of numerous bands with variant characteristics, which 
makes the segmentation more challenging. 

Recently, non-local neural networks (Wang et al., 2018) have been 
proposed to leverage the efficiency of self-attention mechanisms to 
eminently improve the performance of various computer vision tasks. 
Furthermore, a linear attention mechanism (Li et al., 2020) has been 

introduced to approximate the dot-product attention map by its first- 
order Taylor expansion, thereby decreasing computational cost. 
Inspired by the aforementioned work, a novel attention module is pro
posed in this study, which adopts the matrix product to capture 
adequate long-distance spatial dependence. On this basis, additional 
second-order statistics and appropriate matrix normalisation are intro
duced to establish the relationships between the feature spatial locations 
and the channels. The proposed attention module is highly compatible 
with the adopted HarDNet-MSEG backbone network so that it can be 
transferred to the glacier lake image segmentation scenario to further 
improve the precise cutting of boundary areas, small and irregular re
gions. To the best of our knowledge, this is the first non-local module 
that implements channel attention derived from matrix covariance 
representations and can work concurrently with original spatial atten
tion maps. 

To achieve this, first, a publicly available dataset extracted semi- 
automatically from Landsat-8 images in the HKH region is prepared. 
Then, a second-order attentive architecture is introduced, and two 
variant models are derived for comparison with state-of-the-art net
works. The influences of different combinations of training input and 
image conditions are also analysed. In addition, the Tsho Rolpa glacial 
lake, one of the most dangerous glacier lakes in the region (Shrestha and 
Nakagawa, 2014; Bajracharya et al., 2020), is used as a test case to 
further compare the segment at ground level using high resolution aerial 
imagery acquired from an Unmanned Aerial System (UAS). 

2. Study area and dataset description 

A region in HKH, consisting of 3,624 glacial lakes, is adopted as the 
study area in the presented experiments (Fig. 1). The glacial lakes were 
retrieved from ICIMOD (2020) and Bajracharya et al. (2020) in a vector 
shapefile format. The retrieved dataset comprised the glacial lake 
boundaries, primarily based on Landsat imagery from 2015 and 2016 
plus two tiles from 2017 and 2018, which were all formed on paleo- 
glacier landforms (Bajracharya et al., 2020; Maharjan et al., 2018). 
Water pixels located over river or non-glacial lakes were not included in 
the datasets as they were filtered out via a validation process utilising 
high resolution Google Earth Imagery and manual cross-validation. 
Similar processes were applied using high resolution Google Earth Im
agery to amend erroneous or missed boundaries that did not fit the 
aforementioned years’ dynamics (ICIMOD, 2020; Bajracharya et al., 

Fig. 1. Overview of the glacial lakes in the Koshi, Gandaki, and Karnali river basins of the HKH region superimposed over a tile mosaic of the Landsat-8 imagery used 
in the presented experiments. The Tsho Rolpa test site is highlighted in yellow. Basins and sub-basins are level 6 and 7 products respectively of the HydroSHEDS 
database, retrieved from Lehner (2013), and depicted here for reference. 

Table 2 
Landsat-8 Surface Reflectance Tier 1 OLI and TIR bands as retrieved by EEDC 
(2021). Notice that B8 and B9 bands are not listed here since they are not pro
cessed to Surface Reflectance by GEE. The last three quality bands were gener
ated in GEE.  

Landsat-8 
Bands 

Centre 
Wavelength [nm] 

Description Spatial 
Resolution [m] 

B1 443 Coastal aerosol 30 
B2 482 Blue 30 
B3 561 Green 30 
B4 655 Red 30 
B5 865 NIR 30 
B6 1609 SWIR-1 30 
B7 2201 SWIR-2 30 
B10 10895 TIR-1 100 
B11 12005 TIR-2 100 
sr aerosol – Aerosol attributes – 
pixel qa – Pixel quality attributes – 
radsat qa – Quality mask of 

radiometric saturation 
–  
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2020). In the presented study, the datasets were used directly as 
retrieved from ICIMOD (2020) without any further amendment. A list of 
Landsat imagery used in the presented experiments is shown in Table 5 
in the Appendix. 

In particular, 25 raw tiles of Landsat-8 Surface Reflectance (SR) 
covering the studied region, shown in Fig. 1, were collected for the years 
of 2015, 2016, 2017 and 2018 in order to match the updated glacial lake 
vectorised inventories. The minimum and maximum lake area included 
in the collected inventories is 0.003 sq. km. and 5.414 sq. km, respec
tively. Table 2 lists the characteristics of each Landsat-8 band as 
described in EEDC (2021). The tiles were extracted via a GEE javascript, 
as amended from a previous script found in Aryal (2020). All bands 
shown in Table 2 were resampled at a 30 m spatial resolution. An initial 
visual inspection ensured that there were no clouds over the glacial lakes 
for each of the 25 tiles that were used in the presented experiments. All 
Landsat images except for one have less than 10% cloud coverage, as can 
be seen in Table 5 of the Appendix. Fig. 10 in the Appendix shows that 
no clouds are observed over glacier lake boundaries, even for the 
Landsat image with the percentage of highest cloud coverage. 

3. Methodology 

3.1. Data pre-processing 

Well-implemented data pre-processing is an important step in the 
machine learning process that can eliminate redundant information or 
unreliable data, and is beneficial to the deep learning model to aid 
interpretation of the processed outputs. The preprocessing techniques 
adopted in our model can be concisely summarised as follows:  

• Conversion: Vector shapefiles are converted into image masks to 
serve as the supervision of the model training process.  

• Rasterisation: Conversion of vector shapefiles into raster image 
format. 

• Slicing: Aims to slice the raw tiles and the corresponding mask im
agery into patches with a size of 256 × 256 pixels.  

• Filtering: Sliced patches are filtered according to the predefined 
area threshold of the glacial lake.  

• Substitution: All NaN pixel values in the filtered patches are input 
with 0.  

• Normalisation: To facilitate model convergence during training, 
normalisation is computed across all bands. All training samples are 
first stacked to generate the mean and standard deviation for each 
dimension. For each dimension of a given input patch, the difference 

between that dimension and the produced mean and the quotient of 
the generated standard deviation is then sequentially calculated. 

The image patches and corresponding masks obtained through the 
above manipulations can be randomly selected in pairs and used as 
training, validation and test data, respectively. 

3.2. Second-order Attention Network (SoAN) 

The overall architecture of the proposed Second-order Attention 
Network (SoAN) is illustrated in Fig. 2. 

3.2.1. Network backbone 
The backbone network adopted for semantic segmentation of the 

glacier lake is HarDNet-MSEG (Huang et al., 2021). In particular, this 
approach is superior to many well-known methods in terms of accuracy 
and inference speed, such as DeepLabv3+ (Chen et al., 2018), U-Net 
(Ronneberger et al., 2015) and its variants (Huang et al., 2021). As 
shown in Fig. 2, the backbone network consists of the HarDNet blocks 
(Chao et al., 2019) (the predecessor of HarDNet-MSEG Huang et al. 
(2021)), RFB, dense aggregation scheme and several basic units of 
convolution and pooling layers. 

The encoder part of the network is primarily composed of Harmonic 
Densely Connected blocks (Chao et al., 2019), together with several 
commonly used convolution and pooling layers. The HarDNet block, as 
the basic unit of the Harmonic Densely Connected Network (HarDNet) 
(Chao et al., 2019), reduces the number of shortcuts between different 
convolution blocks, and instead increases the number of channels in the 
key layers, thus achieving a balance between computational memory 
and accuracy. Furthermore, it introduces several 1 × 1 convolution 
layers as transitions in appropriate locations to ensure that the compu
tational density will not decrease. Unlike the most well-known U-Net 
(Ronneberger et al., 2015) based segmentation network, the foremost 
components of the decoder component are designed to decode in the 
Cascade partial and dense aggregation way. It applies the RFB modules 
at several deeper layers, namely, a multi-branch network with different 
kernel size convolutions and dilated convolution layers to effectively 
enlarge the receptive fields of feature maps in various resolutions. Af
terwards, upsampling based on bilinear interpolation is employed to 
adjust feature maps of different resolutions to an identical scale. Finally, 
the element-wise matrix multiplication is used to aggregate features that 
has been adapted to the same scale to form the final representation. 

3.2.2. Second-order Attention Module (SoAM) 
The design of HarDNet-MSEG (Huang et al., 2021) ensures that the 

Fig. 2. Overview of the proposed Second-order 
Attention Network (SoAN). The input tiles and 
shapefiles are preprocessed, and the features of the 
resulting images are extracted by an encoder con
sisting of a series of generic convolution and max 
pooling operations, as well as HarDNet blocks and 
Second-order Attention Modules (SoAM) (illustrated 
in Fig. 3) inserted at specific locations. The decoder 
is composed of three Receptive Field Block (RFB) 
modules and a Dense Aggregation Module. Note that 
HarDNet blocks, RFB modules and Dense Aggrega
tion Module are borrowed from Huang et al. (2021).   
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network obtains higher segmentation accuracy at a faster inference 
speed. However, the feature receptive field increased by adjusting the 
network structure is not adequate to effectively capture the long-range 
dependence between local features, and it completely neglects the cor
relations between feature channels and spatial information. Inspired by 
the recent successful use of attention mechanisms (Vaswani et al., 2017; 
Wang et al., 2018), a novel Second-order Attention Module (SoAM) is 
introduced, incorporating second-order statistics into the non-local 
neural network (Wang et al., 2018). This approach ensures the 
modeling of long-range dependence of the position in the feature map 
and effectively captures the correlation between the feature channels 
and their spatial information. 

Details of the proposed SoAM are in Fig. 3. Specifically, given an 
input feature denoted by 𝒳 in ∈ C × H × W (where C is the number of 
feature channels, H and W represent the spatial height and width of the 
input tensor), it can be written simply in a matrix form by collapsing the 
H and W to HW. Then, 1 × 1 convolution layers are adopted (i.e., δ(⋅)
,ϕ(⋅) and θ(⋅)), the actual operations of embedded Gaussian functions 
introduced in Wang et al. (2018), to project the number of channels C to 
C/r, where r is the reduction factor. The results obtained selectively 
undergo subsampling and transpose operations to obtain representa
tions of different spatial resolutions, which can be denoted as Xδ,Xϕ and 
Xθin turn and hold the property of Xϕ = X⊤

δ . 
The representation Xθgenerated through the function θ can be used 

to play two separate roles, namely, the spatial attention and the channel 
attention. Specifically, the spatial attention map S can be obtained using: 

S = Xθ ⊗ Xϕ, (1)  

where the shape of S comes into HW× HW
m×m. The factor m is the stride of 

subsampling (i.e., the maxpooling operation). By using this operation, it 
not only reduces the amount of pairwise calculations by 1

m×m, but also 
makes the computation sparse and incorporates the feature discrepancy 
at different spatial resolutions. 

The channel attention map is Cacquired by collecting the second- 
order statistics of Xθ. Formally, it can be expressed as: 

C = X⊤
θ IXθ, (2)  

where I = 1
HW

(
I − 1

HW11⊤
)
with the shape of RHW×HW, the I and 1 denote 

the identity matrix and the all-ones matrix, respectively. 
Since the produced matrix C ∈ R

C
r×

C
r is a symmetric positive semi- 

definite (SPD) matrix lying in the space of Riemannian manifold deno
ted by Sym+, the manifold needs to be flattened into Euclidean space so 
that commonly used metrics can be adopted to measure the distance 
between different projected elements. The natural choice to preserve the 
loss of geometric structure during the projection is to compute the log
arithm of the covariance matrix C because it can endow the Riemannian 

manifold of SPD matrices with a Lie group structure. However, the 
logarithm metric is often numerically unstable in the practise since it 
may change the magnitudes of small eigenvalues considerably, and 
potentially reversing the order of eigenvalue significance (Li et al., 
2017). The matrix square root is an alternative approach to approxi
mately measure the geodesic distance of the Riemannian manifold that 
is more stable due to the allowance of non-negative eigenvalues, and is 
adopted in this case to improve the numerical stability. 

Given an SPD matrix, there is a unique square root, which can be 
accurately calculated by EIG or SVD. Specifically, the eigenvalue 
decomposition of matrix C can be written as: C = Udiag(υi)U⊤, where U 
is orthogonal matrix and diag(υi) is a diagonal matrix of eigenvalues. 

Then, the square root of C can be denoted by C′

= Udiag
(

υ
1
2
i

)
U⊤, namely 

C2 = C′

. However, the computation of both SVD and EIG functions are 
not well-supported by GPU (Wang et al., 2020; Wang et al., 2021; Li 
et al., 2017; Li et al., 2018). Moreover, as the covaraince matrix has a 
significant risk of being degenerated in practise (i.e., one or more of its 
normalised eigenvalues may be identical), a small ridge term η is added 
to preserve the singularity of matrix, as described in Wang et al. (2020, 
2021). The process can be denoted as: 

Σ = C+ ηtrace(C)I, (3)  

where trace(⋅) is the matrix trace operation and I ∈ R
C
r×

C
r is an identity 

matrix. The matrix Σ is a proxy matrix for simplifying the iteration 
process, whereby the Newton-Schulz Iteration method (Li et al., 2018) is 
applied to solve the matrix square root and the corresponding coupled 
iterations can be represented as: 

Pk =
1
2

Pk− 1(3I − Qk− 1Pk− 1)

Qk =
1
2
(3I − Qk− 1Pk− 1)Qk− 1,

(4)  

where the iteration starts with setting two proxy matrices P0 and Q0 to 
Σ

trace(Σ) and I, respectively. For k = 1, ⋯, N is the number of iterations. The 
adopted iterative method only involves the matrix product, which 
guarantees to be parallel optimsed on GPU. As the P0 = Σ

trace(Σ) is ini
tialised to satisfy the convergence condition of the coupled iteration 
alters the data magnitudes in a non-trivial manner that needs to be 
considered to counteract such change. Then, the compensation term 
recommended by Li et al. (2018) is adopted and results in the normalised 
matrix C′

. Formally, it is computed by: 

C′

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
trace(Σ)

√
PN . (5)  

After the channel attention map C′

has been generated, it can be fused 
with the obtained spatial feature map through the matrix multiplication 

Fig. 3. Overview of the proposed Second-order Attention Module. Where ⊗ and ⊕ denote the matrix multiplication and the element-wise sum operation. COV is the 
process of calculating the covariance matrix. C, H and W represent the channel, height and width of the input feature, respectively. r and m indicate the factor that 
decreases the number of feature channels and the stride of the Maxpooling operation. 

S. Wang et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 289–301

294

product to present a form of self-attention mechanism. Formally, it can 
be expressed as: 

score = softmax(S) ⊗ Xδ ⊗ softmax(C′

), (6)  

where softmax(⋅)denotes the Softmax function. The reshaping manipu
lation is performed on the joint attention score in order to facilitate 
further integration with the input feature 𝒳 in through the residual 
connection method. Finally, a learnable transformation function τ(⋅) is 
employed to restore the channel dimension of attention maps from Cr to 
C, followed by a batch normalisation layer. The complete form of the 
proposed Second-order Attention Module (SoAM) can be defined as: 

𝒳 out = 𝒳 in + τ(score). (7)  

Although the idea of the SoAM is inspired by non-local neural networks 
(Wang et al., 2018), there exist significant differences between the two 
methods. Firstly, it increases the variability of the spatial attention map 
by imposing the subsampling operators on two of the mapping functions 
(i.e., the maxpooling operations followed by the δ(⋅) and ϕ(⋅) functions). 
Secondly, it realises the channel attention by computing the softmax(⋅) of 
the second-order statistics of the projected feature Xθ. Thirdly, it pro
vides two variants for gathering the second-order features (i.e., the 
covariance matrix and the normalised form with matrix square root 
normalisation) that are computationally efficient. In addition, the pro
posed SoAM can be flexibly embedded into various position of the given 
network. Inserting SoAM into the shallow layer of the network has the 
potential to capture more spatial information due to the relatively high 
spatial resolution of shallow features. However, plugging the SoAM at 
the shallow layer can slightly impair performance in practice. The 
reason for this phenomenon may be insufficient discrimination of 
shallow features. Considering the fact that the information stored in the 
feature channels is more dominant than the spatial location and the 
spatial details of the shallow information can also be well preserved by 
the deep information, the proposed SoAM is plugged into the place 
corresponding to each RFB module (seen in Fig. 2)) to ensure that the 
attention module can effectively extract discriminative features. 

3.3. Loss function 

The loss function defines how the neural network calculates the 
overall error from the residual of each training batch. This in turn will 
affect how the loss function effectively adjusts the coefficients when 
performing backpropagation. Here the objective function adopted is the 
standard Dice loss (Milletari et al., 2016; Sudre et al., 2017) that is used 
for measuring the overlaps and is widely used to evaluate the segmen
tation performance when ground truth is available. Let Ŷ be the pre
dicted probabilistic map for the foreground label over N image elements 
ŷn (the predicted background class probability being 1-Ŷ) and Y is the 
reference foreground segmentation with voxel value yn. The generalised 
form of 2-class of Dice loss (Sudre et al., 2017) can be denoted as: 

ℒDice = 1 −

∑N

n=1
ŷnyn

∑N

n=1
ŷn + yn

, (8)  

4. Experiments 

4.1. Implementation details 

As mentioned in Section 2, 25 raw Landsat-8 tiles are queried using a 
GEE javascript. Apart from the raw Landsat-8 bands (Table 2), the NDSI, 
NDWI, and the NDVI indices, as well as the elevation retrieved from the 
Shuttle Radar Topography Mission (SRTM90) and slope computed from 
the SRTM90 elevation are added to the tiles and all resampled to 30 m 
spatial resolution. All the tiles are prepossessed following the steps 
introduced in Section 3, which includes the coversion, rasterisation, 
slicing, filtering (the filter percentage set to 5e− 3), substitution and 
normalisation. In particular, both tile images and vector shapefile were 
sliced into patches with 256 × 256 pixels (641 patches in total). The 
pre-processed image and mask pairs are randomly split into training, 
validation and test sets in the ratio of 70%, 10% and 20%, respectively. 
During training, the random flips horizontally and vertically, random 
rotations of 90 degrees zero or more times are adopted to augment the 
training samples. Note that all experiments are conducted on a PC with a 
single GeForce RTX 2080 Ti GPU. 

Experiments are conducted with two novel attentive variants (i.e., 
SoAN with/without matrix square-root normalisation) based on the 
proposed SoAM and compared with three existing baseline architectures 
(i.e., U-Net; Ronneberger et al. (2015), HarDNet-MSEG; Huang et al. 
(2021) and HarDNet-MSEG with non-local blocks). The output of the 
first convolution layer is adjusted to 18 in order to satisfy the conditions 
of processing multiple bands of Landsat-8 imagery. The architecture of 
the adopted U-Net has been utilised by Baraka et al. (2020) for the 
glacier mapping, which includes 5 downsampling layers followed by 5 
upsampling layers with a bottleneck layer in between. The remaining 
experiment architecture is based on the HardNet-MSEG (Huang et al., 
2021), while the fully-deconvolution layers are removed in order to 
increase the inference speed. As described in Baraka et al. (2020), the 
Adam optimiser is employed to optimise the networks. The initial 
learning rate is set to 1e− 4 with a weight decay of 5e− 4. The ℒ1 regu
larisation with a factor of 5e− 4 is applied to prevent the model from 
overfitting. The ReduceLROnPlateau scheduler with a patience of 10 and 
a reduce factor of 0.1 is used to reduce the learning rate if the quality of 
metrics read by the scheduler does not improve for a patience number of 
epochs. The batch size is set to 32 and the models are trained for 300 
epochs for all experiments. The stride m and intermediate channel rate r 
mentioned in the SoAM are set to 2. The η in Eq. (3) is set to 1e− 2. In 
addition, the iteration number k in Eq. (4) is set to 5 based on experi
ments (see Section 4.2.4). Note that the proposed attentive models can 
be efficiently trained in an end-to-end manner. 

The metrics adopted to compare the effectiveness of the proposed 
models and baseline methods include: 

Dice = F1 =
2 ∗ tp

2 ∗ tp + fp + fn
, IoU =

tp
tp + fp + fn

, Recall =
tp

tp + fn
,

Precision =
tp

tp + fp
, F2 =

5Precision ∗ Recall
4Precision + Recall

,

(9)  

where tp, fp, tn and fn denote the number of true positives, false 

Table 3 
Comparison of the proposed Second-order Attention Network (SoAN) with baseline methods (full 17 bands). Note that w/ and w/o denote with/without matrix 
normalisation.  

Methods IoU Dice (F1) Precision Recall F2 Score #Model Size (MB) Inference Time(sec/per image) 

U-Net 64.56 78.21 71.39 86.66 83.05 37.55 0.0050 
HarDNet-MSEG 65.52 78.87 73.83 84.72 82.27 70.40 0.0150 
HarDNet-MSEG (Non-local) 65.62 78.98 71.00 89.15 84.76 79.18 0.0157 
SoAN (w/o Normalisation) 67.23 80.23 75.97 85.08 83.06 79.18 0.0165 
SoAN (w/ Normalisation) 68.33 81.02 74.96 88.19 85.17 79.18 0.0183  
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positives, true negatives and false negatives, respectively. Note that the 
F1 score is numerically equivalent to the Dice score in the scenario of 
binary segmentation. In addition to these metrics, the comparisons also 
include the inference time for a single image and the model size that is 
computed by: #Parameters×4

1024×1024 . 

4.2. Experimental results 

4.2.1. Evaluation on Landsat-8 
Comprehensive experiments were conducted on the pre-processed 

dataset to thoroughly compare the performance of the five deep 

Fig. 4. Visualisation of testing images using different methods.  

Fig. 5. Comparison of different models in terms of loss, IoU and F2 Score during training and validation.  
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learning models on the glacier lake segmentation task. As shown in 
Table 3, the methods listed for comparison include the standard seg
mentation network U-Net (Ronneberger et al., 2015), the latest 
HarDNet-MSEG (Huang et al., 2021), the original HarDNet-MSEG with 
non-local attention block, and two second-order attention networks 
(SoAN with/without the square-root matrix normalisation). HarDNet- 

MSEG with non-local blocks first calculates the matrix product of Xθ 

and Xϕ, and then multiplies Xg to obtain the final attention score. For 
SoANs, the second-order statistics C of unsampled local feature Xθare 
introduced on the basis of covariance of Xθto effectively capture the 
correlations between the channels and the feature spatial information. 
The generated C or its square-root normalisation form of C′

can be 
treated as the attention maps of feature channels and integrated into the 
spatial-based attention map to re-weight the input feature 𝒳 . In Table 3, 
the proposed SoANs achieve the best results compared to all listed 
methods. In particular, the IoU obtained by SoAN with/without matrix 
normalisation can exceed the U-Net (Ronneberger et al., 2015) and 
HarDNet-MSEG (Huang et al., 2021) by approximately 3%. By imposing 
matrix normalisation, F1 (Dice) and F2 scores of the proposed SoAN can 
reach 81.02% and 85.17% respectively. In comparison of HarDNet- 
MSEG (Huang et al., 2021) with U-Net (Ronneberger et al., 2015), the 
relative gains of IoU, Dice and F2 score reflect not only the significance 
of convolutional layer superposition, but also the profit from the 

Fig. 6. Experimental results for band selection. All bands are divided into four groups according to their characteristics and are represented by A (‘B1’-‘B11’), B 
(‘sr_aerosol’, ‘pixel_qa’ and ‘radsat_qa’), C (‘ndvi’, ‘ndsi’ and ‘ndwi’) and D (‘elevation’ and ‘slope’), respectively. 

Table 4 
The performance was obtained by plugging the proposed SoAM into different 
positions of the adopted backbone.   

Plugging in SoAM after n-th HarDBlock  

5th 5th,4th 5th,4th ,

3rd 
5th ,4th ,3rd,

2nd 
5th ,4th,3rd ,

2nd,1st 

IoU 64.79 65.39 68.33 65.51 62.48 
Inference Time 

(sec/per image) 
0.0158 0.0168 0.0183 0.0204 0.0214  

Fig. 7. The effect of the number of Newton-Schulz iterations in SoAM on the performance.  
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enlargement of the feature receptive fields thanks to the ingeniously 
designed network structure. By comparing HarDNet-MSEG and the 
proposed SoANs, the further improvements of results can be attributed 
to the effectiveness of the novel SoAM. In terms of the inference time per 
image and model size, U-Net performs best (i.e., 0.0050 and 37.55 MB) 
because of its relatively shallow structure. The two proposed SoAN 
variants can achieve similar inference times to non-local based HardNet- 
MSEG with the same model size. 

In addition to the quantitative results described above, qualitative 

visualisation of different methods can be seen in Fig. 4. Through the 
comparison of the patches, it can clearly be seen that, compared with the 
predictions of U-Net (Ronneberger et al., 2015) and HarDNet-MSEG 
(Huang et al., 2021), the contours of the glacier lake predicted by the 
proposed attention-based model are closer to the ground-truth labels. 
Furthermore, the over-estimated predictions rarely occur after intro
ducing attention mechanisms based on either non-local blocks or 
second-order statistical attention modules. These results undoubtedly 
prove the effectiveness of the network for segmenting glacial lakes. 

Fig. 8. Visual inspection of the Tsho Rolpa glacial lake boundary as extracted using the three methods HardNet-MSEG, SoAN w and SoAN w/o normalisation, as 
shown in red, blue and yellow respectively, using (a) the 19/12/2015 training image and (b) the 20/05/2019 Landsat-8 image. The corresponding boundary used for 
training is shown in grey. The UAS 2019 boundary shown in black is depicted for comparative purposes. 

Fig. 9. Visual inspection of the Tsho Rolpa glacial lake boundary as extracted using the three methods HardNet-MSEG, SoAN w and SoAN w/o normalisation, as 
shown in red, blue and yellow respectively, using (a) the 30/01/2014, (b) the 24/04/2016, (c) the 04/07/2018 and the (d) 01/01/2021 Landsat-8 images. 
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To comprehensively compare the performance of different models, 
curves of three metrics during training and validation are shown in 
Fig. 5. For a fair comparison, all hyperparameters of different models are 
kept constant during the experiment. By comparing the training losses of 
different models, the models based on the HardNet-MSEG backbone 
converge faster and lower than the U-Net. Changes in IoU and F2 scores 
during training also confirm the effectiveness of HarDNet-MSEG models, 
while the proposed variant of SoAN with square root normalisation 
performs the best on close examination. Nevertheless, the performance 
of different models on the validation set fluctuates significantly, which 
may be due to the relatively small size and randomness of the data. 

4.2.2. Test on band combinations 
To investigate the effect of using a set of specific bands or different 

combinations of bands, the input bands are divided into four different 
groups according to their properties, namely, A (‘B1’-‘B11’), B (‘sr_aer
osol’, ‘pixel_qa’ and ‘radsat_qa’), C (‘ndvi’, ‘ndsi’ and ‘ndwi’) and D 
(‘elevation’ and ‘slope’). Then, on the basis of the Landsat-8 band (i.e. 
group A), additional groups were successively introduced and tested on 
the model of SoAN with matrix square root normalisation for their gains 
to the results. As can be seen from Fig. 6, the IoU and Dice scores of 
introducing group C are higher than adding groups B and D. The ACD 
group performed the best in a combination of three different groups. The 
best results are obtained when using all bands, followed by the combi
nation of ACD with slight gaps. In summary, the introduction of Group C 
has a more pronounced effect on the improvement of segmentation 
performance and the best results are obtained using all available bands. 

4.2.3. Effect of embedding SoAM in different positions 
The proposed SoAM, as a standalone module based on attention 

mechanism, is embedded in three different places of the backbone 
network (shown in Fig. 2), being compatible with the original HarDNet- 
MSEG framework. The design of the SoAM guarantees that the di
mensions of the input and output tensors are identical, which means this 
module can be flexibly plugged into different parts of the backbone. 
Since the main component of the SoAN encoder part is the HarDNet 
Block, SoAM is considered to be attached after different HarDNet Blocks 
to maximise its capabilities. As can be seen from Table 4, the best IoU is 
obtained by appending the SoAM after the 3rd,4th and 5th HarDNet 
Blocks, while the lowest IoU appears when plugging SoAM after each 
HarDNet Block. The reason for the difference may be that the multi-scale 
features extracted by shallow layers are not effectively transited to the 
decoder part by the RFB module as after the 3rd, 4th and 5th HardNet 
Blocks. In addition, as stated in the paper of the HarDNet-MSEG, shallow 
features are discarded because deep features can also represent the 
spatial details of shallow information relatively well and contain 
extensive channel information, thereby reducing computational cost. 

4.2.4. Effect of iterations in matrix normalisation 
Since the solution of the square root of the matrix is based on an 

iterative method (Newton-Schulz iterations in Eq. 4), the optimal 
number of iterations need to be investigated experimentally. Fig. 7 
shows the effect of different iterations on the Dice score, and compares 
three different approaches (i.e., Non-local, with/without square-root 
normalisations) with the same backbone (i.e., HarDNet-MSEG). Specif
ically, as the number of iterations increases, the Dice score rises rapidly 
and then decreases slowly, reaching a peak at the 5th iteration. The 
proposed SoAN with square root normalisation can outperform the Non- 
local method after 4 iterations. Besides, the Dice score drops consistently 
after 5 iterations, indicating that increasing the number of iterations is 
not helpful for improving the performance. As a result, iteration number 
k is set to 5 in all experiments to balance efficiency and performance. 

4.2.5. Further evaluation on Tsho Rolpa glacial lake 
To further evaluate the segmentation results, a glacial lake that has 

been identified as potentially dangerous, Tsho Rolpa (Longitude: 
86.4754, Latitude: 27.8627), is taken as an example. The boundaries of 
Tsho Rolpa determined using the HardNet-MSEG, SoAN w and SoAN w/ 
o normalisation methods, are extracted and smoothed to remove jagged 
edges (due to the large ground pixel sizes), using the python environ
ment in ArcGIS Pro. They are then visually compared with the manually 
labelled boundary shown in Fig. 8(a). It can be seen that the boundaries 
from the two SoAN models (in blue and yellow colours) match relatively 
well with the labelled boundary (in grey) but with a single area in the 
middle miss-detected, whereas the HardNet-MSEG boundary (in red) 
has many areas of miss-detection. In addition, the surface areas of all 
four boundaries were calculated in ArcGIS Pro as follows: a) the area of 
the labelled boundary is 1.606 km2; the area of the SoAN w/o (in yellow) 
boundary is 1.041 km2; the area of the SoAN w (in blue) is 1.536 km2; 
and the area of the HardNet-MSEG (in red) boundary is 1.273 km2. Area 
calculation showed that SoAN w/o provided a result closer to the 
labelled reference data. Between the two SoAN models, the SoAN w 
resulted in one single boundary compared to the SoAN w/o outcome. 
The image data was acquired in December when the lake was covered by 
ice, which seemingly caused the error. 

As independent comparison, the lake was surveyed by a fixed-wing 
UAS (eBee; SenseFly (2020)) which captured high resolution images 
carrying the Sony Cybershot DSC-WX220 digital camera of size 4896 ×
3672 pixels on 16 May 2019. The UAS-acquired images were orientated, 
matched and georeferenced to generate an orthomosaic of the entire 
lake. More information about the 2019 UAS-acquired datasets can be 
found in Maharjan et al. (2019). The boundary extracted by the UAS- 
generated orthomosaic (depicted in black in Fig. 8(b)) is also 
compared with the boundaries from the three deep learning models 
using Landsat-8 imagery from the closest dates in May 2019, when no 
ice is observed on the water surface with the exception of the region 
close to the glacier terminus. As seen from Fig. 8(b), all three boundaries 
match well with the high-resolution UAS boundary in general, but they 
are all slightly larger. In particular, the surface areas of the UAS 2019, 
SoAN w/o, SoAN w and HarDNet-MSEG boundaries are 1.604 km2, 
1.850 km2, 1.776 km2, and 1.808 km2 respectively. This discrepancy can 
be attributed to the large 30 m pixel size of the Landsat-8 images 
compared to UAS orthomosaic with 0.12 m pixel size, and the fact that 
the majority of the boundary pixels are classified as water. Note at the 
end of the lake (bottom right in Fig. 8(b)), where the glacier terminus 
has created some icy debris over the lake, satellite data are able to 
classify most of the area as part of the lake’s water surface. 

One key application of a fully automated glacial lake segmentation is 
to create time-series of lake boundaries to understand the change over 
time. Four images over the years from 2014 to 2021 are extracted to 
illustrate the impact of various image conditions. As shown in Fig. 9(a), 
icy surface, especially when covered by frost (as seen in white) can 
strongly hinder the segmentation. Whereas, a clear water surface in a 
warmer season can produce more consistent results, for all the three 
models (Fig. 9(b)). In addition, satellite image pixel quality also affects 
the segmentation, regardless of the season as illustrated in Fig. 9(c). The 
pixel quality is low due to clouds over southwest of the glacial lake, so 
are the derived band indices. Despite that, the SoAN w model produced 
the most complete boundary among the three deep learning models. 
Interestingly, Fig. 9(d) depicts consistent segmentation results during 
winter time, even with the presence of ice. However, the HarDNet-MSEG 
boundary (in red) is slightly overestimated in contrast to the two SoAN 
boundaries. The presented results have demonstrated that lake condi
tions and image quality can significantly influence the segmentation. It 
should be noted that, apart from the environmental conditions, the 
limited amount of training data can also be a potential alternative source 
of error. Therefore, when training for time-series analysis, it is important 
to take these factors into consideration and ideally use satellite imagery 
acquired during optimal (and consistent) environmental conditions. 

Moreover, it should be noted that the presented study is based on 
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Landsat SR products which have well-known issues on very low 
reflecting surfaces (such as waterbodies and/or shadows) as well as on 
very high reflecting surfaces such as snow (USGS, 2022), in comparison 
to TOA products. A further comparative analysis that applies the pro
posed models on both SR and TOA Landsat imagery from the same 
acquisition time would aid understanding as to whether erroneous 
segmentation results are attributable to the limitations of the SR prod
ucts or the challenging environmental conditions. 

Another consideration is the overlaps between adjacent image 
scenes. In the experimental data, the lateral overlaps (sidelaps) have a 
time difference of at least six days. This means the two overlapping 
images are different, due to changes in atmospheric and illumination 
conditions. The forward overlaps of two consecutive images acquired on 
the same day have smaller time differences in minutes. In the data, we 
observed differences in the pixel value of the overlapped region for each 
image due to different viewing angles and shadows in the mountainous 
regions surrounding the glacial lakes. In addition, when the sliding 
window method is applied to the overlapping region between two 
adjacent images, the resulting patches will contain different spatial in
formation due to the different starting points for processing the over
lapping region of two images. In this way, the generated patch samples 
cover different contents, and each of them is then treated as an inde
pendent sample. 

5. Conclusion 

This study presents a new deep learning network to segment lakes 
from Landsat-8 imagery. The SoAN includes a novel second-order 
attention module that incorporates the collection of second-order sta
tistics into the non-local neural network, to effectively capture the cor
relation between the feature channels and their spatial information. 
Comparisons with the commonly used U-Net and state-of-the-art 
HarDNet-MSEG approaches demonstrated the proposed attention mod
ule can produce superior results, though can be further improved, 
mostly in terms of precision. The test on band combinations has shown 
that indices derived from the image bands can help improve the seg
mentation, as do elevation and slope. Therefore, it is important to obtain 
those associated data wherever possible. Further detailed assessment of 
the results on a particular example lake in the HKH has highlighted 
significant influence of lake conditions, e.g. image quality and ice cover. 

In relation to the technical aspect of the developed model, future 
work will be focused on automatic lake condition and image quality 
filtering so that more consistent results can be expected. Regarding the 

implementation of the proposed model on mapping multi-temporal 
glacial lake dynamics, it would ideally require segmentation of the 
lake surface into ice and water. The model could then be trained to 
incorporate the temporal component under different environmental 
conditions. In this way it would be feasible to derive a further under
standing of the lake conditions over time. Then, ultimately the devel
oped SoAN could support the ongoing glacial lake inventory 
documentation in the HKH region over multiple years and under 
different environmental conditions. In addition, as non-glacial lakes 
might exist in the HKH high mountain region, this could hinder the 
performance of the developed model. For future considerations and 
improvements it would be interesting to have a further class of non- 
glacial lakes provided that accurate labels could be obtained with the 
aid of expert knowledge. Given the availability of higher resolution 
satellite data, such as Sentinel-2 and PlanetScope imagery (Qayyum 
et al., 2020), transferring the developed model to other data sources 
would also be of interest. 
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Appendix A 

Fig. 10 
Table 5 

Fig. 10. LC08_143039_20151208 and LC08_143040_20151208 Landsat image tiles with clouded regions masked out. The glacier lake boundaries in blue are 
superimposed over the tiles. No glacial lakes can be found below the clouded regions. Figure was generated via GEE. 

S. Wang et al.                                                                                                                                                                                                                                   



ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 289–301

300

References 

Aryal, B., 2020. Query Landsat-7 tiles using GEE. URL: https://github.com/Aryal00 
7/GEE_landsat_7_query_tiles/commits?author=Aryal007. 

Bajracharya, S.R., Maharjan, S.B., Shrestha, F., Bajracharya, O.R., Baidya, S., 2014. 
Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat 
Data. Technical Report International Centre for Integrated Mountain Development 
and United Nations Development Programme (UNDP). 

Bajracharya, S.R., Maharjan, S.B., Shrestha, F., Sherpa, T.C., Wagle, N., Shrestha, A.B., 
2020. Inventory of glacial lakes and identification of potentially dangerous glacial 
lakes in the Koshi, Gandaki, and Karnali River Basins of Nepal, the Tibet 
Autonomous Region of China. Technical Report International Centre for Integrated 
Mountain Development and United Nations Development Programme (UNDP). 

Baraka, S., Akera, B., Aryal, B., Sherpa, T., Shresta, F., Ortiz, A., Sankaran, K., Ferres, J.L., 
Matin, M., Bengio, Y., 2020. Machine learning for glacier monitoring in the Hindu 
Kush Himalaya. arXiv preprint arXiv:2012.05013. 

Bhardwaj, A., Singh, M.K., Joshi, P., Singh, S., Sam, L., Gupta, R., Kumar, R., et al., 2015. 
A lake detection algorithm (LDA) using Landsat 8 data: a comparative approach in 
glacial environment. Int. J. Appl. Earth Obs. Geoinf. 38, 150–163. 

Blunden, J., Arndt, D.S., Bissolli, P., Diamond, H.J., Druckenmiller, M.L., Dunn, R.J.H., 
Ganter, C., Gobron, N., Lumpkin, R., Richter-Menge, J.A., Li, T., Mekonnen, A., 
Sánchez-Lugo, A., Scambos, T.A., Schreck, C.J., Stammerjohn, S., Stanitski, D.M., 
Willett, K.M., Andersen, A., Rosen, R., 2020. State of the climate in 2019. Bull. Am. 
Meteorol. Soc. 101, S1–S8. https://doi.org/10.1175/ 
2020BAMSSTATEOFTHECLIMATE_INTRO.1. 

Chao, P., Kao, C.-Y., Ruan, Y.-S., Huang, C.-H., Lin, Y.-L., 2019. Hardnet: A low memory 
traffic network. In: Proceedings of the IEEE International Conference on Computer 
Vision, pp. 3552–3561. 

Chen, F., Zhang, M., Tian, B., Li, Z., 2017. Extraction of glacial lake outlines in tibet 
plateau using landsat 8 imagery and google earth engine. IEEE J. Sel. Top. Appl. 
Earth Observ. Remote Sens. 10, 4002–4009. https://doi.org/10.1109/ 
JSTARS.2017.2705718. 

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with 
atrous separable convolution for semantic image segmentation. In: Proceedings of 
the European conference on computer vision (ECCV), pp. 801–818. 

Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M., Velicogna, I., Rignot, E., 
2021. Calving front machine (CALFIN): Glacial termini dataset and automated deep 
learning extraction method for greenland, 1972–2019. Cryosphere 15, 1663–1675. 
https://doi.org/10.5194/tc-15-1663-2021. 

Dirscherl, M., Dietz, A.J., Kneisel, C., Kuenzer, C., 2021. A novel method for automated 
supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep 
learning. Remote Sens. 13, 1–27. https://doi.org/10.3390/rs13020197. 

EEDC, 2021. Description of USGS Landsat 8 Surface Reflectance Tier 1 - Earth Engine 
Data Catalog (EEDC). URL: https://developers.google.com/earth-engine/datasets/c 
atalog/LANDSAT_LC08_C01_T1_SR. 

Gao, B.-C., 1996. NDWI - a normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. https://doi. 
org/10.1016/S0034-4257(96)00067-3. 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031. 

Guo, S., Du, P., Xia, J., Tang, P., Wang, X., Meng, Y., Wang, H., 2021. Spatiotemporal 
changes of glacier and seasonal snow fluctuations over the namcha barwa–gyala peri 
massif using object-based classification from landsat time series. ISPRS J. 
Photogramm. Remote Sens. 177, 21–37. 

Hoeser, T., Bachofer, F., Kuenzer, C., 2020. Object detection and image segmentation 
with deep learning on earth observation data: A Review-Part II: Applications. 
Remote Sens. 12 https://doi.org/10.3390/rs12183053. 

Hoeser, T., Kuenzer, C., 2020. Object detection and image segmentation with deep 
learning on earth observation data: A Review-Part I: Evolution and recent trends. 
Remote Sens. 12 https://doi.org/10.3390/rs12101667. 

Huang, C.-H., Wu, H.-Y., Lin, Y.-L., 2021. HarDNet-MSEG: A simple encoder-decoder 
polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. 
arXiv:2101.07172. 

ICIMOD, 2020. Glacial lakes in the Koshi, Gandaki, and Karnali river basins of Nepal, the 
Tibet Autonomous Region of China, and India. ICIMOD. URL: https://doi.org/ 
10.26066/RDS.1971946. 

Ives, J.D., Shrestha, R.B., Mool, P.K., et al., 2010. Formation of glacial lakes in the Hindu 
Kush-Himalayas and GLOF risk assessment. Technical Report ICIMOD. 

Lehner, B.G.G., 2013. Global river hydrography and network routing: baseline data and 
new approaches to study the world’s large river systems. Hydrol. Process. 27, 
2171–2186. 

Li, P., Xie, J., Wang, Q., Gao, Z., 2018. Towards faster training of global covariance 
pooling networks by iterative matrix square root normalization. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 947–955. 

Li, P., Xie, J., Wang, Q., Zuo, W., 2017. Is second-order information helpful for large- 
scale visual recognition?. In: International Conference on Computer Vision (ICCV). 

Li, R., Su, J., Duan, C., Zheng, S., 2020. Linear attention mechanism: An efficient 
attention for semantic segmentation. arXiv preprint arXiv:2007.14902. 

Li, Y., Dang, B., Zhang, Y., Du, Z., 2022. Water body classification from high-resolution 
optical remote sensing imagery: Achievements and perspectives. ISPRS J. 
Photogramm. Remote Sens. 187, 306–327. 

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic 
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 

Maharjan, S., Joshi, S., Peppa, M., Xiao, W., Liang, Q., 2021. Digital elevation models and 
bathymetry data of tsho rolpa glacier lake, Nepal, 2019. doi:10.5285/8e483692- 
3b65-41d2-a7fd-5a3cd589a71c. 

Maharjan, S.B., Mool, P., Lizong, W., Xiao, G., Shrestha, F., Shrestha, R., Khanal, N., 
Bajracharya, S., Joshi, S., Shai, S., et al., 2018. The Status of Glacial Lakes in the 
Hindu Kush Himalaya-ICIMOD Research Report 2018/1. Technical Report 
International Centre for Integrated Mountain Development (ICIMOD). 

Milletari, F., Navab, N., Ahmadi, S.-A., 2016. V-net: Fully convolutional neural networks 
for volumetric medical image segmentation. In: 2016 fourth international 
conference on 3D vision (3DV). IEEE, pp. 565–571. 

Mool, P.K., Maskey, P.R., Koirala, A., Joshi, S.P., Wu, L., Shrestha, A.B., Eriksson, M., 
Gurung, B., Pokharel, B., Khanal, N.R., Panthi, S., Adhikari, T., Kayastha, R.B., 
Ghimire, P., Thapa, R., Shrestha, B., Shrestha, S., Shrestha, R.B., 2011. Glacial lakes 
and glacial lake outburst floods in Nepal. ICIMOD report. doi:978 92 9115 193 6. 

Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., Song, C., 2017. A regional-scale 
assessment of himalayan glacial lake changes using satellite observations from 1990 
to 2015. Remote Sens. Environ. 189, 1–13. 

Pekel, J.-F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of 
global surface water and its long-term changes. Nature 540, 418–422. https://doi. 
org/10.1038/nature20584. 

Qayyum, N., Ghuffar, S., Ahmad, H.M., Yousaf, A., Shahid, I., 2020. Glacial lakes 
mapping using multi satellite PlanetScope imagery and deep learning. ISPRS Int. J. 
Geo-Inform. 9, 560. 

Rishikeshan, C., Ramesh, H., 2018. An automated mathematical morphology driven 
algorithm for water body extraction from remotely sensed images. ISPRS J. 
Photogramm. Remote Sens. 146, 11–21. 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for 
biomedical image segmentation. In: International Conference on Medical image 
computing and computer-assisted intervention. Springer, pp. 234–241. 

Salomonson, V.V., Appel, I., 2004. Estimating fractional snow cover from MODIS using 
the normalized difference snow index. Remote Sens. Environ. 89, 351–360. https:// 
doi.org/10.1016/j.rse.2003.10.016. 

SenseFly, 2020. SenseFly Parrot Group UAV manufacturer - switzerland. URL: https: 
//www.sensefly.com/. 

Shrestha, B.B., Nakagawa, H., 2014. Assessment of potential outburst floods from the 
Tsho Rolpa glacial lake in Nepal. Nat. Hazards 71, 913–936. 

Shugar, D.H., Burr, A., Haritashya, U.K., Kargel, J.S., Watson, C.S., Kennedy, M.C., 
Bevington, A.R., Betts, R.A., Harrison, S., Strattman, K., 2020. Rapid worldwide 
growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945. https://doi.org/ 
10.1038/s41558-020-0855-4. 

Song, C., Huang, B., Ke, L., Richards, K.S., 2014. Remote sensing of alpine lake water 
environment changes on the tibetan plateau and surroundings: A review. ISPRS J. 
Photogramm. Remote Sens. 92, 26–37. 

Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J., 2017. Generalised dice 
overlap as a deep learning loss function for highly unbalanced segmentations. In: 
Deep learning in medical image analysis and multimodal learning for clinical 
decision support. Springer, pp. 240–248. 

Table 5 
25 Landsat-8 image tiles used in the presented experiments as 
retrieved by ICIMOD.  

Landsat image Cloud Cover [%] 

LC08_140041_20151219 4.41 
LC08_141040_20151007 1.44 
LC08_141040_20151124 5.74 
LC08_141040_20151226 0.85 
LC08_142040_20151201 1.66 
LC08_142040_20151217 1.54 
LC08_142040_20160102 1.63 
LC08_143039_20151122 4.11 
LC08_143039_20151208 2.31 
LC08_143040_20151021 4.65 
LC08_143040_20151208 14.07 
LC08_143040_20151224 2.09 
LC08_144039_20150910 4.19 
LC08_144039_20151113 4.53 
LC08_144039_20151129 3.40 
LC08_145039_20151120 3.45 
LC08_145039_20161106 2.32 
LC08_139040_20161214 0.22 
LC08_140040_20160104 0.64 
LC08_141040_20180116 0.90 
LC08_139040_20151228 0.14 
LC08_139041_20151228 2.13 
LC08_139041_20171217 2.49 
LC08_140040_20151219 0.69 
LC08_140041_20151219 4.41 
LC08_140041_20161205 3.27  

S. Wang et al.                                                                                                                                                                                                                                   

https://github.com/Aryal007/GEE_landsat_7_query_tiles/commits?author=Aryal007
https://github.com/Aryal007/GEE_landsat_7_query_tiles/commits?author=Aryal007
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0025
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0025
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0025
https://doi.org/10.1175/2020BAMSSTATEOFTHECLIMATE_INTRO.1
https://doi.org/10.1175/2020BAMSSTATEOFTHECLIMATE_INTRO.1
https://doi.org/10.1109/JSTARS.2017.2705718
https://doi.org/10.1109/JSTARS.2017.2705718
https://doi.org/10.5194/tc-15-1663-2021
https://doi.org/10.3390/rs13020197
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/j.rse.2017.06.031
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0075
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0075
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0075
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0075
https://doi.org/10.3390/rs12183053
https://doi.org/10.3390/rs12101667
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0125
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0125
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0125
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0155
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0155
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0155
https://doi.org/10.1038/nature20584
https://doi.org/10.1038/nature20584
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0165
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0165
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0165
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0170
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0170
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0170
https://doi.org/10.1016/j.rse.2003.10.016
https://doi.org/10.1016/j.rse.2003.10.016
https://www.sensefly.com/
https://www.sensefly.com/
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0190
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0190
https://doi.org/10.1038/s41558-020-0855-4
https://doi.org/10.1038/s41558-020-0855-4
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0200
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0200
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0200


ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 289–301

301

Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B., 2020. 
Google earth engine for geo-big data applications: A meta-analysis and systematic 
review. ISPRS J. Photogramm. Remote Sens. 164, 152–170. 

USGS, 2022. Why are negative values observed over water in some Landsat Surface 
Reflectance products. URL: https://www.usgs.gov/faqs/why-are-negative-values-ob 
served-over-water-some-landsat-surface-reflectance-products. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., 
Polosukhin, I., 2017. Attention is all you need. arXiv preprint arXiv:1706.03762. 

Veh, G., Korup, O., Roessner, S., Walz, A., 2018. Detecting Himalayan glacial lake 
outburst floods from Landsat time series. Remote Sens. Environ. 207, 84–97. 

Veh, G., Korup, O., Walz, A., 2020. Hazard from Himalayan glacier lake outburst floods. 
Proc. Nat. Acad. Sci. 117, 907–912. 

Wang, S., Guan, Y., Shao, L., 2020. Multi-granularity canonical appearance pooling for 
remote sensing scene classification. IEEE Trans. Image Process. 29, 5396–5407. 

Wang, S., Ren, Y., Parr, G., Guan, Y., Shao, L., 2021. Invariant deep compressible 
covariance pooling for aerial scene categorization. IEEE Trans. Geosci. Remote Sens. 
59, 6549–6561. https://doi.org/10.1109/TGRS.2020.3026221. 

Wang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp. 7794–7803. 

Wangchuk, S., Bolch, T., 2020. Mapping of glacial lakes using Sentinel-1 and Sentinel-2 
data and a random forest classifier: Strengths and challenges. Sci. Remote Sens. 2, 
100008. 

Wu, R., Liu, G., Zhang, R., Wang, X., Li, Y., Zhang, B., Cai, J., Xiang, W., 2020. A deep 
learning method for mapping glacial lakes from the combined use of synthetic- 
aperture radar and optical satellite images. Remote Sens. 12, 4020. 

Xia, M., Qian, J., Zhang, X., Liu, J., Xu, Y., 2019. River segmentation based on separable 
attention residual network. J. Appl. Remote Sens. 14, 1–15. https://doi.org/ 
10.1117/1.JRS.14.032602. 

Xie, Z., Haritashya, U.K., Asari, V.K., Young, B.W., Bishop, M.P., Kargel, J.S., 2020. 
GlacierNet: A deep-learning approach for debris-covered glacier mapping. IEEE 
Access 8, 83495–83510. 

Xu, H., 2006. Modification of normalised difference water index (ndwi) to enhance open 
water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. 
https://doi.org/10.1080/01431160600589179. 

Yang, H., Wu, P., Yao, X., Wu, Y., Wang, B., Xu, Y., 2018. Building extraction in very high 
resolution imagery by Dense-Attention networks. Remote Sens. 10 https://doi.org/ 
10.3390/rs10111768. 

Zhang, E., Liu, L., Huang, L., Ng, K.S., 2021. An automated, generalized, deep-learning- 
based method for delineating the calving fronts of greenland glaciers from multi- 
sensor remote sensing imagery. Remote Sens. Environ. 254 https://doi.org/ 
10.1016/j.rse.2020.112265. Cited By 0.  

Zhang, M.-M., Zhao, H., Chen, F., Zeng, J.-Y., 2020. Evaluation of effective spectral 
features for glacial lake mapping by using Landsat-8 OLI imagery. J. Mount. Sci. 17, 
2707–2723. https://doi.org/10.1007/s11629-020-6255-4. 

Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F., 2017. Deep 
learning in remote sensing: A comprehensive review and list of resources. IEEE 
Geosci. Remote Sens. Mag. 5, 8–36. 

S. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0924-2716(22)00146-0/h0210
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0210
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0210
https://www.usgs.gov/faqs/why-are-negative-values-observed-over-water-some-landsat-surface-reflectance-products
https://www.usgs.gov/faqs/why-are-negative-values-observed-over-water-some-landsat-surface-reflectance-products
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0225
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0225
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0230
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0230
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0235
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0235
https://doi.org/10.1109/TGRS.2020.3026221
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0245
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0245
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0245
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0250
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0250
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0250
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0255
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0255
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0255
https://doi.org/10.1117/1.JRS.14.032602
https://doi.org/10.1117/1.JRS.14.032602
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0265
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0265
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0265
https://doi.org/10.1080/01431160600589179
https://doi.org/10.3390/rs10111768
https://doi.org/10.3390/rs10111768
https://doi.org/10.1016/j.rse.2020.112265
https://doi.org/10.1016/j.rse.2020.112265
https://doi.org/10.1007/s11629-020-6255-4
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0290
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0290
http://refhub.elsevier.com/S0924-2716(22)00146-0/h0290

	A second-order attention network for glacial lake segmentation from remotely sensed imagery
	1 Introduction
	2 Study area and dataset description
	3 Methodology
	3.1 Data pre-processing
	3.2 Second-order Attention Network (SoAN)
	3.2.1 Network backbone
	3.2.2 Second-order Attention Module (SoAM)

	3.3 Loss function

	4 Experiments
	4.1 Implementation details
	4.2 Experimental results
	4.2.1 Evaluation on Landsat-8
	4.2.2 Test on band combinations
	4.2.3 Effect of embedding SoAM in different positions
	4.2.4 Effect of iterations in matrix normalisation
	4.2.5 Further evaluation on Tsho Rolpa glacial lake


	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Acknowledgements
	References


