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CHAPTER 4

PLAUSIBLE FUTURES OF NATURE, 
ITS CONTRIBUTIONS TO
PEOPLE AND THEIR GOOD
QUALITY OF LIFE
 

EXECUTIVE SUMMARY
Chapter 4 focuses on scenarios and models that 
explore the impacts of a wide range of plausible 
future changes in social, economic and institutional 
drivers on nature, nature’s contributions to people 
(NCP) and good quality of life. The chapter’s  assessment 
concentrates on studies published since 2008 that cover 
large regional to global spatial scales and time periods 
from the present to 2050, and up to 2100. This framing of 
the assessment means that this chapter is best suited to 
help setting the agendas for decision-making at national 
to international levels by identifying future challenges 
and providing a compelling case for action. Chapter 4 
provides new insights compared to previous assessments 
by including the most recent scenarios and models, by 
examining a broad range of global change drivers and their 
interactions, and by highlighting the impacts on a wide range 
of indicators of nature, nature’s contributions to people 
and good quality of life. Where possible, results are also 
interpreted in view of their implications for achieving the Aichi 
Biodiversity Targets and the Sustainable Development Goals.

This chapter endeavours to provide a balanced perspective 
on drivers of change and their impacts, but the strong 
bias in the scenario literature towards climate change 
impacts on nature limits the scope to which the chapter 
can provide a comprehensive vision of plausible futures 
to decision makers. Climate change has been studied 
far more extensively than other drivers (such as land use 
change, pollution, use and extraction of natural resources, 
and invasive alien species), and studies of interactions 
between drivers, especially more than two drivers, are 
relatively rare (well established) {4.2.1, 4.2.2, 4.2.3, 4.2.4}. 
Terrestrial systems are studied more extensively than marine 
systems, with a paucity of studies of freshwater systems 
(well established) {4.2.1.1}. Impacts on biodiversity and 
ecosystem function have been the focus of much more 
attention than nature’s contributions or good quality of life 
(78%, 16% and 5% of literature reviewed, respectively; 
(well established) {A1.1}. Among nature’s contributions to 
people, material (such as food production) and regulating 

contributions (such as carbon dioxide removal from the 
atmosphere into ecosystems) are more studied than 
non-material contributions in relation to scenarios (well 
established) {4.3.1}.

The large majority of the studies covered in this chapter is 
based on scenarios developed in support of climate change 
assessments (93% of literature reviewed; {4.1.3}, the most 
recent of which are the Representative greenhouse gas 
Concentration Pathways (RCPs) and their associated Shared 
Socio-economic Pathways (SSPs). This has the benefit of 
providing strong coherence with climate assessments but 
results in biases in terms of drivers of change and socio-
economic processes included in the scenarios. For example, 
only few of the scenarios assessed in this chapter explore 
mechanisms leading to social or ecological regime shifts 
{4.5}. In addition, most scenarios do not explicitly take 
into account different worldviews and values associated 
with many non-material nature’s contributions to people 
and, in general, were not designed to address a wide 
range of Sustainable Development Goals {4.5, Chapter 
5}. Nonetheless, this chapter recognizes that the different 
scenario archetypes hold inherently different worldviews and 
values that ultimately drive the scenario outcomes {4.1}. 
Participatory scenarios are one means of including a richer 
range of processes and values explored, but it is difficult 
to extrapolate from the local scale of most participatory 
scenarios to the large regional and global spatial scales that 
are the focus of this chapter {4.4.2, 4.7}.

 1 Significant changes at all biodiversity levels – 
from genetic diversity to biomes – are expected to 
continue under future global changes. Despite 
projections of some local increases in species 
richness and ecosystem productivity, the overall 
effect of global changes on biodiversity is projected to 
be negative (well established). Interactions within and 
between biodiversity levels can significantly influence 
future biodiversity responses to global changes 
(established but incomplete). A substantial fraction of 
wild species is simulated to be at risk of extinction during 
the 21st century due to climate change, land use, natural 
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resource extraction and impact of other direct drivers (well 
established) {4.2.1, 4.2.2, 4.2.3, 4.2.4}. Loss in intraspecific 
genetic diversity is expected due to the projected decrease 
in species population sizes and spatial range shifts. Genetic 
loss should be recognized as a serious threat to future 
potential for adapting to global change (established but 
incomplete) {4.2.1.2, 4.2.1.3}. Expected species range 
shifts, local species extinctions, changes in species 
abundances will lead to disruptions of species relations 
including disturbance of trophic webs, plant-pollinator and 
other mutualistic relations (well established) {4.2.2, 4.2.3, 
4.2.4}, that can cascade through the entire ecosystem. 
Novel (no-analogue) communities, where species will 
co-occur in historically unknown combinations, are 
expected to emerge (established but incomplete) {4.2.1.2, 
4.2.4.1}. As a consequence, new approaches to 
conservation are warranted that are designed to adapt to 
rapid changes in species composition and ensuing 
conservation challenges. Intraspecific diversity and 
interactions between different biodiversity levels need to be 
represented in global models and scenarios to improve 
future projections of nature {4.2.1.2, 4.2.1.3}.

 2 In marine ecosystems, most scenarios and 
models point towards a global decrease in ocean 
production and biodiversity, but the level of impact 
can vary widely, depending on the drivers, scenarios, 
and regions considered (well established). All 
anthropogenic greenhouse gas emission scenarios result in 
a global increase in sea temperature, ocean acidification, 
deoxygenation and sea level rise (well established) {4.2.2.1}. 
By the end of the century, these environmental changes are 
projected to decrease net primary production (by ca. -3.5% 
under the low greenhouse gas emissions scenario, RCP2.6 
and up to -9% in the very high emissions scenario, RCP8.5), 
and secondary production up to fish (by -3% to -23% under 
RCP2.6 and RCP8.5, respectively), as well as top predator 
biomass (established but incomplete) {4.2.2.2.1}. Fish 
populations and catch potential are projected to move 
poleward due to ocean warming (well established) with a 
mean latitudinal range shift of 15.5 km to 25.6 km per 
decade to 2050 (under RCP2.6 and RCP8.5, respectively) 
(inconclusive), leading to high extirpation rates of biomass 
and local species extinctions in the tropics (well established) 
{4.2.2.2.1}. The rapid rate at which sea ice is projected to 
retreat in polar seas, and the enhanced ocean acidification, 
imply major changes to be expected in the future for 
biodiversity and ecosystem function in the Arctic and 
Southern oceans (well established) {4.2.2.2.4}. All 
components of the food webs will potentially be impacted, 
from phytoplankton to top predators, and from pelagic to 
benthic species (established but incomplete).

 3 Relative to climate change impacts, published 
scenarios project that the choice of fisheries 
management and market regulation measures can 

have the strongest impacts on the future status of 
marine fish populations (well established) {4.2.2.3}. In the 
face of continuous growth of human population that is 
projected to reach 9.8 billion (± ca. 0.4 billion) people in 
2050 combined with rising incomes, the demand for food 
fish will likely increase (well established). Business-as-usual 
fisheries exploitation is foreseen to increase the proportion 
of overexploited and collapsed species (well established), as 
well as species impacted by bycatch {4.2.2.3}. Adaptive 
fisheries management that responds to climate induced 
changes of fish biomass and spatial distribution could offset 
the detrimental impacts of climate change on fish biomass 
and catch in most RCPs (but RCP8.5) (inconclusive) {4.2.2.3}.

 4 For marine shelf ecosystems, additional future 
threats include extreme climatic events, sea level rise 
and coastal development which are foreseen to cause 
increased pollution and species overexploitation but also 
fragmentation and loss of habitats that directly impact the 
dynamics of marine biodiversity (well established) {4.2.2.2.2, 
4.2.2.3}. These impacts could potentially feedback to the 
climate as coastal wetlands play a major role in carbon 
burial and sequestration globally (well established) 
{4.2.2.2.2}. In coastal waters, increasing nutrient loads and 
pollution in combination with sea warming are expected to 
stimulate eutrophication and increase the extent of oxygen 
minimum zones with potential detrimental effects on living 
organisms (well established) {4.2.2.3}. Coral reefs are 
projected to undergo more frequent extreme warming 
events, with less recovery time in between, declining by a 
further 70-90% at global warming of 1.5°C, and by more 
than 99% at 2°C causing massive bleaching episodes with 
high mortality rates (well established) {4.2.2.2.2}. 

 5 Concerns about rapidly increasing plastic 
pollution now match or exceed those for other 
persistent organic pollutants. If current production and 
waste management trends continue, about 12,000 Mt 
(million tons) of plastic waste will accumulate in the 
environment by 2050, especially in the ocean which acts as 
a sink (established but incomplete). The harmful effects of 
plastics have been evidenced at all levels of marine food 
webs from plankton to top predators but are not yet 
projected into the future {4.2.2.4.1}. 

 6 In freshwater ecosystems, all scenarios and 
models point towards a decrease in freshwater 
biodiversity and substantial changes in ecosystems 
state and functioning, especially in tropical regions 
(well established). Freshwater ecosystems cover only 
0.8% of the world surface area but host almost 8% of the 
world’s species described, making a high contribution to 
global biodiversity. Given that all scenarios are based on 
continued growth of human population density until 2050, 
impacts due to combined anthropogenic drivers on 
freshwater biodiversity and ecosystems are projected to 
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increase worldwide, and to be strongest in tropical regions 
where human population growth and biodiversity are 
concentrated (well established) {4.2.3}. Increases in land 
area used for urbanization, mining, cropland and 
intensification of agriculture are projected to boost the risk of 
pollution and eutrophication of waters, leading to extirpation 
of local populations, changes in community structure and 
stability (e.g. algal blooms) (well established) {4.2.3.3}, and 
establishment and spread of pathogens (established but 
incomplete) {4.2.3.3}. Under all scenarios, habitat 
fragmentation (e.g., damming of rivers) and exploitation are 
projected to increase the risk of species extinction with 
potential effects on food web dynamics, especially in tropical 
regions (well established) {4.2.3.4, 4.2.3.6}. These impacts 
on freshwater flows, biodiversity and ecosystems will likely 
be exacerbated by climate change, especially under 
moderate (RCP4.5) and high emissions (RCP6.0, RCP8.5): 
higher temperatures are projected to generate local 
population extinctions especially for cold-water adapted 
species, and species extinctions in semi-arid and 
Mediterranean regions, since the area extent of these 
climatic regions will shrink due to projected decrease in 
precipitation (increase of estimated extinction rates by ca. 
18 times in 2090 under the SRES A2 scenario, compared 
with natural extinction rates without human influence) 
(inconclusive) {4.2.3.2}. 

 7 In terrestrial ecosystems, scenarios and models 
point towards a continued decline in global terrestrial 
biodiversity and regionally highly variable changes in 
ecosystem state and functioning (well established). 
Land-use change, and invasive alien species will continue to 
cause biodiversity loss across the globe in the future, with 
climate change rapidly emerging as an additional driver of 
loss that is increasing over the coming decades in relative 
importance across all scenarios (well established) {4.2.4}. 
Although large uncertainties exist regarding the exact 
magnitude of loss, it is well established that increasing 
global warming will accelerate species loss {4.2.4}. Already 
for relatively minor global warming, biodiversity indices are 
projected to decline (established but incomplete) {4.2.4}. 
Extinction risks are projected to vary between regions from 
5% to nearly 25%, depending on whether a region harbours 
endemic species with small ranges or is projected to 
experience climate very different from today (inconclusive). 
Substantial climate change driven shifts of biome 
boundaries, in particular in boreal and sub-arctic regions, 
and (semi)arid environments are projected for the next 
decades; warmer and drier climate will reduce productivity 
(well established) {4.2.4.1}. In contrast, rising atmospheric 
CO2 concentrations can be beneficial for net primary 
productivity of ecosystems, and is expected to enhance 
woody vegetation cover especially in semi-arid regions 
(established but incomplete) {4.2.4.1}. The combined 
impacts of CO2 and climate change on biodiversity and 
ecosystems remain (unresolved) {4.2.4.1}. 

 8 The relative impacts of climate change versus 
land-use change on biodiversity and ecosystems are 
context-specific and vary between scenarios, regions, 
and indicators of biodiversity and ecosystem 
functioning (well established) {4.2.4.2, 4.2.4.3}. 
Land-use change pressures differ between scenarios, but 
managed land area continues to increase, with exception of 
some scenarios exploring sustainability trajectories. 
Scenarios of large-scale, land-based climate change 
mitigation rely on large increases of bioenergy crop area or 
large reforestation or afforestation with potentially 
detrimental consequences for biodiversity and some 
ecosystem functioning (well established) {4.2.4.2, 4.2.4.3, 
4.5.2}. Interactions of land-cover change and future climate 
change enhance the negative impacts on biodiversity and 
affect multiple ecosystem functions (established but 
incomplete) {4.2.4.2, 4.2.4.3}. Pressure on biodiversity and 
ecosystem function from other drivers such as biological 
invasions will likely be accentuated at global scale, as trade 
between climatically and environmentally similar regions are 
projected to increase, and habitats continue to be disturbed 
(established but incomplete). Overall, the small number of 
regional to global scale scenario studies that assess 
pollution or invasive alien species’ impacts on nature 
precludes a robust assessment {4.2.4.4, 4.2.4.5}.

 9 Many scenarios project increases in material 
nature’s contributions to people, which are generally 
accompanied by decreases in regulating and non-
material contributions (established but incomplete) 
{3.1, 3.2}. The simulated trade-offs between material vs. 
regulating and non-material ecosystem services are 
especially pronounced in scenarios with strong human 
population growth and per capita consumption (established 
but incomplete) {4.3.4, 4.2.2.3.1, 4.2.4}. Assumptions about 
population growth and increase in per capita consumption 
are projected to lead to rising demand for material services, 
especially food, materials and bioenergy, and are projected 
to reduce regulating contributions such as provision of clean 
water, pollination, or ecosystem carbon storage (well 
established) {4.3.2, 4.3.3, 4.5.3, 4.2.2.4, 4.2.2.5, 4.2.3, 
4.2.4}. In the long term, substantial decreases in regulating 
contributions may have detrimental effects on material 
contributions, for example climate change impacts on all 
systems will be increased if climate regulation by forests or 
oceans is weakened (well established). The future 
magnitude of these cascading effects has yet to be 
determined (inconclusive). This is because most scenarios 
and models do not consider fully the interactions between 
multiple drivers and multiple ecosystem impacts, and as a 
consequence cannot quantify important feedbacks {4.3.3, 
4.3.4, 4.5.1, 4.5.4}. 

 10 Scenarios examining trends in nature and 
nature’s contributions to people show significant 
regional variation (well established). The 
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interconnectedness of the world regions emphasizes 
the need for decision-making on ocean, freshwater 
and land management to be informed by 
considerations of regional trade-offs among nature’s 
contributions to people (well established). Future 
scenarios show that many regions will experience a general 
decrease of biodiversity and many regulating and non-
material ecosystem services, but others will see increases 
(well established) {4.2.2, 4.2.4, 4.3.3}. The degree to which 
regions differ regarding impacts of global environmental 
changes depends on the underlying socio-economic 
scenarios, with climate change being an additional driver 
(established but incomplete) {4.1, 4.2, 4.3}. Scenarios of a 
world with regional political- and trade-barriers (Regional 
Competition Scenario) tend to result in the greatest 
divergence across regions, scenarios that emphasize liberal 
financial markets (economic optimism and reformed market 
scenarios) in intermediate levels of disparity, while scenarios 
that encapsulate aspects of sustainable development 
(Regional Sustainability and Global Sustainability scenarios) 
result in more modest differences between regions 
(established but incomplete) {4.3.3, 4.2.4}. For example, an 
analysis of the impacts of the shared socio-economic 
pathway (SSP) scenarios indicates that terrestrial biodiversity 
and regulating contributions will be more heavily impacted in 
Africa and South America than in other regions of the world, 
especially in a regional competition scenario and in an 
economic optimism scenario compared to a global 
sustainability scenario {4.2.1, 4.2.4.2}.

Irrespective of the underlying socio-economic assumptions, 
spatial telecoupling (socioeconomic and environmental 
interactions over distances) implies that increasing future 
demand for ecosystem services in certain regions will 
affect supply of services in others. Material contributions, 
especially food and energy production, play a dominant 
role in these telecouplings (well established) {4.2.4, 4.3.3, 
4.5.2}. Material contributions tend to be traded between 
regions {4.1, 4.2.4.4., 4.2.4.5, 4.5.2, 4.6}, but locally 
declining biodiversity cannot be replaced by increased 
biodiversity in a different location {4.2.2-4.2.4}. If tele-
couplings are not accounted for in future scenarios, 
unrealistically overoptimistic responses to a regional political 
intervention (e.g., land-based climate mitigation, negative 
emission policies, sustainable fisheries management for 
local resources and not for imported ones) are assumed, 
and measures to reduce detrimental side effects not taken 
(established but incomplete) {4.3.3}. 

 11 Limiting mean global warming to well below 2oC 
will have large co-benefits for nature and nature’s 
contributions to people in marine, freshwater and 
terrestrial ecosystems. Land-based climate change 
mitigation efforts offer opportunities for co-benefits, 
but if large land areas are required, trade-offs with 
biodiversity conservation and food and water security 

goals will need to be addressed in terrestrial and 
freshwater ecosystems (well established). Climate 
warming and ocean acidification associated with increasing 
atmospheric CO2 are already causing damage to marine, 
freshwater and terrestrial biodiversity (well established) 
{4.2.2, 4.2.3, 4.2.4} which confirms the urgency of meeting 
the goals of the Paris Climate Agreement. The degree to 
which marine and land ecosystems will continue to remove 
CO2 from the atmosphere, which at present amounts to 
nearly 50% of anthropogenic CO2 emissions, is highly 
uncertain {4.2.2.1, 4.2.4.1}. On land, reduction of 
deforestation combined with management practices in 
cropland, pastures and forests can contribute notably to 
greenhouse gas emissions reductions (well established). 
Recent cost-effective estimates are between ca. 1.5 and 
11 Gt CO2eq a-1 over the coming few decades, the 
undetermined range depending, amongst others, on which 
types of measures are included {4.5.3}. Along coastlines, a 
combination of reduced nutrient discharge (mitigating 
pollution) and space to allow inland wetland migration 
(adapting to sea level rise), is essential to preserve the 
capacity of coastal wetlands to sequester carbon 
(established but incomplete) {4.2.2.2.2, 4.2.2.5}.

Regionally, land conversion pressure is large both 
in scenarios of high population growth and lack of 
sustainability considerations, and in scenarios requiring 
land for bioenergy or afforestation and reforestation to 
mitigate climate change (established but incomplete) 
{4.1, 4.2.4.3}. Recent projections of an annual carbon 
uptake in 2050 projected for bioenergy pathways (with 
carbon capture and storage about 0.9-2.2 GtC a-1) and 
afforestation/reforestation (0.1-1 GtC a-1) are equivalent 
to an additional one third to three quarters of today’s land 
carbon sink {4.2.4.3}. It remains uncertain whether the 
required land area would be available for large bioenergy 
plantations or afforestation/reforestation efforts, where 
these areas would be located and whether such net 
carbon uptake rates can be achieved and maintained 
{4.2.4.3, 4.5.2}. Likewise, detrimental environmental 
and societal side effects have been projected to arise 
from strong mitigation scenarios that rely on large area 
expansion of managed crop and forested land associated 
with intensification of production (established but 
incomplete) {4.2.4.3, 4.3.2.1, 4.5.2}. 

 12 Scenarios repeatedly show that changing food 
consumption patterns and reducing waste and losses 
in the food system can contribute significantly to 
mitigating loss of biodiversity and ecosystem 
services. Human population growth over the coming 
decades is projected to increase to nearly 9.8 billion (± 0.4 
billion) by 2050 and to 11.4 billion (± 1.8 billion) by 2100. As 
a consequence of the projected population growth, 
continued urbanisation, and changes in many countries’ 
diets towards increasing per capita animal protein share and 
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processed food, most scenarios foresee increasing crop 
area, and in some cases pasture area as well. These 
projected changes in agricultural land area are combined 
with intensification of land management and continued 
increases in crop yields, that are projected to have 
detrimental environmental and biodiversity side effects 
associated with agricultural intensification (well established) 
{4.2.2.4.2, 4.3.2.1, 4.3.2.2, 4.5.2}. An increasing number of 
scenarios emphasizes the potential role of consumption as 
part of the solutions to overcome these challenges, such as 
shifting diets towards a globally equitable supply of nutritious 
calories or reducing wastes and losses along the entire 
chain from crop production to consumers (well established) 
{4.5.4}. Enhancing efficiencies in the food system has large 
potential to free up land for other uses such as for 
biodiversity conservation. Studies that explore dietary 
scenarios of reduced consumption of animal protein 
estimate that between ca. 10% and 30% of today’s area 
under agriculture may be freed for other purposes, with 
possible co-benefits in the form of a globally more equitable 
distribution of animal protein intake by humans and 
improved health. Reduced greenhouse gas emissions from 
the land sector, and reduced irrigation water needs are an 
additional benefit, which will also release pressure on 
freshwater pollution and biodiversity (established but 
incomplete). Nearly one-quarter of total freshwater used 
today in food crop production are estimated to be spared if 
wastes and losses in the food system were minimized 
(inconclusive) {4.3.1, 4.3.2, 4.5.2, 4.5.3}.

 13 Societies and individuals within societies value 
differently the regulating, material, and non-material 
contributions from nature that underpin their quality of 
life (well established). In future scenarios governed by 
market forces, multiple dimensions of good quality of life are 
expected to decline. The decline is particularly pronounced 
for indicators related to livelihood and income security 
(established but incomplete) {4.4.1, 4.4.2}. Market-based 
and regionally-fragmented scenarios, associated with 
growth in population and consumption, indicate continuous 
deterioration of nature to support economic growth, with 
some regions affected more than others. Without 
decoupling economic growth from unsustainable extraction 
and uses, scenarios show continuous decline in nature’s 
contributions to people. Scenarios exploring sustainability or 
reformed financial market pathways are projected to result in 
improved good quality of life (established but incomplete) 
{4.4.1, 4.4.2}. In general, the lack of explicit consideration in 
global scenarios of good quality of life explicitly, and its 
regionally and socially differentiated nature, impedes robust 
projections into the future, in particular for non-material 
aspects. Interactions of future changes in nature, its 
contributions to people and good quality of life can be better 
understood and, therefore, potentially better anticipated and 
managed, when they are evaluated at regional scales as well 
as the global scale.

Small-scale farming, fishing and other communities, and 
Indigenous Peoples around the world that depend directly 
on local environments for food production, especially in 
low-income countries, are particularly vulnerable to climate-
related food insecurity, which raises important equity and 
fairness issues. Similarly, in coastal regions, decreases in 
precipitation and fresh water supplies, along with projected 
increases in sea level, sea surface temperatures and air 
temperatures, and ocean acidification are projected to 
have major negative effects on water security for societies. 
Nature-based livelihoods may become precarious 
with intensifying future trends in environmental change 
(established but incomplete) {4.4.1, 4.4.2}. Future threats 
to biodiversity and ecosystem services also constitute 
imminent challenges to the cultural identity of communities, 
particularly when faced with environmental degradation 
(unresolved) {4.4.2}.

 14 The role of people’s knowledge, values and 
traditions, and their potential future changes have 
been barely explored in global scenarios of future 
socio-economic and environmental change. A 
challenge to the assessment of nature’s contribution to 
people and good quality of life under different future 
scenarios is their socially differentiated nature. People’s 
values and traditions are crucial in shaping the future, yet 
they are rarely central to scenario exercises (established but 
incomplete) {4.4.1}. Novel methods are beginning to be 
developed to fully integrate people’s worldviews into 
scenario planning, however transcendental values held by 
the social groups have so far not been well incorporated. 
The process of elaborating scenarios with participatory 
approaches is increasingly taking into account value 
negotiations around the meaning of good quality of life 
(established but incomplete) {4.4.2}. Consequently, ethical 
questions emerge regarding how to build scenarios so that 
local knowledge, particularly that of Indigenous Peoples and 
Local Communities (IPLCs), are not coopted in ways that 
may exacerbate processes of their social marginalization.

 15 Different social groups experience change in 
ecosystem function and services differently so that a 
given change scenario usually implies winners and 
losers in terms of the projected impacts on good 
quality of life (established but incomplete) {4.4.1, 4.4.2, 
4.4.3}. People vary in their access to ecosystem services, 
exposure to disservices, dependence on ecosystems, 
needs and aspirations. These are further mediated by 
societal structures and norms as individual characteristics 
and power relations {4.4.2, 4.4.3}. Many IPLCs are found in 
protected areas, where dimensions of good quality of life 
such as food and energy security may trade off with other 
dimensions of ecosystem functioning. Indirect drivers of 
change such as climate mitigation policy (e.g., REDD+) may 
disproportionately impact the possible trajectories towards 
achieving good quality of life by IPLCs (unresolved) {4.4.1}.
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Thus, decision-making about environmental management 
with implications for different bundles of ecosystem 
services is an intently political process, with often divergent 
stakeholder interests and power dynamics. Evaluating 
the implications for the good quality of life of IPLCs under 
different scenarios of change can benefit from deliberative 
and participatory approaches that consider a wide range 
of stakeholder views, and disciplinary perspectives. Such a 
diversity of perspectives needs to draw on indigenous and 
local knowledge, to take account of the multiple interacting 
factors and socially differentiated experiences, vulnerabilities 
and preferences (established but incomplete) {4.4.2, 4.4.3}. 
A limitation with participatory approaches is the difficulty of 
imagining future scenarios of changes in the ‘demand side’ 
of nature’s contributions. So, a group may discuss how 
changes in a resource might be affected by climate change, 
but it is often framed in terms of current social conditions. 
Likewise, participatory approaches are likely to be more 
successful if the scale of scenarios (e.g., local, regional, 
global) and stakeholder group perspective can be matched.

 16 Most internationally agreed policy goals and 
targets for biodiversity are missed by most countries 
under business-as-usual scenarios because the 
current patterns and future trends of production and 
consumption are not environmentally sustainable. 
Indeed, trajectories of most biodiversity indicators 
under business-as-usual increasingly deviate from 
targets over time (well established) {sections 2 and 6}. 
The achievement of most biodiversity targets therefore 
requires a steer away from the current socio-economic 
trajectory and the worldviews and values that underpin it 
(well established). Scenarios that assume increased 
sustainability show that achieving most SDGs is possible at 
some point in the future, but this requires substantive and 
immediate action (established but incomplete) {4.6.1}, and 
the time horizon of the possible achievement of the SDGs 
is undetermined.

Scenarios and models can support the formulation of 
future biodiversity targets in terms of concept, phrasing, 
quantitative elements, and selection of indicators to monitor 
progress (established but incomplete). Scenario and models 
are also amenable to exploring interactions among targets 
(well established). For example, scenarios have shown that 
ambitious protected area expansion plans would conflict 
with agricultural production under business-as-usual 
assumptions, and that achieving SDGs for both biodiversity 
and hunger would require a 50-70% increase in land 
productivity (inconclusive) {4.6.1}.

Focusing future quantitative targets for biodiversity on 
management outcome rather than effort may improve 
policy implementation and related management 
decisions. For example, the numeric component of Aichi 
BiodiversityTarget 11 relates to the global proportion of 

protected areas. But the aim of protected areas is to achieve 
the long-term conservation of nature, which suggests to 
move the focus to the amount of nature that is protected 
and the effectiveness of protection rather than proportion of 
area under protection. Scenarios and models have shown 
that the outcome of a protected area network is determined 
by its location, connectivity and management, other than 
its size.

 17 There is a lack of global-scale impact analyses 
that integrate across natures, nature’s contributions 
to people and good quality of life. Most scenarios 
developed for global environmental assessments have 
explored impacts of humans on ecosystems, such as 
biodiversity or productivity loss {4.1, 4.2}. The effects of 
alternative trajectories of socioeconomic development on 
ecosystems and ecosystem services have been assessed 
as one-way outcomes, ignoring the possible interactions 
between natural and socioeconomic systems. A better 
understanding of feedback mechanisms is needed on many 
fronts, for instance: in what ways pollution arising from 
agricultural intensification does impact pollinators and/or 
water quality, which in turn impact land use and 
intensification? How do changes in food prices arising from 
different land uses feed back to land-use decision-making? 
How is overfishing leading to the depletion of large 
predatoryfish and development of global markets for 
alternative species, often their own prey, leading to further 
collapse of marine resources? To what extent climate 
change induced sea level rise is decreasing wetland area 
and is affecting carbon sequestration? (established but 
incomplete) {4.1, 4.3.2.1, 4.5.1-4.5.3, 4.6.1, 4.7.3}. In 
addition, storylines of socio-economic development that 
underlie global scenarios consider mostly material aspects 
of GQL and do not consider other indicators of GQL 
{4.4.1-4.4.3}. There is a knowledge gap in scenario studies 
about non-material contributions to people compared to 
material contributions and regulating contributions, which 
limits our capacity to understand quantitatively how nature, 
its contributions to people and good quality of life interact 
and change in time.

In particular, human decision-making at multiple levels is 
not well integrated in global scenario modelling tools such 
as Integrated Assessment Models that focus on economic 
objectives (well established) {4.1, 4.2, 4.5.1, 4.5.2, 4.4.1-
4.4.3}. A paradigm shift in scenario design could be 
achieved by considering, alongside of economic principles, 
provisioning of multiple ecosystem services and GQL as 
part of the storyline and human decisions (and subsequent 
scenario realisation), rather than as an outcome of socio-
economic drivers {4.6.1}. For a more robust scientific 
underpinning of biodiversity and multiple sustainability 
targets, these non-material aspects need to be explicitly 
addressed in the scenarios (unresolved) {4.6.1}. Such 
scenarios would facilitate policy-relevant scientific evidence 
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through exploration of trade-offs and co-benefits between 
targets related to biodiversity and ecosystem services, 
including the interconnected nature of drivers across 
regions {4.3.4, 4.5.1}. Participatory Scenario Planning, with 
stakeholders aligned to the scale of the scenario (e.g., the 
CBD for global scenarios) would allow for a differentiated 
assessment of good quality of life across stakeholder groups 
and highlighting winners and losers across environmental or 
policy scenarios (established but incomplete) {4.4.2}.

 18 Large uncertainties remain in future scenarios 
and related impact studies at the global scale. Careful 
analysis and communication of sources of uncertainty in 
scenarios and models are vital when using them in support 
of decision-making (well established). Global modelling tools 
to explore futures of biodiversity and futures of ecosystem 
state and function are still mostly disconnected and do not 
consider diversity-function links {4.2, 4.7}. Projected future 
changes in species ranges, community diversity or 
ecosystems may be under- or overestimated by most 
studies because they do not explicitly account for impacts 
of multiple drivers, adaptive capacity of species and for 
feedbacks arising from species interactions {established but 
incomplete) {4.2.5, 4.5}. Effectively linking scenarios and 
models across spatial and temporal scales is 

methodologically difficult and in early stages of development 
and use but can make important contributions to decision-
making when achieved (established but incomplete). 
However, linking must be done with considerable caution 
because it creates additional complexity that can make the 
behaviour of scenarios and models difficult to understand 
and may introduce important sources of uncertainty {4.5, 
4.7}. Substantial efforts are needed to identify uncertainty 
related to models and scenarios and improve the treatment 
of uncertainty between and within models {4.2, 4.6, 4.7}. 
Strong, sustained dialogue between modellers, stakeholders 
and policymakers are one of the most important keys to 
overcoming many of the significant challenges to dealing 
with uncertainty and scales issues when mobilizing 
scenarios and models for decision-making.
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4.1	 INTRODUCTION

4.1.1	 Context and objectives of 
the chapter

Rapid biodiversity loss and its adverse consequences for 
nature, nature’s contributions to people and Good quality 
of life clearly remain as key challenges for the coming 
decades. Economic inequality, societal polarization and 
intensifying environmental threats have been identified 
by the World Economic Forum’s Global Risks Report 
(GRR) 2017 (WEF, 2017) as the top three challenges for 
global developments over the next decade or more. For 
the first time, all five environmental risks in the report 
(extreme weather; failure of climate change mitigation 

and adaptation; major biodiversity loss; natural disasters; 
human-made environmental disasters) were ranked both 
high-risk and high-likelihood (WEF, 2017). These challenges 
emphasize the importance of the UN 2030 Agenda and 
the Sustainable Development Goals (SDGs) and the 2050 
Global Vision for Biodiversity to facilitate a sustainable future 
state for the planet, with a recognition of the connections 
between humans and ecosystem well-being at their core 
(Costanza et al., 2016).

This chapter focuses on the assessment of scenarios and 
models that have been used to explore a wide range of 
plausible futures of nature, nature’s contributions to people 
(NCP) and good quality of life (GQL), focusing on the 
current-to-2050 time frame and on continental to global 
spatial scales. One objective is to alert decision makers to 
potential undesirable impacts of a broad range of plausible 

Figure 4  1  1   Scope of Chapter 4 “Plausible futures of nature, its contributions to people and 
their good quality of life” of the IPBES Global Assessment, content of sections 
and their relationships, and linkages with the other chapters of the Global 
Assessment. NCP: nature’s contributions to people; GQL: good quality of life.  
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socio-economic development pathways. A second 
objective is to highlight development pathways and actions 
that can be taken to minimize impacts, as well as restore 
nature and enhance its contributions to people. As is clearly 
highlighted in Chapters 2 and 3 of this assessment, the 
context is that pressures, such as resource exploitation 
and climate change, continue to increase, and most 
measures of the state of nature and nature’s contributions 
to people continue to decline. This chapter is designed to 
help understand the conditions under which these trends 
might accelerate vs. stabilize or even improve over the 
coming decades.

Scenarios are a means of exploring plausible future 
trajectories of direct and indirect drivers of environmental 
change (IPBES, 2016b). Models provide a means to 
estimate qualitatively or quantitatively the impacts of indirect 
and direct drivers on nature and nature’s contributions to 
people (IPBES, 2016b). Building upon an analysis of drivers 
of change presented in chapter 2.1, this chapter starts 
with an assessment of the key underlying assumptions 
about drivers in scenarios and a synthesis of the projected 
trajectories of key direct drivers, such as climate change 
and land-use change, and indirect drivers, such as human 
population and economic growth, over the next several 
decades and places these in the context of current trends 
(section 4.1; Figure 4.1.1, see Chapter 2.1).

Sections 4.2 and 4.3 of this chapter focus on the 
assessment of a wide range of quantitative models that 
have been used to project future dynamics of nature and 
its contributions, and these sections also place these 
projections in the context of observed trends as well as 
the current understanding of the mechanisms underlying 
these trends (see Chapter 2). Models can also be used 
to evaluate the impacts of changes in nature and its 
contributions on quality of life, but this has rarely been 
done (IPBES, 2016b). As such, section 4.4 focuses on the 
underlying assumptions about quality of life embedded 
explicitly or implicitly in models and scenarios, as well as 
making qualitative connections with modeled impacts 
on nature and its contributions. Projected synergies and 
trade-offs between nature, NCP and GQL are explored in 
section 4.5.

Finally, comparisons of scenarios and model outcomes 
are then made with internationally agreed objectives, 
such as the Sustainable Development Goals for 2030 and 
the Convention on Biological Diversity’s 2050 Vision, in 
order to better understand the types of socio-economic 
development pathways that lead to outcomes that are 
closest to or furthest from these objectives (section 4.6). 
This is then put in the broader context of the use of 
scenarios and models in decision-making (section 4.7), with 
a focus on the importance of scales and uncertainty in the 
use of models and scenarios to inform decisions.

Chapter 5 follows by providing a more in-depth analysis of 
“target-seeking” scenarios designed to evaluate sustainable 
futures, including evidence regarding sustainable transition 
pathways, for which specific policy options are discussed in 
Chapter 6.

4.1.2	 Exploratory scenarios

Scenarios can be defined as plausible representations of 
possible futures for one or more components of a system, 
or as alternative policy or management options intended 
to alter the future state of these components (IPBES, 
2016b). They provide a useful means of dealing with many 
distinct possible futures (Cook et al., 2014; Pereira et 
al., 2010). Policy and decision-making processes rely on 
estimates of anticipated future socio-economic pathways, 
and knowledge of the potential outcomes of actions 
across distinct geographic regions, sectors and social 
groups. The process of scenario development itself can 
help to build consensus by integrating the objectives of 
different stakeholder groups (Priess & Hauck, 2014). This 
is particularly germane in efforts that seek to integrate the 
knowledge, perspectives and goals of local stakeholders, 
particularly Indigenous Peoples and Local Communities 
(IPLCs), who are frequently marginalized from policy and 
decision-making processes (IPBES, 2016b; Petheram et 
al., 2013).

When assessing future impacts on nature, its contribution to 
people and related good quality of life, there is a need to link 
the trajectory of direct and indirect drivers to different future 
scenarios. Exploratory scenarios can be either qualitative, 
in the form of storylines, or quantitative, in the form of 
model outputs (van Vliet & Kok, 2015). The main objective 
of exploratory scenarios is informing stakeholders of the 
potential impacts of different driver combinations, e.g., a 
proactive set of actions that may increase the likelihood of 
social, economic or political targets versus a “business-
as usual” scenario that involves no major interventions 
or paradigm shifts in the organization of functioning of a 
system. Exploratory scenarios may provide a plurality of 
plausible alternative and contrasting futures. 

Exploratory scenarios for global scale environmental studies 
and assessments have been developed for a range of 
UN related assessments, including scenarios developed 
under the IPCC process, such as the so-called SRES 
scenarios (Nakicenovic et al., 2000) in the late 1990s, the 
Representative Concentration Pathways (RCPs) and the 
recent Shared Socio-economic Pathways (SSPs), as well as 
scenarios considered for the UNEP Global Environmental 
Outlook (GEO) (UNEP, 2012) process, Global Biodiversity 
Outlook (GBO) and the Millennium Ecosystem Assessment 
(MA, 2005). The Global Scenario Group has also developed 
a range of contrasting global scenarios (Raskin et al., 2002). 
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In addition, organizations such as FAO, OECD, IEA and 
UNESCO have developed several scenarios for specific 
purposes, such as the OECD Environmental Outlook to 
2050 where a trend-based scenario was developed and a 
large number of policy alternatives were evaluated (OECD, 
2012). Several of these scenarios have been evaluated 
by Integrated Assessment Models (IAMs) to specify and 
quantify ecological and environmental changes, including 
climate change, land-use change, vegetation dynamics and 
water (Kok et al., 2018).

An important advance in the last few years has been to link 
representative concentration pathways (RCPs) with shared 
socio-economic pathways (SSPs) (O’Neill et al., 2014) 
in support of the IPCC process, to inform deliberations 
under the UN Framework Convention on Climate Change 
(UNFCCC). Some of these scenarios imply significant 
mitigation efforts in the land-use sector, including large-scale 
reforestation and afforestation, or bioenergy crops with 
implications for both biodiversity and ecosystem services 
(Riahi et al., 2017).

Existing environmentally relevant scenarios include scenarios 
that are most often either exploratory (this chapter focus) or 
target-seeking (Chapter 5) (IPBES, 2016b). In many cases, 
these scenarios may be appropriate for specific temporal 
or spatial scales or limited in scope (e.g. relevant to one or 
a few sectors). They can also be incomplete with regard to 
quantitative information about nature, NCP and GQL, and 
thus less useful for the purposes of this IPBES assessment. 
This is because integrated assessment models that often 
underpin scenarios of future greenhouse gas emissions, 
land-use change, or demand for food have a strong 

economic perspective and do not consider e.g., monetary 
or non-monetary values of ecosystem services. Issues 
related to conservation or biodiversity, or feedbacks from 
changes in ecosystem services to socio-economic decision-
making, have typically not been well considered in the wide 
range of global scenarios that are well established in the 
climate change scientific communities. Likewise, scenarios 
of the future of biodiversity typically do not seek to quantify 
the possible co-benefits related to ecosystem services (Kok 
et al., 2017; Pereira et al., 2010; Powell & Lenton, 2013). 
Important gaps remain in scenario development, such as 
the development of integrated scenarios for areas projected 
to experience significant impacts and possible regime 
shifts (e.g. Arctic, semi-arid regions and small islands), and 
socioeconomic scenarios developed for and in collaboration 
with Indigenous Peoples and Local Communities (IPLCs) 
and their associated institutions, values and worldviews 
(Furgal & Seguin, 2006).

4.1.3	 Archetype scenarios

From the many scenarios developed in the last few 
decades, it is apparent that groups of scenarios have 
many aspects of their underlying storylines in common and 
may be considered as “archetype scenarios”. Archetypes 
represent synthetic overviews of a set of assumptions 
about the configuration and influence of direct and indirect 
drivers used in scenarios. They vary mainly in the degree 
of dominance of markets, dominance of globalization, and 
dominance of policies toward sustainability. Hunt et al. 
(2012) and van Vuuren et al. (2012) analysed a large number 
of local and global scenarios and came to the similar 

Box 4  1  1 	 Scenario archetypes.

(from Hunt et al., 2012; IPBES, 2016b; van Vuuren et al., 2012; see also section 5.2.2 in IPBES, 2018i): description of 

underlying storylines, and links with indirect and direct drivers.

Economic Optimism. Global developments steered by 
economic growth result in a strong dominance of international 
markets with a low degree of regulation. Economic growth 
is assumed to coincide with low population growth due to a 
strong drop in fertility levels. Technology development is rapid 
and there is a partial convergence of income levels across 
the world. Environmental problems are only dealt with when 
solutions are of economic interest. The combination of a high 
economic growth with low population growth leads to high 
demands of commodities and luxury goods. These demands 
will however be unequally distributed among regions and within 
regions. Consequently, energy use and consumption are high. 
In addition, high technological development in combination 
with increased global market leads to high yields in agricultural 
and wood production on the most productive lands. Therefore, 
pollution and climate change will be relatively high, but land use 

relatively low. Direct exploitation will continue but also replaced 
by cultivation of for example fish and livestock. Global trade will 
increase the risks of invasive species.

Reformed Markets. Similar to the economic optimism 
scenario family but includes regulation and other policy 
assumptions to correct market failures with respect to social 
development, poverty alleviation or the environment. Thereby, 
relative to the economic optimism archetype, high demands 
for goods are expected to be more equally distributed and 
pollution will be lower.

Global Sustainable Development. A globalized world with 
an increasingly proactive attitude of policymakers and the 
public at large towards environmental issues and a high level 
of regulation. Important aspects on the road to sustainability 



CHAPTER 4. PLAUSIBLE FUTURES OF NATURE, ITS CONTRIBUTIONS TO PEOPLE AND THEIR GOOD QUALITY OF LIFE

614

conclusion that four to six scenario archetypes cover the 
large range of possible futures (Box 4.1.1). 

This chapter makes frequent reference to archetype 
scenarios because the use of scenario archetypes was also 
adopted in the IPBES regional assessments. This approach 
helped to synthesize results across a very broad range of 
scenario types. Synthesis across regional assessments is 
hampered by the use of different archetype classifications 
for each of the regions, which was done in order to match 
archetypes to regional contexts.

The IPBES methodological assessment on scenarios and 
models (IPBES, 2016b) adopted the “scenario families”, 
as described in van Vuuren et al. (2012), which include the 
scenario archetypes (Box 4.1.1) distinguished by Hunt et 
al. (2012).

The different scenario archetypes describe different visions 
of the future (de Vries & Petersen, 2009), reflecting different 
values, guiding principles of society, understanding of 
good quality of life, approaches to decision-making and 

distribution of power (among other aspects). These aspects 
are often included in scenarios as implicit assumptions and 
have a large impact on the outcomes of the scenarios. For 
example, some scenario archetypes may prioritize intrinsic 
values of nature, while others may emphasize instrumental 
or relational values (Pascual et al., 2017). These differences 
ultimately affect the different archetypes in various ways. 
Table 4.1.1. shows all these aspects synthesized across 
the six scenario archetypes. The most common global scale 
scenarios encountered in the literature can be assigned 
to these archetypes (Table 4.1.2), with the caveat that 
individual scenarios do not match all of the characteristics of 
the archetype defined in Table 4.1.1 and Box 4.1.1.

Analysis of the data sourced from the systematic literature 
review (Appendix A4.1.1) carried out as part of the 
background work for this chapter indicates a skewed 
representation of scenarios between and across the three 
components nature, NCP and GQL (Table 4.1.3). This 
skew reflects to some extent the length of time scenarios 
have been available, but also reflects a bias towards 
climate change related scenarios. The analysis shows 

are technological change, strong multi-level governance, 
behavioural change through education, and a relatively healthy 
economy. All variations of this archetype are beneficial for 
biodiversity. This scenario combines a low population growth 
with moderate economic development, and sustainable 
production and consumption. Low demands of especially 
luxury goods are expected, and a shift in diet towards less meat 
can be expected. Energy use will be low to moderate and fossil 
fuel use will be reduced, leading to low climate change and low 
land-use change. Due to environmental policies and sustainable 
production, pollution will be lower and direct harvesting will 
partly be replaced by cultivation. The global focus will increase 
the risk of invasive species

Regional Sustainability. A regionalized world based on an 
increased concern for environmental and social sustainability. 
International institutions decline in importance, with a shift 
toward local and regional decision-making, increasingly 
influenced by environmentally aware citizens, with a trend 
toward local self-reliance and stronger communities that focus 
on welfare, equality, and environmental protection through local 
solutions. The scenario combines a low economic growth with 
moderate population growth rates. The demands for goods 
are low and production focusses on sustainability with low 
levels of energy use or environmental degradation associated 
with higher importance for intrinsic and relational values of 
nature. Low rates of climate change are expected. Supply of 
agricultural products will be organised with regions with low 
levels of global trade. A slow technological development and 
a sub-optimal land use lead to relatively high rates of land-use 
change. Direct exploitation of natural systems will be within 
the carrying capacity of natural systems, and risks for invasive 
species will be relatively low.

Regional Competition. A regionalized world based on 
economic developments. The market mechanism fails, leading 
to a growing gap between rich and poor. In turn, this results in 
increasing problems with crime, violence and terrorism, which 
eventuates in strong trade and other barriers. The effects on 
the environment and biodiversity are mixed. Overall, there is 
a tendency towards increased security, which can either be 
positive (protect biodiversity) or negative (intensify agricultural 
production). Particularly in low-income countries, deforestation 
and loss of natural areas are a risk. In this scenario, due to a 
lack of global co-operation and trade, a high population growth 
is expected combined with low economic growth. Thereby, the 
demand for goods including agricultural products increases, but 
the demand for luxury, energy intensive goods is relatively low, 
and thus relatively low climate change is expected. Agricultural 
supply will be mainly within regions, which, combined with slow 
technological development, will result in lower productivity and 
high rate of land-use change. Direct exploitation will continue, 
low rates of replacement by cultivation are expected. The risk of 
invasive species will be lower than in the archetypes that focus 
on globalization.

Business-As-Usual. Assumes that the future can be 
characterised by a continuation of historical trends, including 
the implementation of international agreements. Sometimes 
referred to as a reference scenario, or as a middle-of-the-road 
scenario. It can also be considered as a less extreme variant 
of the economic optimism archetype. Business-as-usual 
is characterized by moderate economic growth, moderate 
population growth and moderate globalization. Demands 
are not high nor low, and in combination with moderate 
technological development, environmental changes will also 
be moderate.
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the available literature is strongly dominated by studies of 
future trajectories of nature, with considerably fewer studies 
on NCP and very few studies providing information on 
GQL. This may reflect the lack of integrated assessment 

tools available to conduct this type of work quantitatively. 
This inconsistency of coverage constrained the work in 
this chapter, and explains the emphasis put on nature 
(section 4.2).

Economic 
optimism

Reformed 
Markets

Global 
Sustainable 
Development

Regional 
Sustainability

Regional 
Competition

Business-As-
Usual

Guiding 
Principles

Prosperity based 
on economic 
growth

Economic 
efficiency & 
sustainability

Global 
Sustainability

Equity & local 
sustainability

Individualism and 
safety concerns

No change

Main value in 
human-nature 
relationships

Instrumental / 
Utility value

Instrumental / 
Utility value

Intrinsic / 
Relational

Relational Instrumental / 
Utility value

Instrumental / 
Utility value

Environmental 
principles

More "efficient" 
use of nature 
with new 
technologies, but 
protection is not 
prioritised

Use of nature is 
regulated with 
reformed polices

Protecting 
nature and 
environmental 
sustainability 

Local sustainable 
use of nature

Lack of concern/
low priority for 
nature 

Overexploitation 
of nature with 
elements of 
regulation and 
protection

Social principles Individualism Individualism 
with elements of 
cooperation

Global 
cooperation

Cooperation 
within the 
community

Individualism in a 
fragmented world

Individualism 
with elements of 
cooperation

Economic 
principles

Market oriented 
based on profit 
maximization

Market regulation 
based on 
efficiency & 
sustainability 
targets

Market regulation 
and non-market 
mechanisms 
based on global 
environmental 
sustainability and 
equity

Markets 
oriented to local 
environmental 
and quality of life 
priorities.

Market 
oriented with 
trade barriers 
and growing 
economic 
asymmetries /
polarisation.

Market oriented 
with some 
barriers and 
some regulation

Approach to 
good quality 
of life

Material aspects Material aspects, 
health and other 
GQL components 
included in 
international 
goals (e.g. SDG)

Respect for 
nature at the 
global scale is 
important for 
GQL

Livelihoods, 
Social 
relationships and 
health 

Public security Material aspects, 
and other 
components such 
as health, public 
security

Power relations 
among countries

Large countries 
powerful

Power imbalance 
moderated by 
negotiation

Power balanced 
by global 
institutions and 
collaboration

Decentralized 
among and within 
countries

High differences 
in power among 
regions

Large countries 
are powerful, 
power partially 
balanced by 
negotiation, high 
differences in 
power among 
regions

Decision-making 
processes

Top-down Top-down Horizontal / 
Participatory

Bottom-up / 
Participatory

Top-down with 
growing exclusion 
(marginalisation) 
of the poorest 
(most vulnerable) 
regions & social 
groups

Top-down

Powerful 
stakeholders

Private sector Alliance of 
governments and 
private sector

Balance of 
power among 
the various 
stakeholders, 
global institutions

Communities National 
Governments and 
private sector

Private sector 
& governments, 
with participation 
of NGOs

Table 4  1  1 	 Different guiding principles, values, approaches to good quality of life 
(GQL), distribution of power and decision-making approach across scenario 
archetypes.
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Source Economic 
Optimism

Reformed 
Markets

Global 
sustainable 
development

Regional 
Sustainability

Regional 
Competition

Business-
As-Usual

SRES A1F1 B1 (A1T) B2 A2 B2

GEO3/GEO4 Market first Policy first Sustainability 
first

Security first

Global scenario group Conventional 
world

Policy reform New 
sustainability 

paradigm

Eco-
communalism

barbarization

Millennium Ecosystem 
Assessment

Global 
Orchestration

Technogarden Adapting mosaic Order from 
strength

OECD Environmental Outlook Trend

Shared Socio-economic 
Pathways

SSP5 SSP1 SSP3/SSP4 SSP2

Representative Concentration 
Pathways (RCP)

RCP8.5 RCP 2.6 RCP 6.0 RCP 4.5

Roads from Rio/ fourth Global 
Biodiversity Outlook

Consumption 
Change

Global 
technology

Decentralized 
Solutions

Trend

Table 4  1  2 	 Scenarios from earlier global assessments attributed to archetypes or families.
Source: IPBES, 2016b; van Vuuren et al., 2012.

Scenario All Nature NCP GQL

RCP8.5 237 198 39 0

RCP6.0 9 9 0 0

RCP4.5 50 41 9 0

RCP2.6 150 144 6 0

A1 6 4 1 1

A1b 119 108 8 3

A1B 4 0 4 0

A1F1 76 76 0 0

A1T 1 0 1 0

A2 200 191 7 2

B1 113 106 6 1

B2 123 117 5 1

SSP1 1 0 1 0

SSP2 13 1 12 0

SSP3 2 1 1 0

Table 4  1  3 	 Classification of studies according to scenario represented along a continuum 
from nature via NCP (nature’s contributions to people) to GQL (good quality of 
life) focused studies. 

The number of papers reported comes from the systematic literature review conducted for this chapter (Appendix A4.1.1).
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4.1.4	 Projected indirect and direct 
drivers of change in scenarios

The main indirect drivers of change of nature and its 
contributions to people, and consequently the quality of 
life include economic development, demographic trends 
and factors, technological development, governance and 
institutions, and various socio-cultural aspects such as 
worldviews and values. These indirect drivers have multiple 
impacts on direct drivers of change, which include climate 
change, land-use change, pollution, direct harvesting, 
invasive species and disturbance. In each scenario 
archetype, assumptions on the indirect drivers lead to 
different combinations of direct drivers (Box 4.1.1).

Drivers are always multiple and interactive, so that one-to-one 
linkage between particular drivers and specific changes in 
ecosystems rarely exists. The causal linkage between drivers 
is often mediated by other factors or a complex combination 
of multiple factors, thereby complicating the understanding 
of causality or attempts to establish the contributions by the 
various drivers to changes in nature, NCP and GQL (see also 
Bustamante et al., 2018; Elbakidze et al., 2018; Nyingi et 
al., 2018; Wu et al., 2018). The cumulative effects of multiple 
stressors may not be additive but may be magnified by their 
interactions (synergies) and can lead to critical thresholds 
and transitions of ecological systems (Côté et al., 2016). 
Cascading impacts of co-occurring stressors are expected to 
degrade ecosystems faster and more severely (section 4.7 in 
Bustamante et al., 2018).

4.1.4.1	 Indirect Drivers (including 
consideration of diverse values) in 
scenarios
Indirect drivers (also referred to as ‘underlying causes’) 
operate diffusely by altering and influencing direct 
drivers as well as other indirect drivers (also see chapter 
1 in this report and IPBES, 2016b). They influence 

human production and consumption patterns with 
subsequent environmental implications. Economic drivers, 
including trade and finances, and demographic drivers 
interact with other indirect drivers such as technology, 
governance/institutions and social development including 
equity. Archetype environmental scenarios for this 
century consider explicit reference to relevant indirect 
anthropogenic drivers in different combinations, as 
indicated in Table 4.1.4.

Economic development has historically been the key 
indirect anthropogenic driver of changes in nature, NCP and 
GQL, across all scales (global, regional, national and local). 
World GDP (at constant 2010 USD) increased by 6.9 times 
between 1960 to 2016 (based on Worldbank, 2017). Taking 
a historical perspective, past and prevailing patterns of 
production and consumption embodied in global economic 
trends have generated growing pressures on natural 
resources, the environment, and ecosystem functions. 
In all scenarios, world GDP will continue to grow (Table 
4.1.5). However, some studies also refer to the plausibility of 
sustainable de-growth, as a transformative pathway leading 
to a steady-state at a reduced level of economic output 
(Schneider et al., 2011).

Economic activities, international trade and financial flows 
are closely related, particularly in recent decades due to 
increasing economic globalization. These considerably 
influence changes in nature, NCP and GQL through various 
direct and indirect pathways. In turn, these pathways are 
influenced by a number of policy channels and mechanisms, 
like trade policies, including incentives (tax exemptions, 
subsidies) and trade barriers, the dynamics of foreign debt 
and foreign debt service, flows of foreign direct investments, 
and monetary policies (dynamic of exchange rates, 
interest rates).

Demographic trends are a major indirect anthropogenic 
driver of changes in nature, NCP and GQL, across 

Scenario All Nature NCP GQL

SSP5 1 1 0 0

BAU 23 20 3 0

Global orchestration 13 11 2 0

Order from strength 12 9 3 0

Technogarden 11 10 1 0

Adapting mosaic 8 7 1 0

Consumption change 6 6 0 0

Global Technology 3 0 3 0

Decentralized solutions 1 1 0 0
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Selected indirect drivers Archetype / scenario family

Economic 
Optimism

Reformed 
Markets

Global 
sustainable 
development

Regional 
Sustainability

Regional 
Competition

Business-
As-Usual

Economic development Very rapid Rapid Ranging from 
slow to rapid

Medium Slow Medium

Trade Globalisation Globalisation Globalisation Trade barriers Trade barriers Weak 
globalisation

Technological development Rapid Rapid Ranging from 
medium to rapid

Ranging from 
slow to rapid

Slow Medium

Population growth Low Low Low Medium High Medium

Policies & institutions 
(Governance)

Policies create 
open markets

Policies reduce 
market failures

Strong global 
governance

Local steering Strong national 
governments

Mixed

Table 4  1  4 	 Selected indirect drivers in archetype scenarios.
Source: Based on Cheung et al. (2016: table 6.3 ); van Vuuren et al. (2012).

all scales (global, regional, national and local). World 
population increased by 2.5 times, respectively 
between 1960 and 2016 (based on the World Bank 
Database, 2017). Population / demographic drivers 
consider changes in population size, migration flows, 
urbanization as well as demographic variables such as 
population distribution and age structure. Urbanisation 
driven by growing populations and internal migration 
acts as an indirect driver of land-use change through 
various ways, including through linear infrastructures 
such as transportation networks as well as synergies 
with other forms of infrastructure development (IPBES, 
2016b). By 2050, all archetype scenarios project great 
increase in human population size, while towards the 
end of the century, downward trends are projected for 
the “economic optimism” (SSP5), “global sustainable 
development” (SSP1), “reformed markets” scenarios 
(Table 4.1.2, Figure 4.1.2).

Per capita GDP trends combine the impacts of GDP and 
population growth on environment. Growing per capita 
GDP has historically implied increasing demand of key 
natural resources such as food, water and energy with 
adverse impacts on ecosystems and biodiversity, due to 
the persistence of unsustainable patterns of production 
and consumption. Humanity’s demand has exceeded 
the planet’s biocapacity for more than 40 years, and the 
Ecological Footprint shows that 1.6 Earths would be 
required to meet the demands humanity makes on nature 
each year, with consumption patterns in high-income 
countries resulting in disproportional demands on renewable 
resources, often at the expense of people and nature 
elsewhere in the world (WWF, 2016).

Technology development can significantly increase 
the availability of some ecosystem services, and improve 
the efficiency of provision, management, and allocation 

GDP PPP in trillion 2000 US$

Economic 
Optimism

Reformed 
Markets

Global 
sustainable 
development

Regional 
Sustainability

Regional 
Competition

Business-
As-Usual

2050 182-323 181-229 168-251 139-145 106-198 145-241

2100 458-895 427 213-498 310 177-321 310-473

Table 4  1  5 	 Economic development (in GDP PPP) for the scenario archetypes.
Source: MA, 2005; Nakicenovic et al., 2000; OECD, 2012; Raskin et al., 2002; Riahi et al., 2017; UNEP, 2007). Global GDP 
was approximately 50 trillion $ at purchasing power parity in 2000. GDP PPP: Global Domestic Product based on purchasing 
power parity.
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of different ecosystem services, but it cannot serve as 
a substitute for all ecosystem services. Technologies 
associated with agriculture and other land uses have a large 
impact as drivers of biodiversity and ecosystem change 
(IPBES, 2016a).

As part of the problem, some technologies can result 
in increased pressure on ecosystem services through 
increased natural resource demand as well as lead to 
unforeseen ecological risks, particularly natural resource 
intensive technologies, as those associated to agricultural 
land expansion (e.g., first generation of biofuels when 
produced unsustainably). In addition, climate change 
is directly related to the use of fossil-fuel-intensive 
technologies. As part of the solution, sustainability-oriented 
technological innovation may contribute to decouple 
economic growth and the consumption of natural resources 
through increasing efficiency, resilience and equity (e.g. 
agroecological food production systems) (IPBES, 2016a; 
Trace, 2016; Vos & Cruz, 2015).

Governance and institutions play an important 
role in the management of biodiversity, ecosystem 
services and ecosystem functions. Weak governance, 
including corruption, frequently leads to environmental 
mismanagement as well as the adoption of environmentally 
unsustainable policies, and growing conflicts (Pichs-
Madruga et al., 2016). The lack of recognition of indigenous 
and local knowledge (ILK) and institutions may also generate 
adverse consequences for nature, NCP and GQL as well 
as for Indigenous Peoples and Local Communities (IPLCs). 

In addition to governments, new actors and coalitions 
(e.g. NGOs, researchers, indigenous groups) with different 
– and sometimes divergent and conflicting – perceptions 
and values are performing critical roles in environmental 
decision-making processes.

Social development and culture are critical ingredients 
of future scenarios on biodiversity, yet there is a lack of 
attention towards understanding how values, norms, 
and beliefs affect attitudes and behaviours towards the 
environment, and their roles in shaping the future and in 
driving transformation pathways. While there has been 
advances in methodologies supporting social-ecological 
analyses, emphasis has been on measurable indicators 
with less attention to the role of sociocultural values and 
practices in shaping other indirect drivers of change, and 
thus future pathways (Pichs-Madruga et al., 2016).

Social inequity is a key concern in many regions, sub-
regions, countries and territories. In many cases, poverty 
conditions correlate with increasing pressures on nature, 
but globally per capita consumption of natural resources is 
strongly correlated with affluence. World per capita private 
consumption, in dollars at constant 2010 prices, rose by 
44.5% between 1990 and 2016 (Worldbank, 2017). The 
emergence of new waves of affluent consumers is projected 
to significantly increase the demand for already limited 
natural resources (Myers & Kent, 2003). For this reason, the 
impact of consumers’ purchasing power on the demand of 
natural resources is receiving growing attention in scenarios. 
This discussion is very relevant in the context of the global 

Figure 4  1  2   Projected changes in world population according to the fi ve Shared Socio-
economic Pathways (KC & Lutz, 2017). 

Note: For the narratives of the SSPs, see O’Neill et al. (2017) .
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debate on the Sustainable Development Goals (SDGs), 
multidimensional progress in human development (UNDP, 
2016) and their interlinkages with nature and NCP.

4.1.4.2	 Direct Drivers

Climate change 

By the end of the 21st century, three of four explored 
Representative Concentration Pathways (RCP; van Vuuren 
et al., 2011) result in an increase in global average surface 
temperatures above 1.5°C compared to the present-day 
reference period 1986-2005 (Stocker et al., 2013). Averaged 
over years 2046-2065, temperature increases range from 
(model median) 1.4°C (RCP4.5) to 2.0°C (RCP8.5) above 
the reference period (1986-2005). Only the RCP2.6 scenario 
could possibly lead to a below 2°C world, with projected 
warming above the reference period from 0.3 to 1.7°C 
averaged over the last two decades of the 21st century, and 
from 0.4-1.6°C for years 2046-2065. Warming will be larger 
over land and by far highest in the Arctic. The frequency 
of extreme hot weather events will increase (Stocker et 
al., 2013). Precipitation patterns will change in a complex, 
spatially non-uniform way.

Based on climate modelling done for the IPCC 5th 
assessment report, and recent work presented in the IPCC 
special report on 1.5 degrees (IPCC, 2018), limiting warming 
to 1.5°C above preindustrial levels will require rapid, 
historically unprecedented mitigation efforts (Millar et al., 
2017). Applying a different, statistical modelling approach 
found below 2°C warming at the end of the 21st century 
unlikely, and requiring a much accelerated decline in carbon 
intensity compared to the past decades (Raftery et al., 
2017). By 2050, in the RCP2.6 pathway, CO2 emissions 
are projected to be lower than they were in 1990. Projected 
atmospheric concentrations range from ca. 440 ppm 
(RCP2.6) to ca. 540 ppm (RCP8.5) by 2050 to ca. 420-935 
ppm by 2100, but uncertainties are of several tens/hundreds 
of ppm.

Land-use change 

Land-use and land-cover changes have direct and large 
impacts on the physical environment. They include 
expansion of crops and pastures, as well as intensification 
and management changes, mineral and biomass extraction, 
urbanization and infrastructure expansion (Geist & Lambin, 
2002). Eitelberg et al. (2015) estimated the global potential 
for crop area to range from ca. present-day expanse (1500 
Mha) to nearly a tripling (5100 Mha), depending on different 
future socio-economic and governance assumptions. 
Synthesising projected future crop, pasture and forest areas, 
Alexander et al. (2017c) showed a huge spread in projected 
future land-use change, and found that this spread 
depended on the type of scenario, as could be expected, 

but also was heavily dependent on the type of model used 
to quantify land use for a given scenario (i.e. the same 
scenario archetype results in very different land-use change 
patterns depending on the underlying model’s assumptions 
and structure). Overall, these studies suggest that there 
remains a high level of uncertainty in future land-use change 
potential and in scenarios of land-use change.

The five main SSP storylines that have been developed in 
support of the IPCC can be classified by archetypes (Table 
4.1.2), but considerable caution should be exercised when 
interpreting land-use projections from the SSP storylines 
as being representative of a particular archetype. For 
example, the largest declines in global area of forest and 
other natural land occur in the reference scenarios (also 
referred to as “marker scenarios”) for SSP3, SSP4 and 
SSP5 (Popp et al., 2017), i.e. scenarios that emphasise 
competition or free markets. However, the range of variation 
of the projected change in managed land area by 2100 is 
nearly as large within SSPs (i.e. variation due to application 
of different IAMs to the same SSP storyline) as it is between 
marker scenarios across SSPs (Popp et al., 2017). Given 
this large variation within SSPs and high uncertainty in 
land-use projections identified by Alexander et al. (2017c), 
considerable caution must be exercised when making 
the connection between the underlying assumptions of 
scenario archetypes (Tables 4.1.1 and 4.1.4) and an 
individual projection of land use by a single Integrated 
Assessment Model (e.g., Figure 4.1.3).

In the wake of the Paris COP21 agreement, terrestrial 
ecosystems will make crucial contributions to meeting 
agreed climate mitigation objectives. Achieving the RCP2.6 
pathway (or the most recent RCP1.9 pathway, see IPCC, 
2018) requires, in nearly all scenarios developed with IAMs, 
negative emissions through carbon-dioxide removal. The 
majority of this is generally achieved through reforestation, 
afforestation and avoided deforestation, as well as bioenergy 
plantations coupled with carbon capture and storage 
(Anderson & Peters, 2016; Smith et al., 2016). Depending 
on how fast fossil fuel emissions decline, substantial 
negative emissions to balance continued fossil emissions 
need to be achieved by 2050, or even earlier (Anderson 
& Peters, 2016) which, if implemented, will have large 
consequences for terrestrial ecosystems. Recent results 
indicated that SSPs 1, 2, 4 and 5 might be consistent with 
low greenhouse gas emissions (i.e., RCP2.6; Kriegler et 
al., 2014; Popp et al., 2017) (see also examples in Figure 
4.1.3). Despite the very different assumptions contained 
in the SSPs (and in the IAMs simulating these) there is 
consistent projected decline in food crop and pasture area 
at the end of the 21st century, even though demand for crop 
and livestock products tend to be larger than today. At the 
same time, area under bioenergy plantation increases by 
between ca. 200 Mha (SSP1/AIM) and 1500 Mha (SSP4/
GCAM4).
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The intensity of land-use change can be as important as the 
change in area. In particular, the productivity of croplands 
is assumed to increase in the future as a result of increased 
application of technology, including the use of fertilizers, high 
producing varieties, machinery and pesticides. Intensification 

has huge impacts on biodiversity in agricultural landscapes, 
where for example species richness reduces by more than 
50% in intensively used croplands, compared to low input 
systems (e.g., Newbold et al., 2015). Intensification will 
continue in the coming decades and a recent analysis for 
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Figure 4  1  3   Projected changes in cropland area used in the Biodiversity and Ecosystem 
Services Model Intercomparison Project (BES-SIM, Kim et al., 2018; see box 4.2.5). 

Note that the depicted projections are from a single Integrated Assessment Model per SSP and may not be representative of 
the range of land-use projections for archetypes to which the SSP is assigned (Table 4.1.2) . For instance, trends in agricultural 
area used by Krause et al. (2017, 2018) for their RCP2 .6 baseline case were opposite (increasing agricultural area) to the trends 
seen in the scenario RCP2 .6/SSP1 used in BES-SIM . A map with cropland as well as pasture area changes is provided in 
Appendix 4 .1 (Figure A4 .1 .12) .
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the SSP scenarios showed trade-offs between land-use 
change and intensification (Table 4.1.6).

To meet the demand of a growing and wealthier population, 
increased agricultural production results from land 
conversion to cropland in the SSP3/RCP6.0 and SSP5/
RCP8.5 scenarios and from intensification in all scenarios, 
where in SSP3/RCP6.0 scenario a relatively low increase of 
the yield is assumed.

Pollution

Pollution here refers to solid and chemical waste of various 
kinds, excluding the gases referenced in the Kyoto and 
Montreal Protocols. Large increases in waste generation 
have occurred in the past decades, with a particular 
challenge for persistent organic pollutants (POPs) and 
synthetic organic polymers (plastics) which are physically 
harmful, chemically toxic, and slow to metabolize (see 
4.2.2.4.1). Solid waste generation rates depend strongly 
on urban population growth trends, together with 
changing standard of living and societal efforts towards 
waste reduction. On current trends, waste production will 
attain 11 Mt day-1 by 2100, and will continue to rise into 
the latter half of this century particularly in sub-Saharan 
Africa (Hoornweg et al., 2013). However, socio-economic 
pathways could strongly affect waste production trends, 
with SSP1 stabilising global waste production by about 
2070 at roughly 8.5 Mt day-1 relative to values of 12 Mt day-1 
in SSP2 and SSP3 (Hoornweg et al., 2013). 

Direct harvesting of natural resources 

Scenarios relating to direct harvesting will have complex 
relationships with distinct socio-economic futures. In 
terrestrial ecosystems, while an increase in human wealth 
may reduce direct harvesting of provisioning resources (such 

as bushmeat), increasing wealth may increase demands 
for some traditional (e.g. medicinal) and “luxury” (e.g. Rhino 
horn) resources. On the other hand, marine and freshwater 
natural resources might undergo increased fishing pressure 
in the face of rising affluence and continuous growth of 
human population that is projected to reach 9.8 billion 
people by 2050 (UNDESA, 2017). Scenarios of governance 
in fisheries management, human consumption of seafood, 
improvement of fishing technology (Squires & Vestergaard, 
2013) are starting to be integrated into future global scale 
projections (section 4.2.2.3).

Invasive Alien Species

Invasive alien species (IAS) are those that have been moved 
by direct human actions beyond their native geographic 
range, and have established and actively expand geographic 
range after introduction (Blackburn et al., 2014). The main 
impacts of socio-economic scenarios on IAS are likely to 
be through vectors for dispersal (with international trade 
and long-distance transport being the most important), and 
economic resources to combat IAS. Higher impacts are 
thus to be expected under future scenarios of greater global 
trade with weaker local governance.

Quantification of the impacts of IAS tends to focus on 
adverse ecological effects (Simberloff et al., 2013), including 
adverse impacts on ecosystem services. It is thus difficult to 
develop a fully integrated understanding of positive, neutral 
and negative impacts, though current consensus strongly 
suggests overall adverse impacts (Pyšek & Richardson, 
2010). For example, invasive plants can cause catastrophic 
regime shifts and indigenous diversity reduction (Gaertner 
et al., 2014), such as through N-fixing species increasing N 
concentrations in nutrient-poor soil (Blackburn et al., 2014), 
and by increasing fire frequencies and intensities, or even 
introducing novel fire regimes (Pausas & Keeley, 2014). 

SSP1/RCP2.6 SSP3/RCP6.0 SSP5/RCP8.5

Cropland in 2015 in km2 15885409 15885409 15885409

Cropland in 2050 in km2 15696191 18399153 18507559

Cropland area increase  
2015-2050 %

-1.2 15.8 16.55

Crop production increase 
2015-2050 %

31.7 40.5 58.4

Yield increase 2015-2050 % 33 21 36

Yield increase per year % 0.95 0.61 1.03

Table 4  1  6 	 Changes in global cropland area and productivity increase for three SSP 
scenarios, as analysed in a model comparison study by BES-SIM.
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Invasive animals may cause extreme indigenous diversity 
loss particularly if they are predators and invade in islands 
(Medina et al., 2011).

The number of documented IAS is most probably a 
significant underestimate of the true number, partly because 
of inadequate research effort particularly in some developing 
countries with potentially high IAS densities (McGeoch et al., 
2010). The IUCN Red List Index indicates that the adverse 
impacts of IAS include increased rates of decline in species 
diversity (McGeoch et al., 2010). 

Disturbance

Disturbance is a fundamental driver of biodiversity, and 
ecosystem structure and function, and may strongly control 
ecosystem services delivered. Almost all ecosystems 
experience episodic events like floods, droughts and 
wildfire. Where disturbance is frequent enough, natural 
selection both permits nature to adapt, and some species 
may even become dependent on disturbance, and enhance 
its frequency (Parr et al., 2014). A prime example is wildfire, 
which is of global significance in that it is an important 
factor in determining local to landscape scale ecosystem 
structure over vast areas of the subtropics and tropics. 
Without fire, ecosystem structure and function in fire-
prone regions may alter their biodiversity, structure and 
function entirely (Bond et al., 2005). Many plant species are 
designed to accelerate fire frequency and intensity (Keeley 
et al., 2011). Disturbance is thus an important tool available 
in the management of biodiversity, ecosystem structure and 
function, and the ecosystem services that result (Folke et 
al., 2004). Disturbance is likely to be most strongly affected 
by climate (especially in case of fire) as well as socio-
economic scenarios. Fire, droughts and flooding would be 
expected with higher frequency under low future climate 
change mitigation scenarios. However, for fire it has been 
argued that changes in human population density, and 
shifts in urban to rural lifestyles affect future burnt area to 
the same degree as climate change, through reducing fire 
spread (Knorr et al., 2016). However, as more people are 
projected to live in fire-prone areas, potentially detrimental 
impacts on societies may nonetheless increase (Knorr et 
al., 2016).

4.1.5	 Considering Indigenous 
Peoples and Local Communities 
(IPLCs) and indigenous and local 
knowledge (ILK) in scenarios

The integration of indigenous and local knowledge (ILK) 
into scenarios developed at the regional and global 
scales, as well as the assessment of the impacts of 
scenarios on Indigenous Peoples and Local Communities 

(IPLCs), have been limited and remain a key challenge in 
scenario development (Hill et al., 2012; Wohling, 2009). 
Varying combinations of indirect drivers, and especially 
government policy, can disproportionately impact IPLCs 
and their livelihoods. This is particularly significant when 
considering scenarios as alternative policy or management 
options intended to alter the future state of these (system) 
components (IPBES, 2016b). The following examples 
provide evidence for the potential benefits that could be 
gained from a better recognition of and respect for ILK and 
IPLCs in conservation of nature, as well as adaptation to 
and mitigation of climate change.

Government policies that (i) define agro-industrial plantations 
as forests, (ii) change property systems, including 
privatization and land titling over areas of customary tenure, 
and (iii) incentivize migration to historically low population 
density areas, undermine ILK that promote biodiversity 
and human well-being, and traditional land-use practices 
(Dressler et al., 2017).

Some cases where governments have recognized IPLC 
land rights and pursued climate mitigation policies, such 
as through REDD+ projects (Reducing Emissions from 
Deforestation and Forest Degradation), have led to thus-
far successful collaborations and demonstrated that ILK 
could make significant contributions to future forest and 
biodiversity conservation (see also review in chapter 6). For 
instance, the case of GuateCarbon, which incorporates 
the Association of Forest Producers of Petén (ACOFOP, in 
northern Guatemala) as full partners alongside government 
entities and international NGOs, has proved a potentially 
important model for negotiation, benefit sharing, and 
monitoring, reporting, and verification that respects local 
land-use practices and values (Hodgdon et al., 2013). 
Positive livelihood outcomes have accompanied a pattern 
of strong forest protection in areas with community-led 
management here.

Studies suggest that policy scenarios such as protected 
area designation – including territorial recognition for IPLCs – 
could play a significant role in avoiding future deforestation, 
such as in the Amazon, despite continued pressures to 
downgrade, downsize, and degazette protected areas 
(PADDD) for infrastructure development and more intensive 
land uses (Forrest et al., 2015; Soares-Filho et al., 2010). 
For example, a recent Brazilian moratorium on mega-dams 
– long demanded by indigenous groups on ecological and 
spiritual grounds – could enhance ecosystem protection, 
especially if accompanied by increased support for 
forest groups (Branford, 2018), despite continuing plans 
for inter-modal transport projects essentially promoting 
agro-industry and colonization (Molina et al., 2015). While 
the Brazilian Amazon has served as an important testing 
ground for recognizing the importance of ILK in forest 
management and for REDD+, the continued discounting 
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of ILK systems in broader land-use policy throws doubt 
on the long-term viability of such participative initiatives 
(Cromberg et al., 2014; Vitel et al., 2013). Specific major 
drivers vary by country and by region, but global demand 
for basic commodities and national enabling environments 
for investment in forest-rich countries will likely continue 
to contribute to terrestrial emissions and biodiversity loss 
– including through incursions on IPLCs’ traditional lands 
and the attendant loss of ILK. Thus, even where REDD+ 
and conservation initiatives have tried to ensure community 
participation, they achieve variable success, in part because 
they often fail to address the strongest indirect drivers 
of losses of forests, biodiversity and ecosystem services 
(Angelsen et al., 2017).

Notwithstanding these limits, the long period of negotiation 
over the program internationally and nationally, in 
addition to a pivot away from market-based approaches 
implementation, has provided IPLCs with opportunities 
to insert their priorities (tenure security, Free, Prior and 
Informed Consent, social services) into the debate (Angelsen 
et al., 2017; Van Dam, 2011). Increasing rates of recognition 
of IPLCs’ rights to inhabit and manage their lands alongside 
new sources of dedicated funding (such as the UNFCCC’s 
Green Climate Fund) could suggest stronger outcomes for 
avoided deforestation and ecosystem health.

4.2	PLAUSIBLE FUTURES 
FOR NATURE

4.2.1	 Impacts of future global 
changes on biodiversity: 
feedbacks and adaptation capacity

4.2.1.1	 Projected negative changes at all 
levels of biodiversity

The scientific community has focused on climate change 
as a major driver of concern in exploring possible futures 
for nature (Table 4.2.1). Based on our systematic literature 
review (Appendix A4.1.1), 88% of the global scenario 
literature addressed climate change impacts on nature, 
followed by 8% and 2% of the papers addressing land-
use change and natural resource extraction, respectively. 
A vast majority of the papers addressed single drivers, as 
few integrated models are able to represent combination 
of drivers and interactions are more complex to implement 
(IPBES, 2016b). Of all the scenarios exploring climate 
change impacts, only 18% were combined with other 
direct drivers of change such as land use or natural 
resource extraction.

Climate 
change

Invasive alien 
species

Land-use 
change

Natural 
resource 

extraction

Pollution Others

Climate change 569(270) 4(3) 104(36) 12(6) 8(4) 11(8)

Invasive alien 
species

10(2)

Land-use 
change

45(19) 7(4) 4(2) 1(1)

Natural resource 
extraction

16(7) 1(1)

Pollution 1(1) 1(1)

Others 27(8)

Table 4  2  1 	 Major drivers represented in global change scenarios addressing impacts on 
nature at global scale, across terrestrial, freshwater and marine ecosystems. 

The number of scenarios published is reported, and in parentheses, the number of scientific papers from the Chapter 4 literature 
database (Appendix A4.1.1). Scenarios addressed single drivers (purple cells) or combination of drivers.
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Most scenarios of biodiversity change are terrestrial or 
marine, while far fewer exist for freshwater (Figure 4.2.1; 
IPBES, 2016b). Therefore, most evidence provided in 
section 4.2.3 for freshwater biomes is based on local and 
regional studies. Overall, relatively few metrics of biodiversity 
and ecosystem function have been explored deeply enough 
to draw strong conclusions about their interactions in a 
globally changing environment.

The systematic literature review indicates that the effects 
of global environmental changes on biodiversity are mostly 
projected to be negative (Figure 4.2.1) and embrace 
all biodiversity levels – from genetic diversity to biomes 
(Bellard et al., 2012; Box 4.2.1). Marine systems are 
projected to be generally more negatively impacted by 
global change drivers than terrestrial systems (Figure 
4.2.1). For example, projected changes in species biomass 
or abundance cover the spectrum of negative to positive 

trends in terrestrial systems (see evidence provided in 
sections 4.2.4.1 to 4.2.4.4), but negative trends stand 
out in marine systems (see section 4.2.2). There are a few 
metrics, such as terrestrial C pools or organisms’ growth, 
where positive trends are the most common response in 
the literature (see 4.2.4.1). In case of C-pools this reflects 
chiefly the impact of CO2 on photosynthesis and growth, 
which in some models outpace the impacts of warming. 
In boreal and temperate regions, climate change was also 
shown to possibly have positive effects on organisms’ 
growth, e.g., plant growth (Pretzsch et al., 2014). All 
other metrics of biodiversity and ecosystem function are 
dominated by projected neutral or negative trends in 
response to projected global change drivers. Negative 
trends are particularly dominant for indicators of production, 
reproduction success, terrestrial species richness and 
extinction, marine species biomass and abundance, and 
the area and quality of marine habitats.

Figure 4  2  1   Future trends of selected indicators in marine A , terrestrial B  and freshwater 
ecosystems C , based on global scale scenarios referenced in the literature 
database (Appendix A4.1.1), all drivers combined. 

The results are extracted from scenarios with increasing pressures from direct drivers (all climate change scenarios and 
business-as-usual scenarios for resource exploitation, land-use change and pollution) . The selected scenarios were at global 
scale . Regional/local scale scenarios were not referenced in the literature database . Colours code the projected trends in the 
indicators . N=the number of trends reported and in parentheses the number of papers .
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A substantial fraction of wild species is predicted to be 
at risk of extinction during the 21st century due to climate 
change, land use and impact of other direct drivers (Bellard 
et al., 2012; Pimm et al., 2014; Settele et al., 2014; see 
sections 4.2.2-4.2.4). In a recent review of published future 
global extinction risk, Urban (2015) found that extinction risk 
is projected to increase from 2.8% at present to 5.2% at 
the international policy target of a 2°C post-industrial rise, 
to 8.5% if the Earth warms to 3°C, and to 16% in a high 
greenhouse gas emissions scenario (RCP 8.5; 4.3°C rise). 
Extinctions might not occur immediately but after substantial 
delay called because when a population has been reduced 
to very small numbers, it has a high risk to go extinct at 
some point in the future (referred to as «extinction debt»). 
This means that long-term effects of global change can be 
much more severe than short term impacts (Cronk et al., 
2016; Dullinger et al., 2012; Fordham et al., 2016; Hylander 
& Ehrlén, 2013).

Notwithstanding a majority of expected negative impacts 
of future climate change on biodiversity, Figure 4.2.1 
suggests the potential for some positive effects in species 
distributions areas and species richness. General poleward 
movement of marine and terrestrial species and upward 
movement of terrestrial mountain species may lead to 
increase in local species richness in high latitudes and in 
mountainous regions, while the opposite is projected in 
the tropics and flat landscapes (Gilg et al., 2012; Jones & 
Cheung, 2015; Settele et al., 2014; Thuiller et al., 2014).

Global scale scenarios can mask the spatial heterogeneity 
of projected biodiversity response at finer scales (Urban, 
2015; Vellend et al., 2017). For example, the highest species 
extinction risk due to climate and land-use changes is 
projected in the tropics and polar regions as well as in top 
mountain habitats because of projected “novel” climates 
in tropics that these regions have never experienced in the 
past (Mora et al., 2013a), narrow physiological tolerances 
of tropical and polar species, expected disappearance of 
polar and top-mountain habitats (Deutsch et al., 2008; 
Gilg et al., 2012; Mora et al., 2013a; Pörtner et al., 2014; 
Settele et al., 2014) and the highest risk of conversion of 
ecosystems to crops and biofuel in the tropics (Kehoe et al., 
2017; Newbold et al., 2015). Biodiversity hotspots are also 
projected as subject to high species extinction (Bellard et al., 
2014; see 4.2.2, 4.2.3, 4.2.4).

To account for the spatial differentiation of global changes 
impacts on nature, the following sections 4.2.2, 4.2.3, and 
4.2.4 cover the outcomes of the literature database analysis 
(Appendix A4.1.1), but also include detailed examination of 
key studies and specific biomes (IPBES units of analysis). 
The major drivers of change and the primary impacts differ 
depending on the biome considered (Figure 4.2.2), and 
therefore need to be addressed by specific, and sometimes 
local, adaptation and mitigation policies.

4.2.1.2	 Future biodiversity adaptation 
and reorganisation

Species can respond to environmental changes in many 
different ways that are not mutually exclusive. In response 
to changes in climate, species can adapt to new conditions, 
they can shift their geographical distribution following 
optimal environmental gradients or can go locally extinct.

A large number of scenarios explore species distribution 
shifts. Terrestrial species may respond to climate changes 
by shifting their latitudinal and elevation ranges. Marine 
species may respond by shifting their latitudinal and depth 
ranges. Models predict latitudinal range shifts for plant and 
animal species of hundreds of km over the next century 
as well as significant range contraction and fragmentation 
(Leadley et al., 2010; Markovic et al., 2014; Meller et al., 
2015; Rondinini & Visconti, 2015; Warren et al., 2013). 
Comparisons of projected climate velocity (the rate of 
movement of the climate across a landscape) and species 
displacement rates across landscapes showed that many 
terrestrial species (e.g., plants, amphibians, and some small 
mammals) will be unable to move fast enough to track 
suitable climates under medium and high rates of climate 
change (i.e. RCP4.5, RCP6.0, and RCP8.5 scenarios). Most 
species will be able to track climate only under the lowest 
rates of climate change (RCP2.6) (Settele et al., 2014). 
Natural geographical barriers (Burrows et al., 2014) and 
human-made habitat disruptions are predicted as important 
factors limiting movement of species ranges (Meier et al., 
2012; Schloss et al., 2012).

Species adaptation to novel conditions is likely to mitigate 
the predicted impacts of global changes (Hoffmann & Sgrò, 
2011; Lavergne et al., 2010; Neaves et al., 2015; Pauls et 
al., 2013; Skelly et al., 2007). Models that ignore adaptation 
may overestimate extinction probabilities. For example, the 
inclusion of local adaptations due to phenotypic plasticity 
and microevolution in models of terrestrial carnivore and 
ungulate species decreases the expected decline in 
population abundance by 2050, from 31–34% to 18% 
(Visconti et al., 2016; see Box 4.2.1)

Intraspecific diversity of behavioral, phenological, 
physiological and morphological traits allows populations 
and species to survive under rapid climate change through 
standing genetic variation (GD1 in Box 4.2.1), and provides 
material for selection in new conditions (Alfaro et al., 2014; 
Hof et al., 2011; Jump et al., 2009). On the one hand, 
incorporating intraspecific variation in species models 
increases the likelihood of their survival as shown for several 
tree species (Benito Garzón et al., 2011; Morin & Thuiller, 
2009; Oney et al., 2013). On the other hand, projections 
that do not consider probable loss of intraspecific diversity 
can underestimate future negative effects on biodiversity. 
The loss of genetic diversity is projected for a number of 
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Figure 4  2  2   Examples of future projected impacts of major drivers of change on nature 
(supporting evidence in sections 2.2 and 2.4 of the chapter, and Table A4.2.1 in 
Appendix 4.2). 

Examples are given for IPBES terrestrial and marine units of analysis (UoA) .
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species belonging to very different terrestrial and aquatic 
taxa and thus, should be recognized as a serious threat to 
future biodiversity rescue (Bálint et al., 2011; Jump et al., 
2009; Neaves et al., 2015; Pauls et al., 2013).

Phenotypic plasticity helps to reduce the risk of species 
extinction (GD2 in Box 4.2.1) allowing a rapid (within 
individual’s lifetime) adjustment of populations to novel 
conditions whereas evolutionary responses require several 
generations (Chevin et al., 2010). Incorporating phenotypic 
plasticity in models predicting future species’ distributions 
reduced the extinction risk in southern populations of several 
species (Benito Garzón et al., 2011; Morin & Thuiller, 2009).

Rapid adaptive evolution (GD3 in Box 4.2.1) occurring at 
similar time scale as global environmental change has the 
potential for “evolutionary rescue”, i.e. population survival in 
situ due to ongoing selection of standing genetic variations as 
well as relatively slower selection of new mutations (Gonzalez 
et al., 2013; Hendry et al., 2011; Hoffmann & Sgrò, 2011; 
Settele et al., 2014). However, evolutionary responses may be 
too slow for species with low capacity for adaptive evolution, 
especially under large-scale and rapid environmental changes 
(Gienapp et al., 2012; Jump et al., 2006).

Adaptation can cascade to entire communities or 
ecosystems, thus maintaining community properties beyond 
the level of change in the driver. However, adaptive capacity 

is not unlimited and so even evolving systems can eventually 
switch to a new state if a change in a driver is too severe or 
too rapid. Return to the original system state when change 
pressure is removed to the original state can be harder than 
would have been the case without evolution, due to the 
depletion of the genetic variation (Figure 4.2.3). 

Along with the vital importance of preserving the short-term 
adaptive capacity of biodiversity, the necessity of long-term 
maintenance of further evolutionary processes generating 
biodiversity and potential future ecosystem services was 
recognized as a key goal that requires preservation of 
evolutionary heritage and phylogenetic diversity of the Tree 
of Life (Faith, 2015; Faith et al., 2010; Forest et al., 2007; 
Mace & Purvis, 2008).

Reorganization of ecological communities and 
novel communities: Substantial changes in species 
composition and biotic interactions are expected due to 
shifts in species distribution (S1 in Box 4.2.1), local species 
extinctions, alterations of species abundance, functioning 
and phenology (S2 in Box 4.2.1). Projected changes 
in species composition can lead to disruptions of food 
webs and mutualistic relationships, increased prevalence 
of pests and pathogens, introductions of alien species, 
biotic homogenization and loss of biological uniqueness of 
communities (Blois et al., 2013; Buisson et al., 2013; Thuiller 
et al., 2014).

Figure 4  2  3   Potential role of evolution (more generally, “adaptive capacity”) in mediating 
tipping points, alternative stable states, and hysteresis.
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Novel (no-analog) communities, in which species will 
co-occur in historically unknown combinations, are 
expected to emerge (Ordonez et al., 2016; Radeloff et 
al., 2015; Williams & Jackson, 2007). Novel communities 
are expected to become increasingly homogeneous and 
shifted towards smaller size species and generalists with 
broader ecological niches (Blois et al., 2013; Lurgi et 
al., 2012). Novel interactions can strongly affect species 
fitness because species will lack a long coevolutionary 
history in new conditions (Gilman et al., 2010; see also 
Appendix 4.2).

4.2.1.3	 The importance of feedbacks 
between hierarchical levels of 
biodiversity
Some well described feedbacks between different 
hierarchical levels and facets of biodiversity are self-
reinforcing and could likely amplify negative effects of global 
changes on biodiversity (Brook et al., 2008). Integration of 
processes acting at different organizational biodiversity levels 
is essential for future predictions of global change impacts 
on nature (Mouquet et al., 2015; Thuiller et al., 2013).

The feedback between population size and genetic 
diversity (S4 in Box 4.2.1) is known as an extinction vortex 
(Frankham et al., 2014) because the reduction in population 
size leads to the loss of genetic diversity which in turn, leads 
to decrease in population fitness and adaptability and further 
reduction in population size. The feedback between species’ 
range and genetic diversity (S5 in Box 4.2.1) means that 
the contraction and fragmentation of species ranges 
are expected to cause genetic loss through decrease in 
effective population size and extinction of genetic lineages 
as well as extinction of local populations with unique genetic 
characteristics (Bálint et al., 2011; Pauls et al., 2013). 
Genetic loss, in turn, may decrease species adaptability 
and migration capacity. The feedback between species 
composition and genetic diversity (SD3 in Box 4.2.1) means 
that changes in species composition alter the selection 
pressure affecting genetic diversity. For example, reduction 
in pollinator abundance could lead to selection favoring 
self-fertilization in plant populations, leading to a decrease in 
genetic diversity (Neaves et al., 2015). Introductions of alien 
species may result in hybridization, out-breeding depression 
and decrease in genetic diversity of native species. 
However, hybridization may also facilitate adaptation to 
novel environments (Hoffmann & Sgrò, 2011). Changes in 
genetic diversity, in turn, contribute to further disturbance of 
species relationships.

The feedback between species composition and single 
species extinctions (SD4 in Box 4.2.1) make changes in 
species composition and single-species extinctions modify 
the web of interactions at the community level and lead to 
cascading and catastrophic co-extinctions called “chains 

of extinction” (Bellard et al., 2012; Brook et al., 2008). The 
loss of key species as well as invasions and proliferation 
of pests and pathogens can have the most drastic effects. 
Failing to account for changes in biotic interactions could 
cause models to under- or overestimate extinction risks 
(Gilman et al., 2010). The feedback between species 
composition and species’ capacity to track climate change 
(SD5 in Box 4.2.1) implies that interspecific interactions can 
modulate the outcome of species range shifts. Mutualistic 
interactions, such as plant-pollinator relations, may fail 
in tracking fast environmental change (Lavergne et al., 
2010). Competition and predation can both hamper and 
facilitate range shifting (Holt & Barfield, 2009; Svenning 
et al., 2014). Interactions can slow climate tracking and 
produce more extinctions than predicted by models 
assuming no interactions (Urban et al., 2013). Moreover, 
interspecific interactions can modulate the direction of 
species range shifts, for example, species may shift 
downslope due to competitive release at the lower margin 
of species distribution (Lenoir et al., 2010). Changes in 
species distribution, in turn, contribute to further changes 
of species composition. The feedback between landscape 
homogenization and species extinctions (ED2 in Box 4.2.1) 
involves that predicted biotic homogenization and loss of 
biological uniqueness of communities within a region (Blois 
et al., 2013; Buisson et al., 2013; Thuiller et al., 2014) 
can synchronize local biological responses to disturbance 
across individual communities and thus, compromise the 
potential for landscape- and regional-level disturbance 
buffering (Olden, 2006). Taxonomic homogenization of 
communities can reduce resistance of a landscape to 
future invasions (Olden, 2006). As a result, local extinctions 
of native species and invasions of alien species should 
be expected that, in turn, will contribute to further biotic 
homogenization (for details, see Appendix 4.2).

4.2.2	 Marine ecosystems

4.2.2.1	 Global state and function of 
marine ecosystems and future drivers of 
change

The ocean is central to regulating the Earth’s climate. 
The ocean absorbs around 25% of the anthropogenic 
emissions of CO2 (Le Quéré et al., 2016), leading to ocean 
acidification with a decrease in surface seawater pH of 
0.1 units since the beginning of the industrial era (Orr et 
al., 2005). The ocean absorbs 93% of the Earth’s excess 
heat energy, resulting in warming of 0.11°C per decade 
in the upper 75m of the ocean between 1971 and 2010 
(Rhein et al., 2013). Oceans are essential to life and 
provide major services to human societies. Marine 
phytoplankton produce about half of the global O2 (Pörtner 
et al., 2014). The ocean supports fisheries and aquaculture 
activities and produced on average 104.3 million tons 



CHAPTER 4. PLAUSIBLE FUTURES OF NATURE, ITS CONTRIBUTIONS TO PEOPLE AND THEIR GOOD QUALITY OF LIFE

630

Box 4  2  1  The main interrelations and feedbacks between hierarchical levels that are 
important for the future of biodiversity.

Direct drivers of global change affect all levels of biodiversity, 
either directly (coloured arrows) or indirectly through feedbacks 
(grey arrows). Even one-way interactions are important for 

biodiversity response, while self-reinforcing feedbacks can 
potentially signifi cantly increase expected negative effects of 
global change drivers (for details, see Appendix 4.2).
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Effects of changes in genetic and phenotypic diversity
GD1 – adaptation of populations to new conditions through 
standing genetic and phenotypic variations 
GD2 – adaptation of populations due to phenotypic plasticity 
GD3 – adaptive evolution, “evolutionary rescue” of populations 
and species  

Effects of changes in functioning, population size and 
range of individual species
S1 – changes in local species composition due to alteration of 
species range (shift, change in area, fragmentation) 
S2 – changes in local species composition due to local species 
extinctions and alteration of species abundance and functioning 
(including changes in phenology)
S3 – changes in ecosystem structure and functioning due to 
changes in key species abundance and functioning
S4 – changes in genetic diversity due to changes in population 
size 
S5 – changes in genetic diversity due of alteration in species 
range (shift, change in area, fragmentation) and dispersal ability

Effects of changes in local species diversity, species 
composition and interspecifi c relations
SD1 – weakening and destabilization of ecosystem functioning 
due to loss of local species diversity 
SD2 – biotic homogenization as a result of species shift, local 
species extinctions and invasions 

SD3 – changes in selection pressure because of alteration of 
species composition and interspecifi c relations (including effects 
of alien species invasions)
SD4 – species extinctions as a result of cascading effects of 
alteration of species composition 
SD5 – impact of alteration of species composition on species 
capacity to track climate change

Effects of changes in structure and functioning 
of ecosystems
E1 – the contribution of individual ecosystems to the total 
landscape/seascape ecosystem functioning 
E2 – disappearance of the most vulnerable ecosystems in 
landscapes/seascapes and regions 
E3 – reduction of species population size, reduction and 
fragmentation of species’ ranges and disruption of population 
structure because of habitat loss and fragmentation 

Effects of changes in diversity of ecosystems, 
heterogeneity of landscapes and seascapes
ED1 – weakening and destabilization of the total landscape/
seascape functioning because of loss of ecosystem/
habitat diversity
ED2 – infl uence of landscape heterogeneity on local 
species persistence
ED3 – infl uence of landscape heterogeneity on genetic diversity 
and evolution

per year of fish and invertebrates from 2009-2014, which 
represented approximately 17% of the animal protein 
consumed by humans (FAO, 2016). Oceans supports 
rapid socioeconomic development and growth of human 
population on coastlines, with increasingly intensive, multiple 
uses leading to heavily degraded habitats (Spalding et 
al., 2014; Wong et al., 2014). Marine populations and 
communities have been impacted at unprecedented 
rates by climate change (mainly in the form of ocean 
warming, ocean acidification, deoxygenation, and sea level 
rise) and direct anthropogenic activities (mainly in the form 
of fishing, pollution, and habitat degradation) (Chapter 2; 
Hoegh-Guldberg et al., 2014; Poloczanska et al., 2016; 
Pörtner et al., 2014).

Globally, none of these pressures are projected to decrease 
in the future. Earth System Models have been used to 
project future environmental conditions (IPCC, 2013), 
showing that the state of the future ocean will strongly 
depend on the amount of carbon emitted in the coming 
decades (Gattuso et al., 2015; IPCC, 2018). Climate change 
is, among other drivers, the main driver considered in global 
scale scenarios (Table 4.2.2).

Mean sea surface temperature is projected to increase 
by +2.7°C in 2090-2099 as compared to 1990-1999 for the 
high emission scenario (RCP8.5), whereas the warming is 

limited to +0.71°C for the more stringent RCP2.6 emission 
scenario (Bopp et al., 2013); model-mean values from the 
Coupled Model Intercomparison Project 5). At the regional 
scale, stronger warming occurs in the tropics, in the North 
Pacific and in the Arctic Ocean, with the sea surface 
warming more than +4°C at the end of the 21st century 
under RCP8.5 (Bopp et al., 2013; Collins et al., 2013).

As global temperatures rise, so does the mean sea level 
due primarily to the thermal expansion of ocean water and 
by melting of glaciers, ice caps and ice sheets. A sea level 
model calibrated with empirical data and forced by the IPCC 
high emission scenario (RCP8.5) projects a sea level rise 
(SLR) of 52-131 cm by 2100 relative to year 2000 (Kopp et 
al., 2016).

A broadly uniform decrease of the mean sea surface 
pH of -0.33 pH units (model-mean) by the 2090s relative 
to the 1990s is predicted under RCP8.5 (Bopp et al., 
2013), which is accompanied by a decrease in carbonate 
ion concentration and in the saturation states of calcium 
carbonates (e.g., calcite, aragonite), essential components 
of shells or skeletons of many marine organisms. The 
volume of undersaturated waters with respect to aragonite 
is projected to increase between 1990 and 2100 from 76% 
to 91% of the global ocean under RCP8.5 (Gattuso et 
al., 2015).
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Earth system models also project decreasing global 
ocean oxygen due to climate change. The mechanisms 
at play are a reduction of oxygen solubility due to ocean 
warming and the combination of increased stratification 
and reduced ventilation that prevents the penetration 
of oxygen into the deep ocean (Breitburg et al., 2018). 
Deoxygenation will continue over the 21st century 

irrespective of the future scenario, with decreases of global 
O2 of -1.8% and -3.45% (model-mean) under RCP2.6 and 
RCP8.5, respectively (Ciais et al., 2013), with a stronger 
drop for the North Pacific, the North Atlantic, and the 
Southern Ocean (Bopp et al., 2013). Despite a consistent 
global deoxygenation trend across models, there is as yet 
no consensus on the evolution of hypoxic and suboxic 
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Climate-related drivers of change

Ocean warming 45%

Ocean acidification 8%

Deoxygenation 4%

Sea ice melt 2%

Sea level rise (SLR) 16%

Extreme events 3%

Direct human-mediated drivers of change

Fishing 16%

Pollution 5%

Maritime transport

Species introduction

Land-use change 1%

Coastal development 1%

Aquaculture

Oil and gas extraction, mineral mining

Main direct impacts on nature

Habitat degradation

Biodiversity decline

Species invasion / range shift

Shifts in food webs and biogeochemical cycles

Eutrophication

Hypoxia

Table 4  2  2 	 Major climate-related and direct human-mediated drivers of change impacting 
marine ecosystems (by IPBES subunits) as highlight in this chapter’s sections 
4.2.2.2 to 4.2.2.5.

Cells are colored when there is substantial evidence from the reviewed scenarios and models that drivers have a major impact 
on one of the marine ecosystems. Where the information exists, the second column of the table reports the percentage of 
marine global scale scenarios implementing changes in the drivers and quantifying impacts on nature, based on our literature 
database (Appendix A4.1.1).
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waters due to uncertainties in potential biogeochemical 
effects and in the evolution of tropical ocean dynamics 
(Cabré et al., 2015). Along coastlines, deoxygenation and 
the increase of hypoxic “dead zones” are largely driven by 
direct human activities (which combine with sea warming), 
with rivers draining large nitrogen and phosphorus loads 
from fertilized agricultural watersheds, and from sewage, 
aquaculture and atmospheric nitrogen deposition, 
causing eutrophication and subsequent aerobic microbial 
decomposition (Glibert et al., 2018; Levin et al., 2009; 
Rabalais et al., 2009). 

Future climate change will hence alter marine habitats and 
modify biogeochemical cycles. Recent modelling work has 
shown that climate change may continue to produce more 
hostile conditions and threaten vulnerable ecosystems and 
species with low adaptive capacity (Gattuso et al., 2015; 
Hoegh-Guldberg et al., 2014; Mora et al., 2013a; Pörtner et 
al., 2014; Wong et al., 2014).

Adding to future climate change and potentially amplifying 
impacts on marine ecosystems, direct human-mediated 
pressures will likely intensify in future. An increase in 
fisheries and aquaculture production is plausible as 
a response to increasing demand for fish and seafood 
(Chapter 11 of the World Ocean Assessment, UN, 2017) 
which is expected to arise as a result of population growth 
and increasing average income that allows for augmenting 
the proportion of fish in the diet (World Bank, 2013). Under 
assumptions of increasing technological efficiencies and 
increasing demand for fish, the FAO and OECD project 
that total world marine seafood production (fishery plus 
aquaculture) would exceed 120 million tons in 2025, 
or plus 17% relative to 2013-2015. Diverse forms of 
pollution (excessive nutrient loads, toxic contaminants, 
persistent organic pollutants, plastics, solid waste) will 
likely continue to pervade marine ecosystems in the future, 
constituting additional threats to living organisms (Bergman 
et al., 2012; Geyer et al., 2017; Lamb et al., 2018; Sutton 
et al., 2013; Worm et al., 2017). The oceans are sinks 
for landborne and airborne inputs of persistent pollutants 
which can both travel great distances in the near-surface 
water masses (Eriksen et al., 2014) of the open ocean, 
and sink into the deeper ocean (Chapter 20 of the World 
Ocean Assessment, UN, 2017). In coastal oceanic waters, 
increasing nutrient loads and pollution in combination with 
warming will likely stimulate eutrophication and increase 
the extent of oxygen minimum zones (Breitburg et al., 
2018; Rabalais et al., 2009).

The impacts of global change on marine biodiversity will vary 
geographically, with latitudinal gradients of expected in many 
global scale scenarios (Gattuso et al., 2015), and depending 
on the type of ecosystems (Table 4.2.2). Major drivers of 
change in the open ocean pelagic ecosystems that are 
included in global scale models and scenarios are climate-

related drivers (sea warming, acidification, deoxygenation), 
and fisheries exploitation. Additional future threats included 
in scenarios for shelf ecosystems are sea level rise, extreme 
events, nutrient pollution and coastal development which 
may cause degradation, fragmentation and loss of habitats 
(Table 4.2.2).

Future scenarios of climate change impacts on marine 
biodiversity at global scales are the most documented in the 
literature (78% of the scenarios in our literature database 
– Table 4.2.2). They will therefore form the main content 
of this section (section 4.2.2.2), with evidence provided 
by type of ecosystems (IPBES units of analysis). The rest 
of the drivers are much less, or not at all, represented in 
scenarios projecting impacts on marine biodiversity at global 
scale, even though their historical and current impacts on 
biodiversity have been shown to be significant. Moreover, 
there are relatively few global scale scenarios involving 
multiple pressures on marine ecosystems and biodiversity 
(23% of the marine scenarios involve a combination of 
multiple drivers in our global scale literature database), so 
in addition to updating recent global assessments with 
the latest modelling and scenarios work, sections 4.2.2.2 
to 4.2.2.5 report evidence from more local studies of how 
direct anthropogenic drivers may combine with climate 
change in impacting future marine biodiversity.

4.2.2.2	 Future climate change impacts 
on marine biodiversity and ecosystem 
functioning

4.2.2.2.1	 Climate change impacts in open 
ocean ecosystems

Low trophic levels

Net Primary Production (NPP) by marine phytoplankton 
is responsible for 50% of global carbon fixation through 
photosynthesis, but is also the basis of marine food webs, 
controlling the energy and food available to upper trophic 
levels. Earth System Models project a mean decrease of 
NPP in 2100 under all RCP greenhouse gas emissions 
scenarios, ranging from -3.5% to -9% under RCP2.6 (low 
emissions) and RCP8.5 (very high emissions), respectively 
(Bopp et al., 2013), though there is significant variation 
between individual model projections. The global decrease 
of NPP is accompanied by a change in the seasonal timing 
of peak NPP, with an advance by ~0.5–1 months by 2100 
globally, particularly pronounced in the Arctic (Henson et 
al., 2013).

The projections are heterogeneous over space with general 
agreement that NPP is expected to decrease in the tropics 
and in the North Atlantic, and increase at high latitudes 
(Bopp et al., 2013; Boyd et al., 2014; Steinacher et al., 
2010). Some regional discrepancies between models 
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exist, with nonlinear dynamics making some projections 
uncertain. In the tropics, the mechanisms at play are largely 
model-dependent, with both stratification–driven reduction 
in nutrient availability and increases in grazing and other 
phytoplankton loss processes (Laufkötter et al., 2015). This 
results in large inter-model differences, with the decline in 
tropical NPP being projected between -1 and -30% by 2100 
under RCP8.5 (Kwiatkowski et al., 2017). Using satellite-
based observations of ocean–colour and an emergent-
constraint relationship, the uncertainties in the decline of 
tropical NPP have been reduced with an estimated decline 
of -11±6% in 2100 for a business-as-usual scenario 
(Kwiatkowski et al., 2017).

In the Arctic, some models project an increase in NPP 
because of the loss of perennial sea-ice and an increase of 
light availability, whereas other models simulate a decrease 
due to increasing ocean stratification and decreasing nitrate 
availability (Vancoppenolle et al., 2013). In the Southern 
Ocean, models project a zonally-varying response of NPP to 
climate change, with a decrease in the subpolar band (50°S 
and 65°S), but increases in the Antarctic (south of 65°S) and 
in the transitional band (40°S-50°S) (Leung et al., 2015). 
Mechanisms at play are changing light availability and iron 
supply by sea ice melting (Wang et al., 2014).

Under the SRES A1B scenario, the reduction in zooplankton 
biomass was projected to be higher than for primary 
production in 47% of the ocean surface particularly in the 
tropical oceans, implying negative amplification of ocean 
warming through bottom-up control of the food web 
(Chust et al., 2014). This impact differs regionally with 
positive amplification of zooplankton biomass in response 
to the increase of NPP in the Arctic and Antarctic oceans, 
thereby increasing the efficiency of the biological pump 
in those regions. Other changes in species composition 
can be expected under future climate change, such as 
shifts from diatom-dominated phytoplankton assemblages 
with high POC export efficiencies to smaller, picoplankton 
communities characterized by low export efficiencies (Morán 
et al., 2015; Smith et al., 2008).

In addition to warming and changes in ocean stratification/
circulation, ocean acidification is also expected to influence 
metabolic processes in phytoplankton and zooplankton 
species. Laboratory and mesocosm experiments have 
shown contrasting responses for different plankton types 
under elevated CO2 concentrations, with a stimulating 
influence for nitrogen-fixing cyanobacteria (Hutchins et al., 
2007, 2013) and pico-eukaryotes (Bach et al., 2017), but 
potential detrimental effects on growth and calcification 
rates for some of the main calcifying phytoplankton 
(Meyer & Riebesell, 2015). Other potential effects of ocean 
acidification include a reduction in microbial conversion of 
ammonium into nitrate (Beman et al., 2011), which could 
have major consequences for oceanic primary production 

and potentially less carbon export to the deep sea. A recent 
modeling study incorporating differing growth responses 
of phytoplankton types to increased pCO2, has suggested 
that acidification effects may even outrank the effects of 
warming and of reduced nutrient supply on phytoplankton 
communities over the 21st century (Dutkiewicz et al., 2015).

Higher trophic levels

Most published global scale scenarios of change in 
higher trophic levels in response to climate change rely on 
correlative models examining changes in species’ spatial 
distribution (64% of publications on the effect of climate 
change on marine biodiversity at global scale in our literature 
database, Appendix A4.1.1). These “Species Distribution 
Models” (SDMs) (also called ecological niche models or 
climate envelope models) analyze the statistical relationship 
between species occurrences and a set of environmental 
variables (Araújo & New, 2007; Thuiller et al., 2009). SDMs 
do not typically consider species adaptation nor the effects 
of species interactions.

Using species distribution models for projecting future 
climate-induced changes, the main findings at the global 
scale are that species will shift their distribution poleward 
(Cheung et al., 2009), likely resulting in an increase in 
species richness and species invasions in high latitude 
regions (the Arctic and Southern Ocean) and conversely 
a decrease of species richness in the tropics and the 
equator (García Molinos et al., 2016; Jones & Cheung, 
2015; Pörtner et al., 2014) and in semi-enclosed seas (e.g., 
Mediterranean Sea, Ben Rais Lasram et al., 2010). A mean 
latitudinal range shift of 25.6 km per decade to 2050 was 
projected under the high emission scenario RCP8.5, which 
reduced to 15.5 km per decade under RCP2.6 (Jones & 
Cheung, 2015).

Distributional shifts of marine species are the most clearly 
detectable pattern that can currently be assigned to climate 
change, or more specifically to sea surface temperature 
change (García Molinos et al., 2016). This is related to the 
sensitivity of marine ectotherms, which constitute the bulk 
of high trophic level species, to temperature change. But 
ocean warming can trigger additional adaptive responses 
such as phenological shifts and physiological changes 
in growth and reproduction. It is expected that animals 
inhabiting temperate latitudes, where seasonality is strong, 
will better adapt to a changing climate whereas polar 
stenotherm species will be more vulnerable to warming 
(Pörtner et al., 2014). Tropical species, in addition to having 
narrow thermal windows, inhabit the warmest waters and 
are thus near physiological temperature tolerance limits 
that lower their adaptive capacity (Storch et al., 2014) 
At low latitudes, open-ocean oxygen-minimum zones 
(OMZ) constitute an additional threat to marine organisms, 
especially in the eastern tropical Pacific (Cabré et al., 2015) 
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and along major eastern boundary upwelling systems 
(Gilly et al., 2013). The horizontal and vertical expansion of 
already large OMZs will potentially affect marine populations 
dramatically, through shifts in their spatial distribution and 
abundance, as well as altered microbial processes and 
predator-prey interactions (Breitburg et al., 2018; Gilly et al., 
2013). The shoaling of the upper boundary of the OMZs can 
also trap fish in shallower waters, compressing their habitat, 
and thereby increasing their vulnerability to predation and 
fishing (Bertrand et al., 2011; Breitburg et al., 2018).

In addition to correlative species distribution models, there 
are recently developed integrated modelling approaches 
(e.g., end-to-end models combining the physics of the 
ocean to organisms ranging from primary producers to top 
predators) considering the multiple responses of marine 
populations to climate change (based on e.g., physiological 
rates, trophic interactions, migration behavior), as well 
as essential food web knock-on effects and adaptive 
mechanisms to move towards more realistic projections of 
marine biodiversity (Payne et al., 2016; Rose et al., 2010; 
Stock et al., 2011; Tittensor et al., 2018a; Travers et al., 
2007). At regional and local scales, such models have been 
developed with more detailed representation of multiple 
taxa of commercial interest or of conservation concern 
than at the global scale, where the few existing end-to-end 
models represent ecosystems and biodiversity through 
large functional groups (e.g. fish biomass, pelagic biomass, 
biomass in different size classes) or are focused on single 
key species. A global scale end-to-end model run under the 
worst-case scenario (RCP8.5) projected that the biomass of 
high trophic level organisms would decrease by 25% by the 
end of the century (Lefort et al., 2015). This first estimate, 
which has been recently confirmed by an ensemble of 
global marine ecosystem models (Box 4.2.2), suggests that 
the response of high trophic levels amplifies the decrease of 
biomass projected for phytoplankton and zooplankton.

Global scale models project that ocean warming may 
shrink the mean size of fish by the end of century (Cheung 
et al., 2013; Lefort et al., 2015) and lead to smaller-sized 
infaunal benthos globally (Jones et al., 2014). This trend 
is very robust to the model used in the different studies, 
as well as to the mechanisms involved: the decrease in 
mean size could be either due to the combined effects of 
future warming and deoxygenation on animal growth rates 
(Cheung et al., 2013), the combined effects of warming 
and food limitation (Lefort et al., 2015), or to the limiting flux 
of particulate organic matter from the upper ocean to the 
benthos (Jones et al., 2014).

Air-breathing marine species

Marine turtles are particularly vulnerable to climate change 
as, being ectotherms, their behavior, physiology, and life 
traits are strongly influenced by environmental factors 

(Janzen, 1994; Standora & Spotila, 1985). Arguably, the 
most detectable impacts will occur during the terrestrial 
reproductive phase: incubating eggs are vulnerable to 
sea-level and extreme weather events (Fish et al., 2005; 
Fuentes et al., 2010), while future changes in temperature 
and rainfall at nesting beaches will likely reduce hatching 
success and emergence, cause a feminization of turtle 
populations, and produce hatchlings with higher rates of 
abnormalities (Fisher et al., 2014; Mrosovsky & Yntema, 
1980). Future changes in temperature are expected to 
impact the frequency and timing of nesting (Fuentes & 
Saba, 2016; Limpus & Nicholls, 1988; Saba et al., 2007), 
as well as marine turtle distribution (McMahon & Hays, 
2006; Pikesley et al., 2015; Witt et al., 2010). Foraging 
specialists (i.e. leatherbacks) might be more susceptible to 
climate change impacts on the marine food web relative to 
foraging generalists (i.e. loggerheads) due to a lesser ability 
to switch prey type (Fuentes & Saba, 2016). Ultimately, 
impacts will depend on populations’ resilience and ability 
to adapt. Some marine turtle populations are already 
responding to climate change by redistributing their nesting 
grounds and shifting their nesting phenology (Pikesley et al., 
2015). However, it is still unclear whether marine turtles will 
be able to fully adapt since climatic changes are occurring 
more rapidly than in the past and are accompanied by a 
variety of anthropogenic threats (e.g., fisheries by-catch, 
pollution) that make them more vulnerable and decrease 
their resilience (Fuentes et al., 2013; Poloczanska et 
al., 2009).

Seabirds responses to future climate change are 
commonly predicted using species distribution models. 
Shifts and contractions in foraging habitat could be 
particularly problematic for seabirds by increasing energetic 
expenditures. For example, the summer foraging areas 
for king penguins are predicted to shift southward in 
response to an intermediate warming scenario (SRES 
A1B), doubling the travel distance to optimal foraging 
areas for breeders with likely negative consequences for 
population performance (Peron et al., 2012). Poleward shifts 
in foraging areas are also projected for seven Southern 
Ocean albatross and petrel species under a range of 
emission scenarios, with associated range contractions 
of up to 70% for wandering and grey-headed albatross 
by 2050 (Krüger et al., 2018). For other species (e.g., the 
endangered Barau’s storm petrel), climate-driven shifts and 
contractions in wintering range are predicted but the overall 
population consequences are unclear (Legrand et al., 2016). 
Fewer studies have coupled mechanistic population models 
with climate projections to estimate future population 
trajectories. Cassin’s auklets are predicted to decline by 
11-45% by 2100 under a mid-level emission scenario, due 
to increased sea surface temperatures and changes in 
upwelling dynamics within their foraging range (Wolf et al., 
2010). Contrasting responses to future climate scenarios 
were reported in three seabirds (albatrosses and petrel), 
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Box 4  2  2 	 Ensemble model projections of marine ecosystem futures under climate change.

Model intercomparison studies use a common set of input 
conditions to force a suite of potentially very different models to 
then produce an ‘ensemble’ of outputs. These outputs can be 
compared to examine differences among models, and provide 
a multi-model mean and range of uncertainty for end users. 
While such studies are a common tool in the Earth system and 
climate modelling communities, their application to biodiversity 
and ecosystems, particularly in the marine realm, remains 
relatively new.

Fish-MIP (Tittensor et al., 2018b) is the first model 
intercomparison project examining the impacts of climate 
change on fisheries and marine ecosystems at regional to 
global scales using a common set of climate change scenarios. 
There have been many different attempts to model the ocean 
ecosystem resulting in a large diversity of models with various 
purposes – from examining species distributions to ecosystem 
structure to fisheries catch potential (Tittensor et al., 2018b). 
Fish-MIP provides a common simulation framework and 
standardized forcing variables to provide consistent inputs 
to these models and prescribes a common set of consistent 
outputs for analysis. In the first round of Fish-MIP, the focus 
was on examining climate change (rather than fisheries) 

impacts on marine animal biomass over the 21st century at 

both regional and global scales. Here, marine animal biomass 
includes mostly fish, but in some models, invertebrates and 
marine mammals are also considered.

The results across six global marine ecosystem models 
(APECOSM, BOATS, DBEM, DPBM, EcoOcean, 
Macroecological) that were forced with two different Earth-
system models (ESMs) and two emission scenarios (RCPs 2.6 
and 8.5) show that ocean animal biomass will likely to decline 
over the coming century under all climate change scenarios 
(Figure 4.2.4; Lotze et al., 2018; Tittensor et al., 2018b). The 
ensemble model means show steeper declines under RCP8.5 
(highest emission scenario) than RCP2.6 (high mitigation 
scenario), and steeper declines when forced with the ESM 
IPSL-CM5A-LR than GFDL-ESM2M. The trajectories from 
different ESMs and RCPs remain relatively similar until about 
2030 to 2050, after which they begin to diverge markedly. 
Thus, by 2100, the model-mean animal biomass is projected 
to decline between 3% and 23% (Figure 4.2.4). These 
declines are largely driven by a combination of increasing water 
temperature and declining primary productivity, and are likely 
to impact ecosystem services including fisheries (Blanchard et 

al., 2017).

Spatial maps of ensemble projections (Figure 4.2.5; Lotze et 

al., 2018; Tittensor et al., 2018b) show broad-scale decreases 
in animal biomass in tropical and many temperate regions, and 
potential increases in polar regions. While ensemble projections 

Figure 4  2  4   Ensemble projections of global ocean animal biomass under different 
scenarios of climate change. 

Projections represent the multi-model means of six global marine ecosystem models forced by marine environment 
change projected by two different Earth-system models: GFDL-ESM2M (solid lines) and IPSL-CM5A-LR (dashed lines) 
and two greenhouse gas emission scenarios: RCP2 .6 (low emissions; blue) and RCP8 .5 (very high emission; red) with no 
fi shing signal imposed (i .e ., changes are due only to climate) . Shaded areas represent one inter-model standard deviation 
(ecosystem models) . All percentage changes are relative to a 1990-1999 baseline . The vertical grey line separates historical 
and future projections for climate forcing; the vertical dashed orange line represents the 2030 target year for the Sustainable 
Development Goals . Data source: Tittensor et al. (2018b); Lotze et al. (2018) .

-35

0

5

19
70

19
80

19
90

20
00

20
10

20
20

20
30

20
40

10

C
H

A
N

G
E

 IN
 T

O
TA

L 
B

IO
M

A
S

S
 (%

)

Historical

RCP 2 .6

RCP 8 .5

gfdl-esm2m

ipsl-cm5a-lr

-5

-10

-15

-20

-25

-30

20
50

20
60

20
70

20
80

20
90

21
00

−35

−30

−25

−20

−15

−10

−5

0

5

10

19
70

19
80

19
90

20
00

20
10

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

Year

C
ha

ng
e 

in
 to

ta
l b

io
m

as
s 

[%
]

HISTORICAL
RCP 2.6
RCP 8.5

gfdl−esm2m
ipsl−cm5a−lr



THE GLOBAL ASSESSMENT REPORT ON BIODIVERSITY AND ECOSYSTEM SERVICES

637

across many models are more likely to capture plausible trends 
than any single model, there was more variation among models 
in polar and some coastal regions, suggesting that there is 
greater uncertainty about projected outcomes.

The results shown here for global marine ecosystem models are 
helpful for describing the global trends but may not capture the 
complex dynamics at local and regional scales. Forthcoming 

analyses should therefore compare regional projections based 
on regional scale models and global models and examine the 
variability between regional models to provide projections and 
measures of uncertainty at scales better matched to the needs 
of resource managers. Moreover, different scenarios of fishing 
pressure need to be incorporated to examine interactions 
between fishing and climate change impacts. 

Figure 4  2  5   Global ensemble mean spatial patterns of change in global ocean animal 
biomass under RCP2.6 (low greenhouse gas emissions; top) and RCP8.5 (very 
high emissions; bottom) forced by GFDL-ESM2M (left) and IPSL-CM5A-LR 
(right) Earth System Models. 

Percentage changes are relative to a 1990-1999 baseline . Data source: Tittensor et al. (2018b); Lotze et al. (2018) .

owing to differences in life histories and distribution area 
(Barbraud et al., 2011). These studies have identified strong 
non-linearities in demographic responses, suggesting the 
potential for threshold effects under future climate extremes 
(Pardo et al., 2017).

Marine mammals, as homeotherms, are physiologically 
buffered from some direct effects of temperature rise. 
Rising ocean levels from ocean warming and ice melt will 
likely lead to a loss of land or ice-based habitat available 
for breeding or pupping, particularly for marine mammals 
on low-lying atolls or ice-dependent breeders (Baker et 
al., 2006; Laidre et al., 2015). A global assessment of 
climate change effects on marine mammals used a range 
of climate scenarios (warming between 1.1°C and 6.4°C) to 
qualitatively rank negative population effects for all marine 
mammal species (MacLeod, 2009). It showed that species 

tied to land, ice, or facing geomorphic barriers were most 
likely to be affected.

4.2.2.2.2	 Climate change impacts in shelf 
ecosystems

Tropical Coral Reefs

An unprecedented 3-year (2014-2017) marine heat wave 
have damaged most of coral reefs on Earth (75%) with still 
unassessed social-ecological consequences (Eakin et al., 
2018). Thermal stress disrupts the relationship between 
corals and their algal symbionts, with bleached corals being 
physiologically damaged and suffering severe mortality 
rate. The number of years between recurrent severe coral-
bleaching events has diminished fivefold in the past four 
decades, from once every 25 to 30 years in the early 1980s 
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to once every 5.9 years in 2016 (Hughes et al., 2018). A 
full recovery of mature coral assemblages, source of reef 
biodiversity and productivity, generally takes from 10 to 15 
years for the fastest growing species (Hughes et al., 2018). 
Many reefs, including those of the iconic and well-protected 
Great Barrier Reef, have experienced a shift from dominance 
of branching tabular species that build 3-dimensional 
habitats, towards corals with simpler morphological 
characteristics (Hughes et al., 2018). A trophic model 
showed that a loss of coral complexity could cause more 
than a 3-fold reduction in fishery productivity (Rogers et al., 
2014), due to the preferential settling of juvenile fishes in 
unbleached coral habitat (Scott & Dixson, 2016).

In addition to thermal stress, ocean acidification represents 
a major threat to marine calcifier organisms like corals, 
particularly those building large but low-density skeletons. 
A decrease of pH by 0.4 units (expected under RCP8.5; 
Hoegh-Guldberg et al., 2014) would translate into a coral 
habitat complexity loss of 50%, inducing a decrease in 
species richness by 30% for both fish and invertebrates 
(Sunday et al., 2017). A seawater pH lowered by just 0.14 
units (RCP2.6) would induce a loss of 34% net community 
calcification (Albright et al., 2018). Projections anticipate a 
shift from a state of net accretion to net dissolution before 
the end of the century (Eyre et al., 2018). Anoxic events are 
also rapidly increasing in prevalence worldwide and cause 
underestimated mass mortality on coral reefs (Altieri et 
al., 2017).

To better anticipate and simulate the potential futures of 
coral reef habitats, two complementary approaches have 
been used. First, laboratory and field experiments try to 
estimate the tolerance, acclimatization and adaptability 
of coral species and their symbionts to environmental 
changes. One of the most striking studies demonstrates 
that progressive acclimatization, even to temperatures 
up to 35°C, can achieve the same heat tolerance as 
expected from strong natural selection over many 
generations (Palumbi et al., 2014). This suggests that at 
temperatures beyond the thermal limits of coral species, 
the rate and speed of temperature change is key to explain 
coral bleaching. Experiments also allow testing of the 
interactions of multiple stressors. For instance, a 3-year field 
experiment deciphered the mechanisms by which elevated 
temperatures exacerbate overfishing and nutrient pollution 
effects on corals by increasing coral–algal competition 
and reducing coral recruitment, growth and survivorship 
(Zaneveld et al., 2016).

Second, models attempt to simulate the futures of tropical 
coral reefs under various scenarios. A simulation based on 
genomic models predicting future evolution and persistence 
in a high-latitude population of corals from Cook Islands 
(South Pacific) showed a rapid evolution of heat tolerance 
resulting in population persistence under mild warming 

scenarios (RCP2.6 and RCP4.5) though this adaptation 
would not be rapid enough to prevent extinction under 
more severe scenarios (RCP6.0 and RCP8.5; Bay et al., 
2017). Other studies based on niche models, that can 
also integrate adaptation capacity related coral cover to 
environmental variables allowing for projections at global 
(Logan et al., 2014) and regional (Ainsworth et al., 2016) 
scales. For instance, coral cover on the Great Barrier Reef 
was projected to remain lower than 5% before the end 
of the century under a high emission scenario (RCP8.5) 
(Ainsworth et al., 2016). 

Rocky and sandy shores

Straddling the intersection between land and ocean, 
rocky and sandy shores are the dominant components of 
coastlines globally, are the most accessible of the marine 
biomes and supply services in terms of coastal protection, 
direct provisioning (food and materials), recreation (tourism, 
fishing), spiritual and cultural purposes, and substrate for 
aquaculture and infrastructure.

These ecosystems are vulnerable to sea-level rise which 
adds to the height of sea-level extremes, such as during 
storm surges, and can exacerbate projected changes 
in wave impacts (Hemer et al., 2013). Sea level rise can 
affect the dynamics of the morphology of beach systems, 
as well as increasing coastal inundation risk, leading to 
erosion in many cases, as well as increasing threats to 
nesting beaches for turtles and seabirds, dune vegetation 
and coastal infrastructure and assets (e.g., de Winter & 
Ruessink, 2017; Jevrejeva et al., 2016; Pike et al., 2015). 

Evidence of species responses to warming oceans are 
recorded from sandy and rocky shores globally, showing 
that barnacles, mollusks, crabs and macroalgae have 
shifted their distributions in response to recent warming 
(e.g., Johnson et al., 2013; Pitt et al., 2010; Poloczanska 
et al., 2013; Schoeman et al., 2015; Wethey et al., 2011). 
For example, the cold-water barnacle Semibalanus 
balanoides may disappear from south-western English 
shores by 2050 (Poloczanska et al., 2008). The frequency 
of temperature extremes is projected to increase in the next 
few decades, particularly during summer in regions such 
as the Mediterranean (Kirtman et al., 2013), with potential 
high ecosystem impact as large-scale mortalities of intertidal 
species have been recorded during extreme heat events 
(Garrabou et al., 2009; Wernberg et al., 2013). In south-east 
Australia, the temperature-driven range extension of the 
sea urchin Centrostephanus rodgersii has led to the loss 
and overgrazing of kelp beds and a reduction in associated 
biodiversity (Johnson et al., 2011; Ling et al., 2015).

Forests of kelp, large brown temperate-coast marine algae, 
are themselves directly impacted by climate change. Under 
RCP2.6 and RCP8.5 scenarios, models of kelps in the 
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North Atlantic incorporating changes in temperature, salinity, 
and sea ice cover predict northern movement and range 
contraction by 2090 (Assis et al., 2017a, 2017b, 2016; 
Raybaud et al., 2013). Under RCP8.5, areas such as the 
Gulf of Maine, Southern Europe, and the northwestern coast 
of Africa would be bereft of kelps (Assis et al., 2017a), a 
trend which in some of these systems is already observed 
now (Filbee-Dexter et al., 2016; Krumhansl et al., 2016). 
The Arctic, conversely, is projected to gain kelps, which 
is consistent with observations of kelp increases in areas 
that are decreasing in sea-ice cover and hence increasing 
in light availability (Bartsch et al., 2016). The area gained is 
not projected to counterbalance the area lost. Similarly, in 
Japan, models project its southernmost species, Ecklonia 
cava, to colonize new northern habitats that are currently 
occupied by colder water kelps, due to a combination of 
shifting temperatures and increases in grazing by warm 
water fishes under all RCP scenarios by 2090. Further 
scenario-based modeling efforts are needed for Australia, 
New Zealand, the Southern Atlantic, and the Pacific Coasts 
of the Americas, where models of climate change’s future 
impacts on kelps have been less explored. While modeled 
predictions typically report declines or polar movement, 
the observed long-term trajectories of kelp forests are 
currently mixed (Krumhansl et al., 2016). In some cases, 
such as South Africa, this is due to local cooling (Blamey 
et al., 2015; Bolton et al., 2012). In others, climate driven 
range expansions of urchin predators has also driven local 
increases (Fagerli et al., 2014), although the longevity of 
this trend is unclear as they can be overridden by physical 
drivers (Moy & Christie, 2012).

Coastal wetlands

Coastal wetlands are found along coastlines globally, 
and include salt marshes (mostly found along temperate, 
boreal and arctic coastlines), mangroves (mostly found in 
tropical and subtropical areas), tidal flats, and seagrasses. 
They form essential marine vegetated habitats for carbon 
sequestration, and coastal protection against increased sea 
level rise (SLR) and natural hazards (Alongi, 2008; Duarte et 
al., 2013; Fourqurean et al., 2012). They also host a great 
diversity of species, playing a major role as nursery and 
breeding areas for a wide variety of marine fauna organisms 
(Heck Hay et al., 2003), including migratory ones such as 
coastal birds (Nuse et al., 2015) or coral reef fish species 
(Harborne et al., 2016). Climate changes in the form of 
warming, sea level rise and increased extreme events 
(e.g. hurricanes) may increase the vulnerability of these 
ecosystems in the future. Vegetated coastal habitats are 
already declining globally (Duarte et al., 2005), and many 
species are threatened with extinction (Polidoro et al., 2010; 
Short et al., 2011). The recent IPCC report on « Global 
warming of 1.5°C » (IPCC, 2018) assessed that at global 
warming limited to 1.8°C above the pre-industrial level, the 
risks to mangroves will remain medium (e.g., not keeping 

pace with SLR; more frequent heat stress mortality) whereas 
seagrasses are projected to reach moderate to high levels of 
risk (e.g., mass mortality from extreme temperatures, storm 
damage) (Hoegh-Guldberg et al., 2018).

Sea level rise can have large impacts on coastal ecosystems 
because of the flat, gentle slope of much coastal land. 
Although coastal wetlands are dynamic ecosystems that 
can adapt to sea level rise, their capacity to do so is 
limited, regionally differentiated and is affected by many 
human activities (Kirwan & Megonigal, 2013; Schuerch et 
al., 2018; see 4.2.2.5). The response of wetlands to sea 
level rise involves landward migration of vegetated areas, 
and submergence at lower elevations (Wong et al., 2014). 
Acceleration of sea level rise threatens future wetlands 
capacity to adapt with occurrence of horizontal retreat, 
and vertical drowning, when accretion of sediment and 
organic matter cannot keep pace with SLR (Spencer et 
al., 2016). A meta-analysis estimated that under RCP2.6, 
60% of the saltmarshes will be gaining elevation at a rate 
insufficient to keep pace with SLR by 2100, and the loss 
could reach 90% under high SLR (RCP8.5) (Crosby et al., 
2016). Such high SLR (1m by 2100) could put at risk 68% 
of coastal wetlands in developing countries (Blankespoor 
et al., 2014). By contrast, a just published integrated 
model, taking into account the capacity of wetlands to 
both expand horizontally by inland migration and build up 
vertically by sediment accretion, projected less pessimistic 
impacts of SLR with the loss of global coastal wetlands 
area ranging between 0 and 30% by 2100, depending 
on the RCP considered (Schuerch et al., 2018). Sea level 
rise and storm surges cause salinity intrusion inland, that 
can impact coastal and freshwater wetlands, with various 
effects such as decreased inorganic nitrogen removal, 
decreased carbon storage, and increased generation of 
toxic sulphides (Herbert et al., 2015). Increased salt and 
sulphide concentrations induce physiological stress in biota 
and ultimately can result in large shifts in communities and 
associated ecosystem functions. Because impacts of sea 
level rise are so prominent in coastal wetlands (Jennerjahn 
et al., 2017), the impacts of temperature rise have been 
relatively less explored despite their importance in terms of 
ecosystem structure and function (Gabler et al., 2017).

Submerged plants such as seagrass are highly impacted 
by temperature extremes. Warming-induced deterioration 
of seagrass ecosystems has been observed over recent 
decades in the West Atlantic, Mediterranean, and 
Australia, with summer temperature spikes often leading to 
widespread seagrass mortality (Fraser et al., 2014; Jordà et 
al., 2012; Moore & Jarvis, 2008; Short & Neckles, 1999). In 
the western Mediterranean Sea, a model relating mortality 
rates to maximum sea temperature projected that seagrass 
meadows may become functionally extinct by 2050–2060, 
under the SRES A1B emission scenario (Jordà et al., 
2012). Climate warming is also affecting other components 
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of seagrass ecosystems, notably via ‘tropicalization’—
increasing representation of tropical species—among 
seagrass-associated fish communities (Fodrie et al., 
2009), with the potential to reduce seagrass biomass and 
habitat complexity as tropical herbivorous fishes increase 
(Heck et al., 2015). Among the most serious concerns is 
rising frequency of disease epidemics and prevalence of 
pathogens, which are associated with warming in many 
systems, and that could trigger widespread die-offs of 
seagrass (Altizer et al., 2013; Harvell et al., 2002; Kaldy, 
2014; Sullivan et al., 2013).

Under elevated mean global temperatures, mangroves 
are expected to displace salt marshes in many areas 
as the limits to mangrove growth imposed by cold 
events decrease (Short et al., 2016). Mangroves in the 
southeastern US have been projected to expand in area 
(Osland et al., 2013), consistent with observed trends 
across five continents over the past 50 years (Cavanaugh et 
al., 2014; Saintilan et al., 2014). These projections overlook 
important differences among mangrove species, and also 
depend on mangroves’ ability to successfully migrate 
landward (Di Nitto et al., 2014), and to build up sediment 
or continue to receive allochtonous sediment inputs from 
estuarine or freshwater sources at rates apace with SLR 
(Lovelock et al., 2015; Parkinson et al., 1994). In coastal 
settings experiencing erosion, an expansion of mangroves 
is highly unlikely. On the other hand, expansion is seen in 
areas of accelerating sediment deposition due to upstream 
land-use changes (Godoy & de Lacerda, 2015). Species 
distribution modeling studies have projected geographically 
dependent shifts in community composition and species 
richness under climate change scenarios (Record et al., 
2013). While species richness is projected to increase in 
SE Asia, South America, eastern Australia and parts of 
the African coasts, it will likely decline in Central America 
and the Caribbean, partly linked to increased intensity and 
frequency of tropical storms, as well as in northern Australia 
(Record et al., 2013). 

Under increased CO2, the productivity of wetlands 
vegetation (seagrass, mangrove trees, saltmarsh plants) 
is expected to increase in the future (Wong et al., 2014). 
Seagrasses are likely to be among the species that perform 
better in a more acidified ocean, because their growth can 
benefit from increasing dissolved CO2 (Koch et al., 2012). 
This simulation result is supported by greater growth rates 
reported around natural marine CO2 seeps, where seagrass 
sequestered considerably more carbon below-ground 
under acidified conditions, suggesting a possible feedback 
to reduce the impacts of CO2 injection into marine waters 
(Russell et al., 2013). However, there is limited evidence that 
elevated CO2 will increase seagrass resistance to warming 
(Jordà et al., 2012). For mangroves, increased CO2 has 
been linked to variable responses in net primary productivity, 
with decreased NPP projected for Laguncularia racemosa 

and increased NPP for Rhizophora mangle (Farnsworth 
et al., 1996; Snedaker & Araújo, 1998). Such variation 
may be due in part to methodological differences, but 
may also reflect important variations in regional conditions 
(McKee, 2011).

4.2.2.2.3	 Climate change impacts in deep 
seas

The deepsea (defined here as >200m depth) covers about 
60% of global ocean area and represents the largest 
ecosystem in the world (Smith et al., 2009; Watling et al., 
2013), accounting for more than 95% of the volume of 
the Earth’s oceans. Deep sea ecological processes and 
characteristics (e.g., nutrient cycling, productivity) underlie 
the healthy functioning of ocean ecosystems and provide 
valuable services to mankind (Thurber et al., 2014).

Many observational studies have shown that present-day 
climate change is already impacting deep sea environments 
due to increased temperature (Purkey & Johnson, 2010), 
deoxygenation (Helm et al., 2011; Keeling et al., 2010; 
Stramma et al., 2008, 2012), lowered pH of intermediate 
deep-waters (Byrne et al., 2010), and altered particulate 
organic carbon (POC) flux to the seafloor (Ruhl & Smith, 
2004; Smith & Stephenson, 2013). Elevated seafloor 
temperatures (3.7°C at the bathyal seafloor by 2100 under 
RCP8.5; Mora et al., 2013b; Sweetman et al., 2017) will 
lead to warming boundary currents which has the potential 
to massively release methane from gas hydrates buried 
on margins (Johnson et al., 2015; Phrampus & Hornbach, 
2012), especially in the Arctic, with simultaneous effects 
on water column de-oxygenation and ocean acidification 
(Biastoch et al., 2011; Boetius & Wenzhöfer, 2013). Along 
canyon-cut margins such as those that occur in the western 
Mediterranean, warming may additionally reduce density-
driven processes, leading to decreased organic matter 
transport to the seafloor (Canals et al., 2006). 

Climate change is also likely to increase wind-driven 
upwelling in eastern boundary currents, stimulating 
photosynthetic production at the surface (Bakun, 
1990; Bakun et al., 2015; Wang et al., 2014). This new 
production may, however, decay as it sinks and increase 
biogeochemical drawdown of O2. Upwelling may also 
bring low-O2, high-CO2 water onto the shelf and upper 
slope (Bakun, 1990; Bakun et al., 2010; Feely et al., 2008; 
Sydeman et al., 2014; Wang et al., 2014). The expansion of 
hypoxic zones is expected to affect many aspects of deep-
sea ecosystem structure and function (Gooday et al., 2010).

As O2 levels decline, many species of deep water 
octocorals (including gorgonians and pennatulaceans) 
which provide habitat for a diverse array of invertebrates, 
are expected to decrease in abundance (Buhl-Mortensen 
et al., 2010; Etnoyer & Morgan, 2005; Murray Roberts et 
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al., 2009). Acidification of deep waters has been projected 
to negatively impact cold-water stony corals (Scleractinia), 
particularly in the North Atlantic (Tittensor et al., 2010). 
Single stressors like warming will also limit tolerance 
windows for other stressors such as low O2 or low pH 
(Pörtner, 2012; Pörtner & Knust, 2007).

With the projected global reduction in the biomass of 
phytoplankton in the upper ocean (Bopp et al., 2013; 
section 4.2.2.2.1), the flux of particulate organic carbon 
(POC) to feed open ocean seafloor communities is 
expected to decrease, causing potential alterations of 
the biomass, composition and functioning of the benthic 
communities. Reductions in seafloor POC flux will be most 
drastic in the oceanic gyres and equatorial upwelling zones, 
with the northern and southern Pacific Ocean and southern 
Indian Ocean gyres projected to experience as much as 
a 32–40% decline in POC flux by the end of the century 
(CMIP5, RCP8.5; Mora et al., 2013b; Sweetman et al., 
2017). Recent studies have suggested that the NE Atlantic 
Ocean could also undergo similar reductions in POC flux 
(Jones et al., 2014). The abyssal ocean is highly sensitive to 
changes in the quantity and quality of POC flux that could 
affect the biomass of benthic microbial and faunal biomass, 
and cause dramatic reductions in the sediment mixed-layer 
depth, benthic respiration, and bioturbation intensity (Jones 
et al., 2014; Smith et al., 2008; Sweetman et al., 2017). 
These changes have the potential to feed back on global 
carbon cycling and ultimately C-sequestration (Thurber et 
al., 2014).

4.2.2.2.4	 Climate change impacts in polar seas

Rising temperatures are projected to reduce sea ice extent 
and volume in the Arctic and Antarctic, some of the fastest 
warming places on Earth (IPCC, 2013). The rapid rate at 
which sea ice retreats in polar seas implies major changes 
to be expected in the future for biodiversity and ecosystem 
function (Gutt et al., 2015; Larsen et al., 2014; Wassmann et 
al., 2011). All components of the food webs will potentially 
be impacted, from phytoplankton to top predators, and from 
pelagic to benthic species.

Multiple lines of evidence show that ice-melting is likely to 
increase primary productivity in polar seas due to increased 
light availability, although this could be dampened by a 
decrease in nutrient supply due to enhanced water column 
stratification that is expected from warming and freshening 
of surface waters (section 4.2.2.2.1; Hoegh-Guldberg et 
al., 2018; Larsen et al., 2014). It has also been shown that 
the increased production of floating icebergs, enriched with 
terrigenous material, might significantly elevate nutrient 
levels and primary production (Smith et al., 2007). However, 
while primary production may increase in polar seas in the 
future, warmer waters can cause a shift in the composition 
of the zooplankton community, such as the shift from 

Calanus glacialis towards dominance of the smaller, less 
energy-rich Calanus finmarchicus in Arctic waters (Kjellerup 
et al., 2012), with potential huge consequences up the 
food chain. By contrast, in coastal areas, the production 
and transport of organic matter to the seafloor may decline 
because glacial meltwater and erosion of melting tundra 
(Węsławski et al., 2011) will likely enhance water column 
turbidity, which results in decreased water column light 
levels (Grange & Smith, 2013; Sahade et al., 2015). The 
increased sedimentation in deep coastal areas, particularly 
in Arctic fjords, may also smother or clog the breathing 
and feeding apparatus of sessile suspension-feeders (e.g., 
corals and sponges), induce O2 stress, but may favour 
ophiuroids and capitellid polychaetes (Sweetman et al., 
2017; Wlodarska-Kowalczuk et al., 2005). 

Changes in primary production and resulting POC flux 
to the seafloor will have impacts on ecosystem structure 
and function. Elevated POC flux increases the abundance 
and diversity of benthic communities, the prevalence of 
habitat-forming taxa (sponges, benthic cnidarians), and the 
extension of species ranges into deeper waters (De Rijk et 
al., 2000). It could also trigger the switch from dominance by 
bacteria to dominance by metazoans for processing benthic 
organic matter with bottom-up consequences on the 
food-web (Sweetman et al., 2014). Changing ice regimes 
may also result in physical disturbance of the deep sea, as 
large icebergs can scour the sediment down to 400m on 
the Antarctic shelf, enhancing seafloor heterogeneity and 
creating hard substrates for sessile megafauna (Meyer et 
al., 2015, 2016; Schulz et al., 2010). In the longer term, 
iceberg scouring and dropstone deposition will tend to 
elevate diversity on regional scales through (re)colonization 
processes, although the immediate effect of scouring will be 
local elimination of many species (Gutt & Piepenburg, 2003; 
Gutt et al., 1996; Thatje et al., 2005). 

Sea ice melting is also expected to impact species up 
the food-web, and especially those marine mammals 
and seabirds depending on ice as haul-outs, but future 
scenarios are available for just a few emblematic species. 
Demographic models predict that changes in Antarctic 
sea ice will substantially reduce the abundance of global 
emperor penguin (Aptenodytes forsteri) by 2100 under a 
mid-range emission scenario (Jenouvrier et al., 2014), even 
when complex dispersal processes are included (Jenouvrier 
et al., 2017). A high probability of extinction is foreseen for 
the polar bear (Ursus maritimus) subpopulation of southern 
Beaufort under SRES A1B scenario by the end of the 
century, due to the decrease in the cover, the duration 
and the thickness of sea ice (Hunter et al., 2010), but low 
probability of extinction has been attributed for all polar 
bears in the Arctic (Larsen et al., 2014). However, a recent 
study showed that the high-energy requirements of polar 
bears could endanger their survival in extended ice-free 
periods (Pagano et al., 2018).
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Ocean acidification is another major stressor which will be 
enhanced in polar regions because of the higher capacity 
of seawater to absorb CO2 at low temperatures, resulting 
in lower pH and under-saturated waters in aragonite and 
calcite (Hoegh-Guldberg et al., 2014; Orr et al., 2005). This 
may impact the growth and survival of calcifying shelled 
organisms such as Arctic pteropods, foraminifera in the 
Southern Ocean, and the recruitment of Antarctic krill 
(Euphausia superba), all of those species being essential 
prey species at the basis of food-webs (Kawaguchi et al., 
2013; Larsen et al., 2014; Trathan & Hill, 2016). Adding to 
the negative impacts of acidification, a combination of ice 
retreat and changes in primary production is projected to 
decrease Antarctic krill suitable habitat and survival rate 
(Piñones & Fedorov, 2016) with potential cascading effects 
on their many predators (Trathan & Hill, 2016).

4.2.2.3	 Future impacts of fisheries 
exploitation on marine ecosystems

In addition to exposure to climate change, marine animal 
populations will likely undergo increased fishing pressure as 
a result of increasing demand for fish products (World Bank, 
2013) particularly in the developing world (Figure 4.2.6; 
FAO, 2016). This will largely be driven by growth of human 
population that is projected to reach 9.8 billion people by 
2050 (UNDESA, 2017) and by income growth in low- and 
middle-income countries (Vannuccini et al., 2018). The rate 
of increase in demand for fish has been more than 2.5 per 
cent per year since 1950 and is likely to continue in the 
future (HLPE, 2014). The world fish production (capture and 

aquaculture) was projected to increase by 17% between the 
base period (2013-2015) and 2025 (FAO, 2016). With the 
growing demand, commercial fishing activities are likely to 
expand to all areas of the globe.

Scenarios that include governance in fisheries 
management, human consumption of seafood, and 
advancement of fishing technologies (Squires & 
Vestergaard, 2013) are starting to be integrated into global 
scale projections. For example, a simple surplus production 
model applied to a set of 4713 fisheries worldwide showed 
that a business-as-usual fisheries management scenario 
would increase the proportion of overexploited populations 
by ca. 30% in 2050 (Costello et al., 2016). In contrast, in a 
scenario where long-term economic benefits are optimized, 
such as through rights-based fisheries management, the 
majority of exploited fish populations (98%) would recover 
to a healthy status, with a median time of recovery of 
about 10 years. Similarly, under the high emission scenario 
RCP8.5 and the SSP3 scenario (characterized by low 
economic development and a large increase in human 
population), maximizing the long term economic yield of 
the fishery was projected to increase the biomass of the 
skipjack tuna population (Dueri et al., 2016). Recently, it 
was shown that reforming fisheries by adopting an optimal 
harvest policy that maximizes long-term economic benefits 
and that adapts its management strategy to climate-
induced changes in fish biomass and spatial distribution 
could offset the detrimental impacts of climate change on 
future fish biomass and catch under most RCP greenhouse 
gas emission scenarios, except RCP8.5 (Gaines et al., 

Figure 4  2  6   Projections of additional fi sh consumed in 2025 (from fi sheries and aquaculture) 
per world region.  

Developing countries are projected to eat 93 percent of the additional fi sh available for human consumption . Source: OECD 
and FAO (FAO, 2016) .
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2018). This important finding needs to be consolidated by 
further investigations in a context where fisheries maximum 
catch potential is projected to decrease by 2.8-5.3% and 
7-12.1% by 2050 relative to 2000 under RCP2.6 and 
RCP8.5, respectively (Cheung et al., 2018).

In addition to climate change (see 4.2.2.2.1), heavy fishing 
also impacts fish size, decreasing both the maximum size 
of species and the biomass of large-sized species because 
(i) high-value target species are generally larger, (ii) fishing 
gear is size-selective and often designed to remove larger 
fish, (iii) older and larger fish in a population become fewer 
as a result of accumulation of fishing mortality rate through 
time, and (iv) large species are more vulnerable because 
their life-history traits are generally linked to lower potential 
rates of increase (Shin et al., 2005). Under heavy fishing, 
a SRES A1B climate change scenario was reported to 
magnify the reduction in fish size (Blanchard et al., 2012). 
This shift towards smaller fish size and higher growth rates 
could ultimately increase the variability of fish biomass 
(Hsieh et al., 2006).

Species targeted by fisheries are not the only species 
impacted by different fishing scenarios. Long-lived and 
vulnerable species such as marine mammals, turtles 
and birds suffer from direct impact of fish harvest though 
bycatch, and so their future is tightly linked to the long-term 
fishing strategies adopted. The interaction with climate 
change is complex to resolve but some studies have 
started addressing the potential synergistic effects. Some 
models based on species distribution projected that climate 
change will alter the future distribution of both fisheries and 
seabird populations, altering the rates of future bycatch 
and hence seabird mortality rates (Krüger et al., 2018). For 
some species, spatial overlap with fisheries may decline, 
reducing rates of incidental mortality associated with 
human activity. However, for two highly threatened seabird 
species (grey-headed and wandering albatross), severe 
range reductions and increased overlap with fisheries 
are projected.

In addition to scenarios of fishing management, the 
future status of wild fish populations cannot be envisaged 
without considering alternative scenarios of aquaculture 
development which will play a major role in sustaining the 
supply of seafood products and the maintenance of per 
capita fish consumption (Delgado et al., 2003; FAO et 
al., 2018). But the development of aquaculture is partly 
dependent upon the exploitation of low trophic level fish 
species which supply fishmeal for farmed fish.

Aquaculture development could potentially reduce fishing 
pressure on wild fish populations, but not to an extent 
that could compensate for projections of increases in 
demand for seafood products and fishing technology, 
both of which result in increased fishing pressure (Quaas 
et al., 2016). Taking into account projections in human 
population, climate change (IPCC A1B scenario), and 
technological development in aquaculture, a bio-economic 
model projected that if fishmeal prices increase, this would 
encourage fishers to maximize their short-term economic 
profits and exceed yearly quotas, leading to collapse of 
exploited fish populations (Merino et al., 2012). Given the 
current increasing trends of fishmeal prices (Merino et 
al., 2010), this implies that compliance to strict fisheries 
management and market stabilization measures need to be 
seriously considered to maintain exploited populations at 
sustainable levels. Likewise, another bio-economic model 
run under contrasted archetype scenarios suggested that 
relative to climate change impacts, fisheries regulation is 
the most important factor in determining the future of fish 
populations (Mullon et al., 2016). However, the interplay 
between drivers of change cannot be ignored in fisheries 
management strategies (see example in Box 4.2.3). A 
multi-model ensemble approach allowed to show that the 
risk of negative synergistic effects between changes in 
primary production and in fishing effort was higher for small 
forage fish species (Fu et al., 2018). 

Box 4  2  3 	 Synergistic impacts of multiple drivers on tropical coral reefs.

Tropical coral reefs share a history of strong dependence on 
natural and human systems (Maire et al., 2016) that must 
be accounted for in attempts to maintain long-term human 
development and well-being, and marine biodiversity (Cinner 
et al., 2016). Indeed, coral reefs support the nutritional and 
economic needs of people in many developing countries. 
Their exceptional biodiversity translates directly into biomass 
production and thus food security (Duffy et al., 2016). However, 
coral reefs face multiple and considerable challenges from 
ocean warming (see 4.2.2.2.2), ocean acidification, pollution, 
overexploitation and destructive fishing practices. More than 

80% of the world’s coral reefs are severely over-fished or 
have degraded habitats, thus imperiling the livelihood and 
sustenance of coastal human populations (McClanahan et 

al., 2015). This negative spiral is likely to accelerate in the 
future due to the synergistic effects of climate change and 
direct human impacts. For example, nutrient loads from 
the land increases the vulnerability of corals to bleaching 
(Vega Thurber et al., 2014). Plastic debris were estimated 
to increase coral susceptibility to diseases from 4% to 89% 
with structurally complex corals being eight times more likely 
to be affected by plastic (Lamb et al., 2018) inducing a loss 
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of fish productivity (Rogers et al., 2014). Tipping points exist 
at which coral reef ecosystems can shift to being dominated 
by macroalgae (Holbrook et al., 2016), with low resilience, 
reductions in biodiversity and degradation of the many 
ecosystem services they provide, such as reef-associated 
fisheries and tourism. However, there are opportunities for 
improving the status of coral reefs by the combined action of 
reducing both greenhouse gas emissions and overfishing of 
species which help the recovery of coral reefs by grazing their 
algal competitors (Figure 4.2.7; Kennedy et al., 2013). Robust, 

integrated models that can account for combinations of 
multiple impacting drivers are still lacking, but these are needed 
to simulate the dynamics of coral reef social-ecological systems 
on a long-term basis and better anticipate their futures. This 
challenge is even more difficult given the multispecies nature 
of fisheries, the complexity of trophic interactions, and the time 
scales on which different processes determine the trajectories 
of coral reef social-ecological systems and the boundaries 
beyond which they collapse.

BUSINESS-AS-USUAL GHG EMISSIONS

A

Figure 4  2  7   Future carbonate budgets (proxy for net production of corals skeletons) of 
Caribbean coral reefs under climate change and acidifi cation scenarios (top 
panel: high RCP8.5 greenhouse gas emission scenario, bottom panel: strong 
mitigation RCP2.6 emission scenario), without or with local conservation of 
grazing fi sh (parrot fi sh symbol in B , D , G , H ).  

Initial conditions of reefs are either degraded with 10% coral cover ( A , B , E , F ) or healthier with 20% coral ( C , D , G ,
H ) . Vertical blue bars indicate point at which the projected budget becomes negative (erosion of corals skeleton exceeds 
production) . Source: Kennedy et al. (2013) .
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4.2.2.4	 Future impacts of pollution on 
marine ecosystems

4.2.2.4.1	 Persistent organic pollutants and 
plastics: another ‘Silent Spring’?

Over the last century the human enterprise has fundamentally 
altered the planet by releasing large quantities of persistent 
organic pollutants (POPs) into the environment. These 
synthetic organic compounds have harmful and toxic 
properties and are not readily metabolized by bacteria 
or other life forms, thus prolonging their presence in the 
environment. Concerns about their effects on wildlife and 
people were first raised by Rachel Carson’s book ‘Silent 
Spring’ (Carson, 1962), highlighting the devastating effects 
of organochlorine POPs on birds and aquatic animals in 
particular. As a result, many POPs were tightly regulated or 
banned under the Stockholm Convention (UNEP, 2001), and 
their production has ceased or decreased for most listed 
substances. Large historical burdens of these pollutants 
still circulate in the environment however (Harrad, 2009), 
and novel substances get synthesized at a rapid pace, with 
potentially harmful effects.

Synthetic organic polymers (plastics) form another class 
of pollutants that share certain properties with POPS 
in that they persist and accumulate in the environment, 

can be transported over long distances (reaching remote 
polar regions for example; Science for Environment 
Policy, 2017), and can have harmful effects on wildlife and 
people. In contrast to POPs, their production numbers 
are much higher overall and still increasing, thus global 
concerns about plastic pollution now match or exceed 
those for other POPs, particularly with respect to the 
marine environment which forms a sink for discarded 
plastic waste (Jambeck et al., 2015; Worm et al., 2017). 
Annual plastic production now exceeds 330 million metric 
tons (Mt) (PlasticsEurope, 2015), with a cumulative burden 
of 8300 Mt produced since 1950 (Geyer et al., 2017), 
approximately 6300 Mt of which has been discarded (9% 
recycled, 12% incinerated, and 79% ended in landfills or 
the natural environment). If current production and waste 
management trends continue, roughly 12,000 Mt (million 
tons) of plastic waste will be in landfills or in the natural 
environment by 2050 (Figure 4.2.8). If evenly spread 
around the globe, this would equal a burden of ~24 tons 
of plastic waste for each square kilometre of land and 
sea surface. This level of pollution in terms of volume and 
persistence has no previous analogue in human history.

Negative impacts on the planet and people are becoming 
more profound (Figure 4.2.9) as exposure to plastic 
pollutants intensifies. As an example, about 90% of 
seabirds examined today have plastic in their gut, with 

Figure 4  2  8   Current global trends and likely future trajectories of total plastic waste 
generation and management.  

After data in Geyer et al. (2017) .
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100% expected to be exposed by 2050 (Wilcox et al., 
2015). Sea turtles are similarly affected (Schuyler et al., 
2015), as are at least 693 other marine species that have 
been recorded to be compromised by plastic pollution 
(CBD, 2016). Much of the plastic is released as or broken 
down into small microplastic (1 µm-1mm) or nanoplastic 
(<1µm) particles. While the harmful effects of microplastic 
debris are well understood, the long-term effects of the 
smallest fragments are only now emerging (Galloway & 
Lewis, 2016), including their tendency to interact with 
other pollutants (GESAMP, 2015), facilitate diseases 
(Lamb et al., 2018), and transmit through the food chain 
(Figure 4.2.9).

Clearly, another ‘Silent spring’ scenario seems plausible, if 
effects on numerous wildlife species continue to accelerate 
further. Because plastic persists and accumulates in the 
environment in similar ways POPs do, a zero-net-release 
policy that builds upon the successful Stockholm Convention 
(SC) on Persistent Organic Pollutants (POPs) may be a 
promising strategy to mitigate the risk posed by current and 
future levels of plastic pollution. Yet, in contrast to traditional 
POPs, which are largely emitted by industry, plastic pollution 
touches every person’s life, and requires a broader societal 
effort including designers, producers, regulators, and 
consumers of plastic products to engage in comprehensive 
solutions (GESAMP, 2015; Worm et al., 2017).

4.2.2.4.2	 Nutrient loads and eutrophication

Numerous model projections show that coastal zones in 
many world regions are almost certain to see increases 
in nitrogen (N) and phosphorus (P) from increasing river 
loads in the coming decades (Sutton et al., 2013; Figure 
4.2.10). In contrast, silica (Si) river export is decreasing 
globally as a result of retention in the increasing number 
of reservoirs in the world’s river systems and this trend 
will also continue in many parts of the world. The result of 
these simultaneous changes of N, P and Si will continue 
to alter nutrient stoichiometry, affecting not only total algal 
growth but also biodiversity in coastal waters, including 
the propensity for harmful algal blooms (HABs). The 
enhanced primary production in coastal surface waters 
can cause eutrophication, with subsequent sinking of 
excess degradable organic matter to bottom waters 
where aerobic microbial decomposition reduces oxygen 
concentration. The decline in oxygen concentrations due 
to nutrient loads in coastal waters will likely be exacerbated 
with climate change, due to decreased oxygen solubility in 
warmer waters and decreased oxygen transport to deeper 
waters because of stronger stratification of the water 
column (Breitburg et al., 2018). The expansion of areas 
of low oxygen will impact marine biodiversity at all levels 
from individuals’ physiology and behavior, to populations’ 
demography and range shifts with consequences for 

Figure 4  2  9   Possible pathways by which plastic pollutants of different size classes enter the 
food chain and propagate to higher trophic levels, including humans. 

After Worm et al. (2017) .
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species assemblages and food-webs (Levin et al., 2009; 
Pörtner et al., 2014).

Storylines developed by the IPCC and the Millennium 
Ecosystem Assessment and translated into changes of the 
main anthropogenic drivers, i.e. economic development, 
demography and land use (Alcamo et al., 2007), have 
been applied to project conditions to 2050. Although 
each storyline has different assumptions, they show major 
increases in N and P river export especially in South and 
Eastern Asia, in South America and Africa where fertilizer 
use will likely increase to support the population, and 
where urbanization and lagging treatment of wastewater 
and sewage connection will lead to increasing nutrient 
discharge to surface water (e.g., Glibert et al., 2018). In 
contrast, stabilized or decreasing trends in nutrient loads 
are projected in Europe, North America and Australia owing 
to the development of improved wastewater treatment 
systems, and improved nutrient management reducing 
NH3 volatilization, leaching and run-off. In these regions, 
improvements in hypoxia and frequency or magnitude of 
HABs may be realized.

However, the trajectory of nutrient loads is additive with 
other global changes, such as temperature rise, which will 
alter stratification of the water column, availability of nutrients 
and their forms and ratios, and pCO2, among other factors 
(e.g., Boyd & Doney, 2003). Recent models supported 

evidence for increased eutrophication together with climate 
changes, and therefore the propensity for the worsening of 
HABs and/or hypoxia by the end of the century (Sinha et 
al., 2017). Multiple combined changes such as increases 
in nutrient pollution, in global temperature and in reservoir 
capacity resulting in increased retentiveness of rivers, require 
proactive management to stabilize or reduce the impacts 
of eutrophication, including hypoxia and the frequency 
of HABs.

4.2.2.5	 Future impacts of coastal 
development on marine ecosystems

Direct human-related drivers of change such as 
urbanization, coastal development, and land-use change 
will bring challenges to coastal ecosystems in addition 
to climate change. Coastal populations are increasing 
disproportionately relative to the global population increase. 
Many of emerging cities are on the coast and their growth 
will add to the 75% of the world’s mega-cities which are 
already coastally located (World Economic Forum’s Ocean 
Programme, 2017). Over 2.6 billion people live on or near 
the coast, many in developing countries where dependence 
on coastal resources may be high and demand for multiple 
benefits such as food, coastal protection and income, 
will continue to grow as human populations expand (Bell 
et al., 2009; Sale et al., 2014). Some 1.36 billion live on 
tropical coasts, and this is projected to grow to 1.95 billion 

Figure 4  2  10   Trends in global mineral fertilizer consumption for nitrogen and phosphorus and 
projected possible futures.  

Source: Sutton et al., 2013 .
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by 2050, with associated pollution and eutrophication of 
coastal waters and degradation of coastal ecosystems 
(Sale et al., 2014). Urbanization and coastal development 
can restrict the capacity of coastal ecosystems to adapt 
to rising sea levels e.g. through the “coastal squeeze” 
(Wong et al., 2014). Along urbanized coastlines, the 
resilience of wetlands to SLR will depend on the availability 
of accommodation space (Schuerch et al., 2018) and 
sediment supply (Lovelock et al., 2015) which are reduced 
by anthropogenic infrastructure barriers (e.g., flood 
protection structures, roads, settlements). Future expansion 
of coastal development will also bring risks to iconic and 
threatened species. For example, the expansion of artificial 
lighting at night from coastal development interrupts the 
sea-finding behaviour of sea turtle hatchlings and ultimately 
survivorship (Gaston & Bennie, 2014; Kamrowski et 
al., 2014).

Future projections show a multiplicity of human stressors 
acting simultaneously with direct climate-induced changes 
on social-ecological systems. Stressors from population 
growth and coastal development such as nutrient run-
off, urbanization, and land-use change are expected to 
increase and combine with climate stressors such as sea 
level rise and warming to exacerbate risks for rocky and 
sandy shores, and seagrasses (Box 4.2.4). Models show 
that mangroves are particularly threatened by projected 
coastal development, with the main direct drivers including 
the expansion of aquaculture (prevalent in both Asia and 
Latin America) and agriculture (mostly rice cultivation and 

pasture), extraction of timber and related forest products 
(e.g., for charcoal and domestic construction), and 
infrastructure development and alterations of freshwater 
flows  (e.g., for due to settlements, transportation networks 
or dams) (Roy Chowdhury et al., 2017). Under projected 
changes, coastal adaptation options will involve increasingly 
difficult trade-offs in future among multiple development and 
biodiversity objectives (Mills et al., 2015).

4.2.3	 Freshwater ecosystems

4.2.3.1	 Freshwater biodiversity and 
current threats

Freshwater ecosystems provide fundamental services to 
humans such as food, water, nutrient retention, recreation, 
and climate regulation. Globally, freshwaters (i.e. rivers, 
lakes, wetlands) represent less than 0.02% of Earth’s water 
volume and cover only about 0.8% of Earth’s surface 
(Dawson & Dawson, 2012). However, an estimated 129,000 
species live in freshwater ecosystems, representing ~8% 
of Earth’s described species (Balian et al., 2008; Figure 
4.2.11). The relative contribution of freshwater ecosystems 
to global biodiversity is thus extremely high (Tedesco et al., 
2017; Wiens, 2016). Climate, productivity and area size 
drive freshwater diversity patterns globally despite profound 
functional differences between taxa (Moomaw et al., 2018; 
Tisseuil et al., 2013). 

Box 4  2  4 	 Synergistic impacts of multiple pressures on seagrass meadows.

Direct human-related drivers of change such as urbanization, 
coastal development, and land-use change will bring 
challenges to coastal ecosystems. For seagrasses, key threats 
include sediment and nutrient run-off from upstream land-
use change, physical disturbance, algal blooms, and invasive 
species, as well as climate warming and disease (Orth et al., 
2006; Waycott et al., 2009). Requirements for clear water and 
low nutrient concentrations make seagrasses vulnerable to 
eutrophication, as nutrient and sediment loading reduce light 
availability and favor faster-growing algae (Burkholder et al., 
2007; Duffy et al., 2013). The protected embayments in which 
seagrasses grow best are also prime real estate for coastal 
and harbor development. As a result seagrasses are declining 
worldwide, and roughly 30% of global seagrass cover has been 
lost since the first estimates were made in the late 19th century, 
with loss rates increasing in recent decades (Waycott et al., 
2009). Ten of the 72 known seagrass species on earth are at 
elevated risk of extinction and three species are classified as 
Endangered (Short et al., 2011).

Perennial organisms such as seagrasses are vulnerable to 
human disturbance and, under repeated impacts, often 

yield dominance to faster growing, opportunistic species 
such as fleshy and filamentous algae. In the Baltic Sea, for 
example, dominance by eelgrass and rockweed has yielded 
over recent decades to accumulations of ephemeral algae 
(Bonsdorff et al., 1997). Long-term field monitoring suggests 
that exploitation of piscivores such as cod in offshore waters 
has released the smaller inshore fishes—mesopredators—
from top-down control, and their consumption of grazing 
invertebrates indirectly led to algal blooms and decline 
of perennial seagrasses (Eriksson et al., 2011). Coastal 
vegetation, including seagrasses, protects coastal human 
communities against storm damage, and the continuing 
decline of these natural barriers will likely be aggravated by 
SLR. Coastal habitat loss exacerbates damage from storms 
and flooding in coastal communities (Gedan et al., 2011). 
Mapping the risk of such hazards along the coastline of the 
USA shows that, under several projected climate scenarios, 
the number of people, especially the poor and elderly, and the 
total value of residential property exposed to hazards could 
be reduced by half by preserving existing coastal habitats 
(Arkema et al., 2013).
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Current major threats to freshwater biodiversity include 
climate change, habitat modification and pollution from land-
use, habitat fragmentation and flow regime homogenization 
by dams, non-native species, increased eutrophication 
resulting from nutrient and organic discharges, water 
abstraction, and overexploitation (Young et al., 2016). 
Those threats currently affect freshwater biodiversity and 
functioning to varying degrees (Carpenter et al., 2011; 
Vörösmarty et al., 2010), and their additive and potentially 
synergistic effects may further threaten future freshwater 
biodiversity and resources (Collen et al., 2014; Knouft & 
Ficklin, 2017).

4.2.3.2	 Future climate change impacts 
on freshwater biodiversity and 
ecosystem functioning

The lowest greenhouse gas emissions scenario is the only 
scenario not expected to threaten much of global freshwater 
biodiversity in 2050 through direct effects of climate 
change. Under all other scenarios, freshwater biodiversity 
is expected to decrease proportionally to the degree of 
warming and precipitation alteration. All water body types 
on all continents are likely to be affected. Warmer waters 
will alter community structure, food webs, body sizes, and 

Figure 4  2  11   Global diversity maps (species richness and endemicity) for freshwater fi shes, 
aquatic amphibians, aquatic mammals, crayfi sh and aquatic birds.  

For comparison purpose, the diversity descriptor values of each taxon are rescaled between 0 and 100 . Study based on the 
global distributions of 13, 413 freshwater species among fi ve taxonomic groups (i .e . 462 crayfi sh, 3263 amphibians, 8870 fi sh, 
699 birds and 119 mammals) and conducted on 819 river drainage basins covering nearly 80% of Earth’s surface . After Tisseuil 
et al. (2013) .
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species ranges — especially in regions where semi-arid and 
Mediterranean climates currently occur as well as high-
mountain ecosystems. In addition to reduced biodiversity 
and ecosystem functioning, warmer and less water will lead 
to species extinctions because of habitat shrinkage.

Scenarios of climate change impacts on global freshwater 
ecosystem biodiversity and functioning were reviewed 
by Settele et al. (2014). Climate change alters freshwater 
ecosystems and their biodiversity by changing (1) 
temperatures, (2) water availability and (3) flow regimes 
through changes in precipitation (Döll & Zhang, 2010; Knouft 
& Ficklin, 2017) and/or temperature (Blöschl et al., 2017). 
Increased water temperatures often lead to progressive 
shifts in the structure and composition of assemblages 
because of changes in species metabolic rates, body size, 
migration timing, recruitment, range size and interactions 
(Daufresne et al., 2009; Myers et al., 2017; Parmesan, 
2006; Pecl et al., 2017; Rosenzweig et al., 2008; Scheffers 
et al., 2016). There is already evidence of regional and 
continental shifts in freshwater organism distributions 
following their thermal niches (Comte et al., 2013), local 
extirpations through range contractions at the warm edges 
of species’ ranges (Wiens, 2016), and body size reductions 
(Daufresne et al., 2009). Warmer water temperatures also 
enhance microorganism metabolism and processing of 
organic matter (unless dissolved oxygen is limiting), causing 
eutrophication when nutrient levels are high (Carpenter et 
al., 2011; Mantyka-Pringle et al., 2014) as well as increased 
omnivory. Warming also induces phenological mismatches 
between consumers and resources in highly seasonal 
environments, potentially destabilizing food-web structure 
(Woodward et al., 2010a).

The strongest temperature increases are projected for 
eastern North America (0.7 to 1.2 °C under RCP2.6 and 
RCP8.5, respectively, by 2050), Europe (0.8 to 1.2 °C), 
Asia (0.6 to 1.2°C), southern Africa (>2.0°C under RCP8.5) 
(van Vliet et al., 2016b) and Australia (CSIRO & Bureau of 
Meteorology, 2015). Moderate water temperature increases 
(<1.0°C) by 2050 are predicted for South America and 
Central Africa (Van Vliet et al., 2013; van Vliet et al., 2016b). 
Changes in water temperature are projected to lead to 
local or regional population extinctions for cold-water 
species because of range shrinking especially under the 
RCP 4.5, 6.0 and 8.5 scenarios (Comte & Olden, 2017). 
Most lowland-tropical freshwater species are expected to 
tolerate warmer conditions where water is sufficient (Comte 
& Olden, 2017).

Decreased water availability and altered flow regimes 
reduce habitat size and heterogeneity. This increases 
population extinction rates because the probability of 
species extinctions increases with reduced habitat size 
(Tedesco et al., 2013). Climate change can also alter flow 
regime seasonality and variability (e.g., Blöschl et al., 2017; 

Döll & Zhang, 2010) and increase flow intermittency (Pyne 
& Poff, 2017). This would lead to decreased food chain 
lengths through loss of large-bodied top predators (Sabo 
et al., 2010), altered nutrient loading and water quality 
(Woodward et al., 2010b), and/or pushing taxa into novel 
trajectories from which they may not recover (Bogan & 
Lytle, 2011). However, whatever the RCP scenario, climate 
change impacts on the timing of seasonal streamflow are 
found to be generally small globally (Eisner et al., 2017). Yet, 
relative to water availability and according to the wet-wetter/
dry-dryer mechanism (Gudmundsson et al., 2017; Held & 
Soden, 2006; Wang et al., 2017), more severe water stress 
in current drylands is expected in the future. Although under 
RCP2.6 the distributions of water availability may change 
little by the end of the 21st century, RCP4.5, 6 and 8.5 
scenarios are expected to induce substantial shrinking of 
water drainage where semi-arid and Mediterranean climates 
currently occur. Reduced water availability in those regions, 
including shifts from permanence to intermittency, will 
generate population extirpations of all types of freshwater 
organisms (Jaeger et al., 2014), leading to global net 
biodiversity losses because endemism is usually high in 
those regions. For example, projected fish extinction rates 
from drainage shrinking under the high emission SRES A2 
scenario in river basins worldwide show that among the 
10% most-altered basins, water availability loss is likely to 
increase background extinction rates by 18.2 times in 2090 
(Tedesco et al., 2013; Figure 4.2.12). Also, in glacier-fed 
high-mountain ecosystems, significant changes to snow 
and glacier melt regimes, including glacier disappearance, 
have already been observed (Leadley et al., 2014) and are 
expected to continue (Kraaijenbrink et al., 2017). This leads 
to reduced water availability and declines in biodiversity 
through local population extirpations and species extinctions 
in regions of high endemicity in all water body types. 
Besides biodiversity losses, losses of glacial ice in closed 
drainages and flows in semi-arid regions (Vörösmarty et al., 
2010) will substantially decrease water for agriculture, power 
and public water supply, thereby increasing economic 
vulnerability in the affected regions (e.g., Moon, 2017). 

Wetlands, including peatland and permafrost regions, 
sequester carbon in their soils. But when confronted to 
warming, drying and conversions to agriculture, wetlands 
are expected to release CO2, CH4, and N2O. Global warming 
alone is projected to contribute 1.6 x 108 kilotons of carbon 
from melting permafrost to the atmosphere and CH4 
emissions from freshwater wetlands are projected to nearly 
double by 2100 (Moomaw et al., 2018). Such changes are 
very likely to impact biodiversity negatively due to habitat 
loss and reduced water quality, which increase the risk 
of extinctions and extirpations of wetland endemic and 
dependent species (Segan et al., 2016).
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4.2.3.3	 Future land-use change 
impacts on freshwater biodiversity and 
ecosystem functioning

Land use will likely increase the risk of eutrophication, leading 
to local population extinctions, changes in community 
structure and consequent modification of the food-web, 
ecosystem temporal instability, and establishment and 
spread of pathogens and toxic cyanobacteria blooms 
globally. Land use will become especially problematic in the 
emerging tropical economies because of increased human 
population density and weak pollution controls. Increasing 
pollution and eutrophication will degrade water quality, impair 

biological resource availability, reduce nutrition in developing 
countries, and reduce recreational opportunities and tourism 
income. Globally increased toxic cyanobacteria blooms and 
pathogens will increase health risks for people and livestock. 
These risks will most affect closed water bodies and 
estuaries, but rivers will also be threatened. The additional 
impact of future increasing use of pesticides in agriculture is 
hard to quantify due to a lack of scenario studies.

Land use, especially croplands, mining and urbanization, will 
affect freshwater ecosystems and associated biodiversity 
through two main pathways. First, further increased water 
and groundwater withdrawals are expected to decrease 

Figure 4  2  12   Global patterns of proportional increase or decrease in freshwater fi sh extinction 
rates between current climatic conditions and future (2090) under the most 
‘pessimistic’ IPCC SRES scenario (A2).   

Negative values of projected change in extinction rate depict drainage basins where extinction rates may decrease, while 
positive values depict drainage basins where extinction rates may increase . 91 949 river drainage basins covering ~99% of the 
terrestrial surface . After Tedesco et al. (2013) .
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habitat (water) availability for freshwater organisms leading 
to increased population extinction rates in rivers and lakes 
or direct extinctions from wetland conversions (Gardner et 
al., 2015; Tilman et al., 2001). The problem is exacerbated 
in semi-arid regions where water withdrawals lead to some 
rivers and lakes drying routinely, with ensuing species 
extinctions (Foley et al., 2005). Second, water quality is 
usually degraded by land use, and this trend is likely to 
continue. Intensive agriculture increases sediment, nutrient 
and pesticide loads to ground and surface waters (Lotze et 
al., 2006; Vasconcelos et al., 2017). The continuing, rapid 
urbanization also will substantially degrade water quality 
in many regions mostly through organic or phosphorous 
loadings, especially where wastewater treatment is absent. 
Mining leads to increased loadings of toxic metals, salts 
and acids (Daniel et al., 2015; Hughes et al., 2016). Such 
pollutants induce direct local mortality, impaired individual 
development and health, and altered community structure 
(Muturi et al., 2017), particularly for predators through 
bioaccumulation (Carpenter et al., 2011). Since nutrient 
loadings progressively lead to increased eutrophication, 
oxygen depletion, animal mortality, extirpation of submerged 
macrophytes and the production of algal blooms (including 
toxic varieties of cyanobacteria) (Foley et al., 2005; Paerl & 
Paul, 2012), efforts to wastewater treatment related to all 
anthropogenic activities will need to increase. Pollutants 
affect in particular the biodiversity and functioning of closed 
systems and estuaries (Lotze et al., 2006). For example, 
urban point sources have been the leading cause of hypoxia 
across European lakes since 1850 (Jenny et al., 2016). 
Furthermore, continued deforestation, a key component 
of land-use change, will further disrupt organic matter 
processing and food webs, exacerbating the establishment 
and spread of pests and pathogens, especially in tropical 
regions (Morris et al., 2016).

Future scenarios of changes in cropland area, pasture, 
forest and other natural land diverge widely depending on 
the underlying socio-economic assumptions (see sections 
4.1 and 4.2.4) (Alexander et al., 2017c; Popp et al., 
2017; van Vuuren et al., 2011). For the RCP4.5 scenario, 
a decrease of cropland and pasture was projected in 
one study (van Vuuren et al., 2011), which is expected 
to minimize future freshwater biodiversity disturbances. 
However, the global scenarios mask regional dissimilarities. 
For example, projections of future primary vegetation show 
major decreases in western and middle Asia (RCPs 2.6, 6.0 
and 8.5), Australia (only RCP2.6) and North America (only 
RCP 8.5) (Settele et al., 2014).

Water pollution has been considerably reduced in Australia, 
North America and Western Europe (Vörösmarty et al., 2010), 
except for pharmaceuticals, biocides and plastics because 
of ineffective treatment (Ebele et al., 2017). Reduced water 
pollution will benefit freshwater biodiversity. However, Sinha 
et al. (2017) projected increased eutrophication induced 

by increased precipitation from climate change in some 
regions, and Oliver et al. (2017) projected no decrease in 
nitrogen and phosphorus concentrations for most USA 
lakes despite attempts to reduce diffuse pollution. If there is 
little technology transfer to developing countries, then water 
pollution may increasingly threaten freshwater ecosystems, 
particularly in tropical regions because of increased human 
density notably in Asia and Africa, that are expected to 
account for over half of global population growth between 
2015 and 2050 (UNDESA, 2015). Under RCP2.6, if much 
agricultural, mineral and bioenergy production relocates from 
high-income to low-income regions, pollution, freshwater 
biodiversity and aquatic ecosystem functioning will further 
worsen in those regions.

4.2.3.4	 Future impacts of habitat 
fragmentation on freshwater 
biodiversity and ecosystem functioning
Hydropower is expected to increase worldwide whatever 
the RCP scenario unless other renewable energy 
sources are installed. Regions where significant losses 
in streamflow and decreased capacity production are 
projected, or where human population is expected to 
continue to increase (such as in many countries of Africa), 
should be most affected. Fragmentation of rivers by dams 
increases species extinction risks by blocking spawning/
rearing migrations and/or reducing population sizes and 
gene flow. 

Hydropower infrastructures alter rivers, floodplain lakes, 
wetlands and estuaries. Dams transform river basins by 
creating artificial lakes locally, fragmenting river networks, 
and greatly distorting natural patterns of sediment 
transport and seasonal variations in water temperatures 
and flows (Latrubesse et al., 2017). Altered flow seasonality 
in rivers has led to less diverse fish assemblages, 
decreased inland fisheries production, less stable bird 
populations and lower riparian forest production (Jardine 
et al., 2015; Kingsford et al., 2017; Sabo et al., 2017). 
Sediment retention by dams leads to delta recession (Luo 
et al., 2017), decreased coastal fisheries catches, and 
degraded tropical mangrove forests that are major carbon 
sinks (Atwood et al., 2017).

Dams also prevent upstream-downstream movement 
of freshwater animals, facilitate settlement of non-native 
species, cause local species extirpations and replacements 
and increase risk of water-borne diseases in reservoirs 
and highly altered environments by modifying productivity 
(Fenwick, 2006; LeRoy Poff & Schmidt, 2016). Dams have 
also caused a significant displacement of IPLCs around 
the world and projected expansion of dams, as shown 
in Figure 4.2.13, suggest significant overlap with areas 
held and/or managed by IPLCs (Garnett et al., 2018). The 
fragmentation of river corridors also reduces population 
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sizes and gene flows of aquatic species, increasing species 
extinction risks (Cohen et al., 2016; Dias et al., 2017). Dams 
are mainly concentrated in highly industrialized regions, but 
future hydropower development will be concentrated in 
developing countries and emerging economies (Grill et al., 
2015; Zarfl et al., 2015). Hydropower is expected to expand 
worldwide whatever the RCP scenario (Figure 4.2.13). 
Most hydropower plants are currently situated in regions 
where considerable declines in streamflow are projected, 
resulting in mean reductions in usable hydropower capacity 
(Turner et al., 2017; van Vliet et al., 2016b). Those regions 
may increase dam building to compensate for the losses 
unless other energy options are implemented (Zarfl et 
al., 2015). Also, growing population density is expected 
to also increase demands for hydropower globally, 
especially in tropical regions (Winemiller et al., 2016) where 
freshwater biodiversity is concentrated (Tisseuil et al., 2013; 
UNDP, 2016).

4.2.3.5	 Future impacts of non-native 
species on freshwater biodiversity  
and functioning 
Future threats to freshwater ecosystems from non-native 
species will be greater in emerging economies because of 
accelerated economic growth, whatever the scenario. 

Non-native species often compete with and prey upon 
native species, generating occasional local population 
extirpations (Carpenter et al., 2011), altering ecosystem 
structure and function (e.g., Blanchet et al., 2010; Toussaint 
et al., 2018), spreading infectious diseases (Gagne et 
al., 2018) and sometimes degrading ecosystem services 
and economies (Leung et al., 2002). They are a key 
contributor to biotic homogenization of aquatic ecosystems 
globally (Rahel, 2007; Villeger et al., 2011). Anthropogenic 
disturbances coupled with introductions of non-native fish 
(particularly piscivores) are associated with native species 
extirpations and range reductions, especially in lakes and 
reservoirs (Whittier & Kincaid, 1999), as well as rivers 
(Hughes & Herlihy, 2012). In addition, reduced ecosystem 
services, particularly water quality, are likely to deteriorate 
as a result. Although policies have been implemented to 
prevent new introductions globally (McGeoch et al., 2010 
see chapter 6), the increase in the numbers of non-native 
species shows no sign of saturation over time. Also, many 
non-native species are predicted to spread worldwide 
in the next decades, mainly because of climate change, 
accelerated economic exchanges among countries, 
construction of new transportation corridors and increased 
aquaculture (Seebens et al., 2017). These projections seem 
to occur in all RCP scenarios but especially so under the 
RCP 4.5, 6.0 and 8.5.

Figure 4  2  13   Distribution of future hydropower dams, either under construction (blue dots 
17%) or planned (red dots 83%). 

Source: Zarfl  et al. (2015) .

 Dams under construction

 Dams planned
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4.2.3.6	 Future impacts of harvest on 
freshwater biodiversity and functioning

Irrespective of the exact type of scenario, given that human 
population density is continuously growing, increased 
harvesting is expected. Tropical ecosystems are of greatest 
concern. Intensive harvesting will deplete large-bodied 
fishes with consequent shifts toward harvests of smaller 
species and younger individuals with potential top-down 
effects on food web dynamics. 

Current estimates of inland fisheries harvest are greatly 
underestimated (Deines et al., 2017), but inland fisheries 
provide food for billions and livelihood for millions of 
people worldwide (FAO, 2016), and will continue to do 
so especially in developing countries. Low-income food-
deficient countries account for ~80% of the total reported 
harvest from inland capture fisheries (Lynch et al., 2016). 
Most global harvesting is concentrated in 16 countries, 
which have annual inland catches >200,000 tons and 
together represent 80% of the world total (FAO, 2016). 
Asian countries represent 63% of global total catches 
and African nations >13%. Harvests in African and Asian 
water bodies are already declining, probably because of 
environmental degradation and overexploitation (FAO, 
2016). Given expected human population increases in 
Africa and Asia, increased harvesting is expected in both 
continents, whatever the RCP scenario. Because harvesting 
decreases population densities and large-bodied species, 
increased fishing pressure will lead to local extirpations 
of these species and will alter community structure and 
food web dynamics (Allan et al., 2005; McIntyre et al., 
2016). These effects will be magnified by interactions with 
the other anthropogenic stressors listed above, including 
climate change. Because contributions of inland fisheries to 
economic security are inversely proportional to development 
level, rural economies in developing countries will be 
most affected.

4.2.3.7	 Future impacts on peatlands

Peatlands are important flor global carbon cycling 
projections because they account for about one-third of 
the total carbon stored in soil organic matter (Page et al., 
2011) and also because many peatlands are an important 
source of methane (CH4) (Kirschke et al., 2013; Saunois et 
al., 2016). Peatlands are threatened by future agriculture, 
forestry, peat extraction and dam construction activities 
(Minayeva et al., 2017), which already over recent decades 
have begun transforming peatlands from greenhouse gas 
sinks to sources (Frolking et al., 2011; Strack, 2008). For 
example, 15% of global peatlands have been drained 
worldwide and these drained peatlands are currently 
responsible for ~5% of all global anthropogenic CO2 
emissions (Strack, 2008). 

While some regions appear to be improving peatland 
protection, others are increasing peatland destruction 
(Giam et al., 2012; Hooijer et al., 2010; Jauhiainen et al., 
2012; Koh et al., 2011). Climate change is projected to 
possibly amplify shifts of peatlands from GHG sinks to 
sources, especially in regions where water tables are highly 
sensitive to local precipitation and where permafrost is 
melting (Dargie et al., 2017; Turetsky et al., 2015). A model 
intercomparison experiment showed that both peatland 
area and CH4 emissions were less sensitive to potential 
future changes in precipitation than to increases in either 
atmospheric CO2 or temperature (Melton et al., 2013), but 
models disagree widely in both the magnitude and sign of 
potential climate effects on peatlands.

Where demands for water, food and energy put increasing 
pressure on the land resources, it is likely that peatland 
area will continue to decline (http://luh.umd.edu). 
Consequently, CO2 emissions from peat decomposition 
and oxidation will expectedly persist well beyond the 21st 
century. Tropical regions are projected to be most affected 
under scenarios where much agriculture and bioenergy 
production relocate from high-income to low-income 
regions (Lawrence et al., 2016). Considering the over 
proportional warming projected for subarctic and arctic 
ecosystems and the large amount of carbon stored in 
peatlands on permafrost soils, large climate warming 
feedbacks have been projected (Koven et al., 2011; Page 
& Baird, 2016).

While plant and animal taxonomic diversity in peatland 
ecosystems is apparently low, highly specialized species 
predominate, with 5–25% of peatland plant species being 
endemic (Minayeva et al., 2017). Many animal species 
occupy peatlands only at certain life stages or during 
particular seasons (but see Giam et al., 2012 for some 
narrowly adapted fish species). Because of their unique 
flora, projected lost peatland area has implications for 
global biodiversity. In all scenarios, and without peatland 
conservation practices, climate change and other 
anthropogenic drivers are expected to disrupt peatland 
biodiversity to varying degrees, ranging from decreased 
population sizes to altered species composition and 
regional or global extinctions (Fraixedas et al., 2017; 
Giam et al., 2012; Hedwall et al., 2017). For example, in 
Southeast Asia, if current rates of peatland conversions to 
agriculture continue through 2050, several fish species will 
become globally extinct (Giam et al., 2012).
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4.2.4	 Terrestrial ecosystems

4.2.4.1	 Future climate change and 
atmospheric CO2 impacts on habitats, 
biodiversity, and ecosystem state and 
functioning

4.2.4.1.1	 Climate change impacts on 
vegetation cover

Global vegetation and Earth system models all project 
substantial climate change driven shifts of natural vegetation 
cover over the next century (Davies-Barnard et al., 2015; 
Gonzalez et al., 2010; Ostberg et al., 2013; Pereira et 
al., 2010; Reu et al., 2014; Sitch et al., 2008; Wårlind 
et al., 2014; Warszawski et al., 2013). Area losses of 
natural vegetation are estimated to be 2-47% of terrestrial 
ecosystems for even relatively small temperature increases 
(<2°C above pre-industrial; Warren et al. (2011), and 
references therein). Other analyses confirm the risk of 
changes in vegetation cover (e.g., forest to non-forest or 
vice versa) for relatively small global temperature increases, 
especially in tundra, tropical forest and savanna regions 
but with changes within a given biome likely to occur in all 
regions (Gonzalez et al., 2010; IPCC, 2018, Chapter 3.4.3; 
Ostberg et al., 2013; Scholze et al., 2006; Warszawski et al., 
2013). Biome shifts and associated impacts on ecosystem 
functioning increase notably in higher-warming scenarios 
(Ostberg et al., 2013; Scholze et al., 2006; Warren et al., 
2011; Warszawski et al., 2013). Enhanced tree mortality 
from wildfires and increased drought and heatwaves can 
amplify vegetation responses to climate in models (Allen et 
al., 2010; Lasslop et al., 2016; Tietjen et al., 2017). 

4.2.4.1.2	 Climate change impacts on species 
diversity

In principle, climatic changes could be favourable to some 
species in cases when a new climate can provide more 
resources for species growth, reproduction and distribution 
(Bellard et al., 2012). However, even by the middle of the 
21st century, or for relatively minor temperature changes, 
indices for animal and plant species richness have been 
projected to decline, and indices of species losses, 
enhanced (Alkemade et al., 2013, 2009; Bellard et al., 
2012; Gonzalez et al., 2010; IPCC, 2018, Chapter 3.4.3; 
Pereira et al., 2010; Settele et al., 2014; Warren et al., 
2011). Climate change has also been identified as a major 
driver of terrestrial species loss across all IPBES regional 
assessments (Bustamante et al., 2018; Elbakidze et al., 
2018; Nyingi et al., 2018; Wu et al., 2018). A recent meta-
analysis of studies reported that a global mean temperature 
increase of 2°C would threaten one in 20 species (for 5.2% 
of species, the distributional range falls below a minimum 
threshold), increasing to one in 12 and one in 6 species 
for 3°C and 4.3°C, respectively (Urban, 2015). Model 

projections across a range of scenarios show regionally 
highly variable extinction risks for terrestrial species on 
average between ca. 5-7% (Europe, Northern America) 
to ca. 25% (South America), ca. 9% in the tropics, and 
ca. 5% in temperate, polar and boreal environments, 
by 2100 (Maclean & Wilson, 2011; Urban, 2015). The 
projected extinction risk increases strongly with degree of 
global warming (Urban, 2015). Large uncertainties exist: 
for instance, extinction risks estimates when based on 
extrapolation of past observed trends have been found to 
be higher than the estimates based on model projections 
(Maclean & Wilson, 2011).

Climate change will impact biodiversity hotspots. Two 
contrasting future scenarios at the end of the 21st century 
have been estimated to negatively influence 25% of 
endemic species on average per hotspot, with largest 
effects in low latitudes, island locations and in Mediterranean 
type climates (Bellard et al., 2014). Nearly all of the 
143 investigated terrestrial regions in the Global 200 list of 
ecoregions that have been identified to support maintaining 
a broad diversity of Earth’s ecosystems, will likely experience 
by the end of the 21st century moderate-to-pronounced 
climate change impacts, across a range of climate change 
scenarios (Li et al., 2013).

Since the magnitude but also the velocity of climate 
change are chief determinants of whether (and which) 
terrestrial animal or plant species will be able to follow 
shifting habitats (Foden et al., 2013; Gonzalez et al., 
2010; Keenan, 2015; Loarie et al., 2009; Pecl et al., 2017; 
Pereira et al., 2010), the combination of abiotic and biotic 
characteristics that have not been observed in the past 
might be increasingly common in the future (Murcia et 
al., 2014; Ordonez et al., 2016; Radeloff et al., 2015). 
Projected future changes in species ranges, species 
extinctions and community diversity therefore may be 
under– or overestimated by models that do not explicitly 
account for species interactions such that loss (or gain) of 
one species would trigger loss (or gain) for others (Bellard 
et al., 2012; Schleuning et al., 2016). As a consequence, 
new approaches to conservation are warranted that are 
designed to adapt to rapid changes in species composition 
and ensuing conservation challenges. 

4.2.4.1.3	 The combined impact of atmospheric 
CO2 concentration and climate change on 
projected vegetation cover

Increasing atmospheric CO2, the chief driver of climate 
change, also enhances relative competitiveness of plants of 
the C3 photosynthetic pathway by fostering carboxylation 
reactions in the leaf and allowing plants to operate at 
reduced stomatal conductance (Higgins & Scheiter, 2012; 
Pugh et al., 2016b; Walker et al., 2015). Whether or not 
enhanced photosynthesis or enhanced water use efficiency 
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translates also into enhanced plant growth is not yet 
unequivocally established (Higgins & Scheiter, 2012; Pugh 
et al., 2016b; Walker et al., 2015). Globally, increased forest 
cover over the 21st century has been projected across a 
range of scenarios (Davies-Barnard et al., 2015; Reu et 
al., 2014; Sitch et al., 2008; Wårlind et al., 2014). Typically, 
forest cover increases in northern latitudes (Davies-Barnard 
et al., 2015; Reu et al., 2014; Sitch et al., 2008; Wårlind 
et al., 2014). A shift from grass- to increasingly woody-
dominated vegetation (see Nyingi et al., 2018) is simulated in 
semi-arid regions (Knorr et al., 2016; Lehmann et al., 2014; 
Lehsten et al., 2009; Moncrieff et al., 2014, 2016; Scheiter 
et al., 2015). Impacts of enhanced CO2 on canopy structure 
and combustible biomass alter fire regimes, with complex 
ecosystem feedbacks (Harris et al., 2016; Jiang et al., 2017; 
Kim et al., 2017; Knorr et al., 2016; Loudermilk et al., 2013; 
Turco et al., 2014; Wu et al., 2015). Large-scale forest “die-
back” emerges only in relatively few simulation experiments 
that examined future climate change and CO2 impacts in 
tropical forest regions, especially the Amazon (Aragão et al., 
2014; Duran & Gianoli, 2013; Gumpenberger et al., 2010; 
Malhi et al., 2009, 2008; Nobre et al., 2016; Poulter et al., 
2010; Rammig et al., 2010; Schnitzer & Bongers, 2011). 
These model outcomes are supported by analyses that 
attributed the observed greening trends in many regions 
and (C3) shrub encroachment in C4-dominated grasslands 
chiefly to CO2 fertilisation effects (Donohue et al., 2013; 
Schimel et al., 2015; Stevens et al., 2016; Zhu et al., 
2016). Increases in woody vegetation in grass-dominated 
regions are expected to negatively impact grassland-related 
biodiversity (Barbosa da Silva et al., 2016) but intermediate 
levels of woody cover might in some cases be beneficial for 
ecosystem functioning such as carbon storage, reduction 
of soil erosion and overall plant and animal species diversity 
(Barbosa da Silva et al., 2016; Eldridge & Soliveres, 2014; 
Soliveres et al., 2014).

4.2.4.1.4	 Projected changes in ecosystem 
state and function

The uptake of CO2 in land ecosystems is large, with 20-
25% of anthropogenic emissions being removed from the 
atmosphere each year (Le Quéré et al., 2018; see also 
Chapter 2.2, section 2.2.5.2.2). The future persistence of 
this land carbon “sink” is one of the largest uncertainties in 
climate research. It is important to address because of the 
potentially large warming feedback associated with a loss 
of the land sink (Arneth et al., 2010; Ciais et al., 2013). The 
direction (but not the magnitude) of the change in global 
terrestrial carbon uptake and pool sizes in response to 
climate change alone vs. increased CO2 concentration alone 
is modelled relatively robustly (Ciais et al., 2013; Hajima et 
al., 2014; Nishina et al., 2015; Sitch et al., 2008; Walker et 
al., 2015; Zaehle, 2013). However, when effects of climate 
change and CO2 concentration are considered jointly, the 
rate and even the sign of change in simulated trajectories 

of future ecosystem C pools and related fluxes are highly 
inconsistent between ecosystem carbon cycle models (Ciais 
et al., 2013; Eglin et al., 2010; Friend et al., 2014; Nishina 
et al., 2015; Piao et al., 2013; Sitch et al., 2008). The latest 
IPCC report places low confidence on how stocks and fluxes 
will evolve over the coming decades (Ciais et al., 2013).

Evapotranspiration (ET) from ecosystems is greatly altered by 
changes in leaf area, functional vegetation type, precipitation 
and atmospheric dryness, and the response of stomatal 
conductance to CO2. Whether or not global or regional 
run-off (which affects availability of water for irrigation but 
also floods) will increase in the future due to enhanced 
water cycles in a warmer climate, or possibly reduced ET 
in a higher CO2 world is unresolved. Similar to projections 
of ecosystem productivity and carbon balance, uncertainty 
arises from both variability in climate change projections and 
from process descriptions in impact models (Döll & Schmied, 
2012; Piao et al., 2007; Zhang et al., 2014).

Overall, climate change, and change in atmospheric CO2 
levels will strongly impact productivity and other important 
ecosystem processes, vegetation cover, and habitat 
structure over the next decades, with the relative importance 
of these drivers differing between biomes/regions (see 
Figure 4.2.2 and Table A4.2.1).

4.2.4.2	 Future land-use and land-
cover change impacts on habitats, 
biodiversity, and ecosystem state and 
functioning

Nearly 40% of the land surface today is used as croplands 
or pastures, and humans have transformed the vegetation 
structure and species composition in an area far greater 
still (Ellis, 2013; Ellis et al., 2012; see also Chapters 2.1 
and 2.2). Local within-sample richness, rarefaction-based 
species richness, and total abundance have all been shown 
to be generally lower in areas under different types and 
intensity of land use, compared with natural vegetation 
(Alkemade et al., 2009; Newbold et al., 2015; Wilting et al., 
2017; Chapter 2.2.). In some cases, species richness, at 
least for plants, can also increase under land use, such as 
documented in local management systems for agriculture 
and agroforestry, forests, meadows and grasslands found 
around the world (Ellis et al., 2012; Gerstner et al., 2014; 
see also Chapter 2.2). Both, changes in land cover and 
land use, are known to impact biodiversity and ecosystem 
functioning globally (Foley et al., 2011; Kleijn et al., 2009; 
Pywell et al., 2012). But across large scales, studies 
typically assess impacts of land cover changes, rather than 
intensification of management at a given area of land which 
limits our ability to understand the combined effect of land-
use and land-cover change (de Chazal & Rounsevell, 2009; 
Titeux et al., 2017). 
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Humid or mesic savannas and woodlands seem particularly 
vulnerable to future conversion of natural vegetation into 
cropland or pasture, because of their climate suitability for 
agriculture. Land-use changes have been very pronounced 
in recent decade; for example, in the Cerrado or Chaco 
regions of South America, but also in African savannas 
(Aleman et al., 2017, 2016; Cavender-Bares et al., 2018; 
Nyingi et al., 2018; Searchinger et al., 2015; see also 
Chapter 2.1). 

Land conversion pressure is large both in scenarios that 
explore high population growth and lack of consideration 
for sustainable development (e.g., lack of conservation 
efforts, little consumption change), as well as in strong 
mitigation scenarios that require land for bioenergy or 
afforestation (Popp et al., 2017; see also section 4.2.4.3). 
Due to large land area requirements, maintaining or 
enhancing biodiversity and ecosystem functionality (such 
as productivity and changes in carbon pools or changes 
in water cycling) would be challenging under such socio-
economic projections (Krause et al., 2017, 2018; Popp et 
al., 2017; Ryan et al., 2016; Searchinger et al., 2015).

Projections of future biodiversity at the global level have 
until recently been biased towards climate change related 
questions (Titeux et al., 2016, 2017). Anthropogenic 
land-cover changes have been relatively well studied at 
the regional and local levels, particularly but not only in 
tropical forests regions, but are only slowly beginning to be 
considered in global scenario projections. Declining forest 
cover and/or reduced average local species richness, 
for 2050 and until the end of the 21st century have been 
found under “economic optimism” scenarios, such as 
the SSP5/RCP8.5 which projects large greenhouse gas 
emissions and climate change effects along with substantial 
expansion of cropland or pastures (Davies-Barnard et 

al., 2015; Newbold et al., 2015), or under scenarios that 
assume the absence of a REDD scheme (Strassburg et al., 
2012). Interactions of future climate change with land-cover 
change were shown to enhance risk of biodiversity loss by 
up to 43% for birds and 24% for mammals, compared to 
land-cover change impacts only (Mantyka-Pringle et al., 
2015). By 2050 in a business-as-usual scenario, climate 
and land-cover change were shown to lead to a decline 
in mean terrestrial carnivore and ungulate population 
abundance by 18-35%, and to an increase in extinction 
risk for 8-23% of species (Visconti et al., 2016). Negative 
impacts are also projected to arise from land-cover and 
land-use changes on a range of threatened carnivores in 
an OECD Environment Outlook scenario (Di Minin et al., 
2016). Taken together these studies demonstrate that 
across a range of scenarios, expansion of managed land 
is projected to pose additional pressure on biodiversity. 
The relative impacts of climate change versus land-use 
change on biodiversity, however, are context-specific and 
vary between scenarios and regions, and depend on the 
biodiversity indicator or facet of biodiversity under scrutiny, 
as emphasised by the four regional IPBES assessments 
(e.g., Bustamante et al., 2018; Elbakidze et al., 2018; 
Nyingi et al., 2018; Wu et al., 2018) and also by very recent 
results emerging from the BES-SIM study (Kim et al., 2018; 
Box 4.2.5; see also section 4.1).

Future anthropogenic land-cover change will also impact 
protected areas and the associated protected species 
range (see section 4.6). Even when implemented efficiently, 
the percentage area protected would have to increase to 
capture a similar rage of terrestrial vertebrate species range 
in simulations that include projections of land cover change 
over the next two decades, compared with land-cover 
change remaining at present-day levels (Montesino Pouzols 
et al., 2014). 

Box 4  2  5 	 Biodiversity and nature’s contributions to people in the Shared Socio-economic 
Pathway scenarios: a model inter-comparison.

Background. In 2016, IPBES created a task force to support 
the scientific community in developing scenarios and models 
to provide IPBES and other stakeholders with greatly improved 
capacity to assess the future impacts of global environmental 
change on biodiversity and nature’s contributions to people 
(IPBES, 2016b; Rosa et al., 2017). This work focuses on 
two complementary tasks. The first task is to work closely 
with the climate change community to analyze and extend 
the ‘Shared Socio-economic Pathways (SSP)’ scenarios 
and associated climate change projections that have been 
developed in support of the IPCC (Rosa et al., 2017). The 
results presented below are the first outcomes from this task 
referred to as BES-SIM (Kim et al., 2018). The second task is 
to develop a set of multi-scale, participatory based scenarios 

that explicitly account for nature conservation objectives. This 
task is ongoing, and the outcomes will only become available 
for future assessments.

The results presented below are from the first-ever comparison 
of multiple models of terrestrial biodiversity, ecosystem 
functioning and ecosystem services at the global scale using 
a common set of inputs for climate and land-use change 
drivers (Kim et al., 2018), addressing shortcomings in previous 
comparative attempts that have been hampered by the lack 
of a common methodology (Bellard et al., 2012; Pereira et al., 
2010; Settele et al., 2014; Urban, 2015; Warren et al., 2011). 
Using a total of 14 participating models, ten different indicators 
of biodiversity were simulated and six models contributed 
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simulations of ecosystem function and ecosystem services (Kim 
et al., 2018). 

All models of biodiversity, ecosystem function and ecosystem 
services used harmonized land-use inputs from three SSP 
scenarios in combination with three scenarios of greenhouse 
gas emissions (RCP) and corresponding projected climate 
change (Kim et al., 2018):

•	 SSP1 x RCP2.6 – is a ‘global sustainability’ scenario 
archetype (SSP1) combined with low GHG emissions 
(RCP2.6), 

•	 SSP3 x RCP6.0 – is a ‘regional competition’ scenario 
archetype (SSP3) combined with high GHG emissions 
(RCP6.0), and 

•	 SSP5 x RCP8.5 – is an ‘economic optimism’ scenario 
(SSP5) combined with very high GHG emissions (RCP8.5).

Climate and land-use change projections from these three sets 
of scenarios (see section 4.1.4, and Appendix A4.2.3) were 
evaluated for their consequences for biodiversity, ecosystem 
functions and ecosystem services. In addition, some of the 
participating models evaluated the impacts of climate change 
and land-use change individually, as well as in combination. 
Outputs from ecosystem functioning and ecosystem services 
models have been grouped into categories of nature’s 
contributions to people as defined in Diaz et al. (2018).

Biodiversity and regulating nature’s contributions to people 

are projected to decline while material contributions to 

people increase by 2050. The global average of projected 
impacts on biodiversity and on nature’s contributions to people 
are shown in Figure 4.2.14. The combined impacts of climate 
and land-use change on biodiversity include large declines in 
local species richness, increases in regional to global scale 
species extinction and declines in biodiversity intactness. Several 
important regulating ecosystem services, such as coastal 
protection, soil erosion protection and crop pollination, are 
projected to decline in the ‘regional competition (SSP3xRCP6.0)’ 
and ‘economic optimism (SSP5xRCP8.5)’ scenarios. 

In contrast, food, feed, timber and bioenergy production 
services are projected to substantially increase in these 
scenarios. This pattern of trade-offs between declining 
biodiversity and regulating contributions on one hand vs. 
increasing material contributions on the other hand are 
coherent with recent patterns (Carpenter et al., 2009; see 
Chapters 2 and 3) and with a wide range of studies of 
biodiversity and ecosystem services evaluated in this chapter 
(sections 4.3 and 4.5).

Not all of the metrics follow this general pattern. One 
important example is ecosystem carbon storage at the global 
scale, which is an indicator of the capacity of ecosystems 
to contribute to climate change mitigation. Global scale 
ecosystem carbon storage is projected to be stable or increase 

in nearly all scenarios and in all ecosystem models by 2050 (see 
Table A4.2.2 in Appendix A4.2.3). This occurs in part because 
rising atmospheric CO2 concentrations and rising temperatures 
(up to certain point) stimulate modeled plant productivity and 
ecosystem carbon storage, as well as the result of land-use 
change in the scenarios. 

There are large regional differences in the patterns of 

biodiversity loss and changes in nature’s contributions to 

people with the largest projected impacts in the global 

south (Figure 4.2.15). The projected effects of land use and 
climate change on three metrics of biodiversity, material nature’s 
contributions to people and regulating nature’s contributions to 
people for the IPBES subregions are shown in Figure A4.2.1 
in Appendix A4.2.3. The general patterns at the global level 
– i.e., declines in biodiversity and regulation contributions vs. 
increases in material contributions – are evident in nearly all 
subregions. Biodiversity in South America, Africa and Asia (with 
the exception of northeast Asia) is much more heavily impacted 
than in other regions, especially in the regional competition 
and economic optimism scenarios. Ecosystem carbon storage 
shows particularly contrasted regional responses, with very 
large declines projected for Africa. These regional differences 
occur in part because scenarios foresee the largest land-use 
conversions to crops or bioenergy in these regions (see section 
4.1.5 and Appendix A4.1.2). Other regions such as North 
America and Europe are foreseen to have low conversion to 
crops and continued trends of afforestation which minimizes 
declines in biodiversity, or even increases in some regional 
biodiversity metrics. Regional differences in climate change 
impacts also play a major, and sometimes dominant role in 
regional contrasts.

The magnitude of impacts and the differences between 

regions are much greater in scenarios of regional 

competition and economic optimism than in a scenario of 

global sustainability. Biodiversity loss at the global scale is 
much lower in the global sustainability scenario (SSP1xRCP2.6) 
than in the regional competition and economic optimism 
scenarios and even improves for the biodiversity intactness 
metric. Several regulating services, such as crop pollination 
and soil protection, increase at the global scale in the global 
sustainability scenario instead of declining as in the other two 
scenarios, and in general, the impacts of land use and climate 
change are much greater in the regional competition and 
economic optimism scenarios (Figure 4.2.14). In contrast, 
the global sustainability scenario results in substantially lower 
projected food, feed and timber production, but it is important 
to note that this arises primarily from lower demand rather 
than insufficient supply of food and timber to people. The 
regional competition and economic optimism scenarios also 
are projected to generate much greater regional contrasts 
in biodiversity and nature’s contributions than the global 
sustainability scenario (Figure 4.2.15). But caution should 
be exercised when generalizing from these three scenarios 
because there is substantial variation in land use and other 
drivers within each of the main Shared Socio-economic 
Pathway classes (Popp et al., 2017).
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Figure 4  2  14   Global means of projected percent changes in biodiversity A  and nature’s 
contributions to people B  between 2015 and 2050.   

Biodiversity metrics include changes in local species richness (= number of species in a small area), regional species richness 
(number of species at regional or global scales, the opposite of which is regional or global extinction), and biodiversity 
intactness (i .e ., abundance of plant and animal communities in disturbed compared to undisturbed natural ecosystems) . 
Values are averages across models, which number is indicated by N . Standard errors across models are indicated by 
whiskers when more than one model projection was available . The three SSPxRCP scenarios are defi ned in the box text .
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Figure 4  2  15   Projected changes in biodiversity and nature’s contributions to people for 
the IPBES subregions for a ‘global sustainability’ scenario (SSP1), a ‘regional 
competition’ scenario (SSP3) and an ‘economic optimism’ scenario (SSP5) 
between 2015 and 2050. 

To allow for direct comparison across scenarios and subregions, absolute mean values of change have been standardized 
by dividing the individual value of a metric by the standard deviation of all the values of that metric for all subregions in all 
scenarios (see Appendix A4 .2 .3 for details) .
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Likewise, future land-cover change scenarios and different 
spatial patterns that have been projected for each of the 
four RCPs will affect buffer zones that surround existing 
protected areas (Beaumont & Duursma, 2012). In most 
biomes modelled in this study (Beaumont & Duursma, 
2012), previously unused land in buffer areas is projected 
to decline considerably by 2050 and more so by 2100. 
The projected decline in local species richness might be 
similar for low and high emissions scenarios, if the low 
emissions scenario necessitates large conversion of primary 
vegetation, for instance for bioenergy crops (RCP2.6; 
Newbold et al., 2015). In contrast, a scenario focusing on 
globally sustainable resource use, consumption change, and 
associated habitat restoration indicated that both extinction 
risks and species losses would strongly be reduced over 
the next decades (Visconti et al., 2016). Likewise, scenarios 
of increasing carbon prices as incentives to increase return 
from maintaining forested areas under a REDD mechanism 
drastically reduced local extinctions, especially in regions 
with high species richness (Strassburg et al., 2012).

Estimates of impacts of land-use change on ecosystems and 
biodiversity need to consider urban areas and landscapes. 
Over the coming decades, some ecoregions and biodiversity 
hotspots will lose remaining undeveloped area through urban 
development, with localised large pressures on rare species 
and protected areas (Güneralp & Seto, 2013; McDonald 
et al., 2008; Seto et al., 2012). Nonetheless, a number of 
indicators of bird biodiversity differed little between urbanised 

and non-urbanised environments (Pautasso et al., 2011). In 
Australia, some cities support a relatively larger number of 
threatened plant and animal species compared to non-
urban landscapes (Ives et al., 2016). With ongoing and 
future projected urbanisation of human societies, impacts of 
cities, larger urban areas and land transportation networks 
clearly must be included in scenarios of future biodiversity at 
different spatial scales.

Projected anthropogenic land-cover change and 
intensification of agriculture and pastures will enhance 
emissions of greenhouse gases. Future emissions of N2O 
from terrestrial ecosystems in response to deposition 
and fertiliser use and climate change are projected to be 
enhanced by ca. 20% to threefold by the middle of the 
21st century across a range of RCP (2.6, 8.5) and SRES 
scenarios (A1, B1, A2, B2) (Bodirsky et al., 2012; Kanter 
et al., 2016; Stocker et al., 2014). Other gaseous forms of 
N losses (NOx and NH3) and their atmospheric reactions 
affect secondary organic aerosols, the lifetime of methane, 
or formation of tropospheric ozone (Bodirsky et al., 2012; 
Butterbach-Bahl et al., 2011; Kanter et al., 2016; Lassaletta 
et al., 2016; Zaehle et al., 2015), and pollute waterways 
(section 4.2.3). On the other hand, land management 
practices in cropland, pastures and managed forests have 
been estimated to potentially contribute to emissions 
reductions by 1.5-4.8 Gt CO2eq a-1 (Griscom et al., 2017; 
Smith et al., 2014a) achievable over few decades at carbon 
prices up to 100 $ US, without detrimental side effects on 

The projected impacts of climate change on biodiversity 

are much greater than land-use change in this study, 

but there is large uncertainty in this result. There is 
considerable debate concerning the relative sensitivity of 
species response to land use vs. climate change (Bellard et 

al., 2012; IPBES, 2018g, 2018j, 2018h, 2018i; Pereira et al., 
2010). This multi-model study suggests that climate change 
will dominate biodiversity responses as early as 2050 for all 
biodiversity metrics, but this outcome needs to be treated 
with considerable caution for several reasons including i) very 
high uncertainty in models of climate change impacts on 
biodiversity (see error bars in Figure 4.2.14, and Settele et 

al., 2014 for a discussion of uncertainties), ii) there are small 
differences in projected land-use change across the three 
scenarios compared to the range in a wider set of plausible 
futures (Alexander et al., 2017c; Pereira et al., 2010; but see 
Popp et al., 2010) showing that the three scenarios used 
here cover nearly the full spectrum of land-use change in the 
SSP scenarios set), iii) issues related to defining land-use 
classes and using a very small set of land-use classes and 
iv) optimistic assumptions about food production increases 
that contribute to relatively small land-use changes while 
neglecting impacts of agricultural intensification (see drivers 
section 4.1.4).

There are high levels of uncertainty associated with 

these projected impacts, as is the case in other studies. 

There are a number of general and specific limitations to the 
BES-SIM results. Generally, the models used to foresee future 
land-use change, as well as the models of climate change 
impacts on biodiversity and most ecosystem services have not 
been well evaluated with data (Alexander et al., 2017c; Ferrier 
et al., 2016; Settele et al., 2014; van Vliet et al., 2016a). In 
addition, all models have intrinsic limitations due to underlying 
hypotheses and simplifications (Ferrier et al., 2016). For 
example, none of the models of species response to climate 
change used in the BES-SIM study explicitly accounts for 
the capacity of organisms to adapt to climate change, or for 
species-interactions (Kim et al., 2018). Model outputs have 
been grouped into categories of metrics, but these groupings 
mask important differences in interpretation of metrics from the 
various models (Kim et al., 2018). For example, interpretation 
of ecosystem service indicators is challenging because they 
are expressed in very different units. Nevertheless, besides 
constituting the first comparison of a broad range of models 
using a common set of climate and land-use scenarios, one of 
the benefits of the BES-SIM study was to help to quantify some 
of the components of uncertainty, and while the difference 
between models was large for all metrics (Figure 4.2.14), the 
overall qualitative trends were similar.
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productivity, water use or biodiversity. This greenhouse 
emissions reduction potential might be tripled if food 
demand-side measures are also taken.

4.2.4.3	 Future global ecosystem 
functioning and biodiversity in strong 
climate change mitigation scenarios

Land use is becoming increasingly central in future 
scenarios that target strong climate change mitigation 
(Popp et al., 2017). Avoided deforestation (in conjunction 
with afforestation and reforestation, AR) is seen as one 
possible option (Angelsen, 2010; Chazdon et al., 2016; 
Cunningham et al., 2015; Smith & Torn, 2013; Strassburg 
et al., 2012), which is also low-cost (Griscom et al., 
2017; Humpenoder et al., 2014). Co-benefits of avoided 
deforestation for biodiversity (see Figure 4.2.2, Table 
A4.2.1 in Appendix 4.2) and local communities can be 
large, whereas the environmental impacts of large-scale 
afforestation and reforestation depend to a large degree 
on prior vegetation cover and the tree species planted for 
reforestation. Under the Paris COP21 climate agreement, 
forest-based climate mitigation targets feature prominently 
in several countries’ Nationally Determined Contributions 
(Grassi et al., 2017). Likewise, bioenergy in combination 
with carbon capture and storage (BECCS) has been put 
forward as a major land-based climate change mitigation 
approach in many scenarios that achieve a target of 2°C 
warming or below (Fuss et al., 2016; see IPCC, 2018, 
Chapter 4.3.7; Popp et al., 2014; Smith et al., 2016). 
In Integrated Assessment Models (IAMs), the global 
cumulative C-uptake potential has been estimated to be 
ca. 55-190 GtC for avoided deforestation and AR at the 
end of the 21st century, and between ca. 125-250 GtC 
for BECCS (Humpenoder et al., 2014; Tavoni & Socolow, 
2013). Annual carbon uptake in 2050 for BECCS (1-2.2 
GtC a-1) and AR (0.1-1 GtC a-1) is equivalent to up to one 
third to three quarters of today`s land carbon sink (IPCC, 
2018, Chapter 4.3.7; Le Quéré et al., 2018). In absence of 
carbon capture and storage, IAM projections may indicate 
even higher use of bioenergy (although it remains unclear 
how the required land area could be made available in an 
overall environmentally sustainable manner), unless the IAM 
scenarios are based on reduced energy consumptions and/
or availability of cheap renewable energy, which reduces 
the need for land-related climate change mitigation (IPCC, 
2018, Chapter 2.3). Analyses of ecosystem carbon uptake 
with dynamic global vegetation models (Fisher et al., 2010) 
have arrived at consistently lower numbers than land-use 
models in IAMs when confronted with similar land-use 
change projections (Krause et al., 2018). The reasons for 
the discrepancies in carbon uptake potential calculated with 
IAMs and DGVMs are not yet fully resolved. Indirect land-
use changes complicate projections further. For instance, 
Popp et al. (2014) argued that stringent forest conservation 

policies could well lead to a spill-over effect such that land 
transformation for agriculture is shifted to other carbon-
rich and biodiversity-rich ecosystems such as savannahs 
or temperate grasslands. Stringent climate change 
mitigation affects ecosystem productivity through bounded 
temperatures (and precipitation), but also via lower CO2 in 
the atmosphere. Stabilizing or reducing the atmospheric 
concentration of CO2 is expected to stabilize or reduce 
the fertilization effect of photosynthesis and is likely to also 
stabilize or reduce productivity compared to present-day 
levels (Jones et al., 2016; Pugh et al., 2016b).

Growth of bioenergy in simulation studies is in some 
cases restricted to marginal lands to avoid competing 
with food production, with the implicit assumption that 
these marginal lands would also be diversity-poor, which 
is not necessarily the case (Plieninger & Gaertner, 2011). 
The published studies mostly lack a clear definition and 
do not quantify the criteria used for classifying marginal 
or degraded land (de Jong et al., 2011). Schueler et al. 
(2016) mapped the sustainability criteria, which include 
biodiversity protection, of the European Renewable Energy 
Directive to the global land area and found, for present-
day environmental conditions, a potential for an additional 
bioenergy generation of around 80-90 EJ a-1 on ca. 430 
Mha land. A large proportion of this land area is classified 
as low yielding (low productivity). Regions of high-yield 
potential that are currently under natural vegetation would 
be at risk for development unless protective sustainability 
measures are applied. In a stylised scenario experiment 
based on data for Miscanthus as a bioenergy crop species, 
half the potential for global bioenergy production was found 
to lie within the top 30% of land area classified of highest 
priority for biodiversity protection (Santangeli et al., 2016). In 
a recent simulation of future land-use impacts on extinction 
risk of endemic species, and applying land-use change 
projections adopted from (Popp et al., 2014), the RCP2.6-
SSP1 scenario was identified as causing the least loss of 
natural vegetation cover by 2050 and the least extinctions of 
endemic mammals, birds and amphibians, compared with 
the – in this study – “worst case” RCP3.4-SSP4 (Chaudhary 
& Mooers, 2017). Climate change was not considered as 
an additional factor, which likely would have enhanced the 
projected biodiversity risk in the stronger climate change 
cases. The published literature overall suggests that only 
protective mechanisms that account for carbon storage 
potential and biodiversity at the same time could yield 
the intended carbon-mitigation objectives while avoiding 
degradation of diversity.

Uncertainties regarding impacts on biodiversity and 
ecosystems arising from different land-use change 
projections cannot be assessed yet. It was shown that 
structural differences (for instance, the type of economic 
model) that exist between different land-use change 
models can have a similarly large impact on future land-use 
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change projections than the underlying socio-economic 
scenario (Alexander et al., 2017c; Prestele et al., 2016). 
However, only one Integrated Assessment Model provides 
the so-called marker scenario per RCP/SSP combination 
(Popp et al., 2014; see Box 4.2.5). Without a larger set of 
harmonised historical to future land-use change projections 
for each of the RCP/SSP, from a wide range of different 
land-use change models, the degree to which impacts on 
biodiversity and ecosystem state and function are related to 
scenario archetypes remains unresolved.

4.2.4.4	 Invasive alien species

Invasive alien species are a major driver of biodiversity loss 
today (see Chapter 2.2, section 2.2.5.2; see Bustamante 
et al., 2018; Elbakidze et al., 2018; Nyingi et al., 2018; 
Wu et al., 2018). Projections of invasive alien species all 
foresee continued substantial changes in biological invasion 
state and pressure with significant consequences for both 
biodiversity and human well-being. These projections have 
until recently been biased towards climate change related 
questions, but increasingly also consider how land use and 
trade patterns might affect future distribution of invasive 
alien species. Future changes of invasive alien species 
distributions are still uncertain, but several generalizations 
can be made from modelling work.

The pressure on biodiversity, and ecosystem function from 
biological invasions is expected to continue to grow in the 
coming decades in most parts of the world (Bellard et al., 
2013; Gallardo et al., 2017; Hulme, 2009), as well as the 
economic damage caused by invasive alien species to 
society (Bradshaw et al., 2016). Extrapolations of cumulative 
introduction events over Europe suggest that the number 
of invasive species will continue to increase (CBD, 2014; 
Elbakidze et al., 2018). This trend is likely to be accentuated 
at a global scale, as trade between climatically and 
environmentally similar regions are predicted to increase 
and habitats continue to be disturbed (Chytrý et al., 2012; 
Seebens et al., 2015). For example, future hotspots of 
naturalized plants are predicted to occur mostly in North 
America, Australia, and South America, followed by Europe, 
South Africa and China (Seebens et al., 2015). An analysis 
conducted on the IUCN “100 of the world’s most invasive 
alien species” suggests future expansion of these species 
especially in cool temperate areas. The biomes with the 
highest expected expansion are temperate mixed forest, 
temperate deciduous forests and coniferous cool forests 
but also southern Australia, Argentina, as well as Pacific and 
Caribbean islands due to climate and land-use changes 
(Bellard et al., 2013). Tropical forest and tropical woodland are 
projected to be less favorable for those “top invasive” species 
by 2080. Moreover, some regions will offer more suitable 
environmental conditions for survival and spread of invasive 
species compared to current conditions in the eastern part 

of the United States, northern Europe, Argentina, southern 
China and India (Bellard et al., 2013). Indeed, poleward 
migrations of species are expected for many invasive alien 
species, leading to shifts at higher latitudes of species (Bellard 
et al., 2013), especially in Europe where shifts are anticipating 
to reach unprecedented rates of 14-55km/decade (Gallardo 
et al., 2017). Climate change might also affect establishment 
of new invasive species indirectly, for instance through 
changing patterns of human transport or by rendering existing 
management strategies to defend against invasive species 
less efficient (Hellmann et al., 2008). 

The potential consequences for biodiversity of these 
future invasions are various. One of the most dramatic 
consequence is local extirpation of native populations but 
also species extinctions on islands (Clavero et al., 2009). 
Invasive mammal species have been a primary cause of 
extinctions on islands and future impact of those species 
on insular threatened vertebrates are predicted to increase, 
if no management measures are undertaken (McCreless et 
al., 2016). A recent study focusing on Europe showed that 
protected areas within Europe may offer effective protection 
to native species against future invasions (Gallardo et al., 
2017). Another substantial consequence of biological 
invasions is the homogenization of fauna and floras which 
is likely to continue in the future. For instance, continental 
islands are projected to homogenize greatly beyond current 
levels of mammal assemblages, while oceanic islands are 
simulated to experience little additional homogenization of 
their mammal assemblages (Longman et al., 2018). How 
many of future introduced species will become invasive 
is difficult to assess because there is generally a time lag 
of several decades between introduction, establishment 
and impact. This time lag also offers a time window for 
opportunities and actions to mitigate invasions. 

4.2.4.5	 Pollution impacts on terrestrial 
ecosystems: Ozone (O3) and Nitrogen

In response to tropospheric ozone exposure, net 
photosynthesis declines, either due to the energy needed 
to produce defence compounds, or the direct damage to 
the photosynthetic apparatus (Feng et al., 2008; Wittig et 
al., 2009). Simulations studies result in damage of the order 
of approximately 10% in annual gross primary production 
(Franz et al., 2017; Li et al., 2017; Lombardozzi et al., 
2012; Sitch et al., 2007) with feedbacks to climate by 
reduced terrestrial carbon sink strength (Ciais et al., 2013; 
Sitch et al., 2007). Changes in future species community 
composition arising from differences in species’ vulnerability 
to ozone is not possible to project with current modelling 
tools, although some evidence exists that ozone indeed 
can affect species composition and richness (see Fuhrer et 
al., 2016 and references therein). Large regional differences 
regarding ozone’s future impact on plant communities, 
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carbon or water cycling, or crop yields are to be expected 
(Franz et al., 2017; Fuhrer et al., 2016; Li et al., 2017). 

Eutrophication of terrestrial ecosystems has been found to 
affect a wide range of ecosystem functioning and community 
composition across ecoregions (Clark et al., 2017). Nitrogen 
addition in experimental grassland plots reduced species 
richness (DeMalach et al., 2017), whereas aboveground plant 
productivity increases across ecosystems (Greaver et al., 
2016). While the key processes operating in the interplay of 
climate change, N deposition and plant and soil physiology 
are rather well known, today’s modelling tools are inadequate 
to provide process-based future projections (Greaver et 
al., 2016). Global projections of the future C sink strength 
of the terrestrial biota have demonstrated large differences 
in models that account for C-N interactions, compared to 
models that ignore these (Arneth et al., 2010; Wårlind et al., 
2014; Zaehle, 2013; Zaehle et al., 2015). 

4.2.5	 Challenges in linking 
biodiversity and ecosystem 
functioning at the global level

Linking biodiversity quantitatively to ecosystem function, 
globally and across large regions, is still a challenge. Species 
diversity was found to correlate with productivity in (semi)
natural systems and in land managed for food or timber 
(Duffy et al., 2017; Isbell et al., 2011; Liang et al., 2016; 
Visconti et al., 2018). Likewise in tropical and temperate 
rivers fish biodiversity correlated positively with fish yields 
(Brooks et al., 2016). In Amazon forests, carbon storage 
and turnover were shown to be impacted significantly by 
tree-mammal interactions (Sobral et al., 2017). In boreal 
forests, diversity and tree productivity were also correlated 
(Paquette & Messier, 2011). But global modelling tools to 
explore in marine, terrestrial and freshwater systems the 
futures of biodiversity or the futures of ecosystem function 
are still mostly disconnected (Cabral et al., 2017; Mokany et 
al., 2016, 2015; Snell et al., 2014; Visconti et al., 2016). This 
gap reflects the need for connecting model development 
efforts across scientific disciplines. In the marine field, for 
example, global scale models of ecosystem function have 
been mostly developed by physicists, in the form of coupled 
physics-biogeochemical models representing carbon and 
nitrogen fluxes between low trophic level functional groups 
(e.g., phytoplankton, zooplankton), while at the other end 
of the food web, fish and higher trophic level models have 
been developed by biologists with far more focus on life 
history and biodiversity, but embodying simplified forcing of 
climate, and less global scale perspective (Rose et al., 2010; 
Shin et al., 2010; Travers et al., 2007).

Global-scale biodiversity modelling has been concerned with 
a sub-set of challenges, focusing on how future warming will 

affect the distribution or extinction of species. Interspecific 
interactions and multi-driver interactions are typically 
ignored, which can result both in over- and underestimation 
of risks in diversity losses (Alkemade et al., 2009; Bellard et 
al., 2012, 2013; Carpenter et al., 2011; Mokany et al., 2016; 
Pacifici et al., 2015; Pereira et al., 2010; Snell et al., 2014; 
Visconti et al., 2015). Little attention has been paid to global 
scale projections of functional, phylogenetic or genetic 
diversity, even though fast adaptation to environmental 
changes are possible through microevolution or phenotypic 
plasticity (section 4.2.1.2; Bellard et al., 2012; Pelletier & 
Coltman, 2018). Likewise, DGVMS simulate ecosystem 
state and function, expressed as the stocks and flows of 
carbon, water and nitrogen (Le Quéré et al., 2018), but 
with little consideration for interactions between and within 
groups of plants, or across multiple trophic levels. Potential 
ways forward to overcome barriers in bridging between 
models of ecosystem state and functioning, and models 
that simulate changes in diversity are being proposed in the 
terrestrial domain (Mokany et al., 2016, 2015; Snell et al., 
2014). In the marine domain, integrated end-to-end models 
start to emerge, resulting from the coupling of disciplinary 
models of ocean physics, ocean biogeochemistry and fish 
biodiversity (Fulton, 2010; Rose et al., 2010; Travers et al., 
2007). It is expected that approaches towards integrating 
models of biodiversity and ecosystem function will flourish 
in the future, despite the multiple technical and conceptual 
challenges they entail.

Large uncertainties exist both in how impact models 
respond to climate change and associated environmental 
drivers (e.g., CO2 fertilisation, N limitations/fertilization; 
Ahlström et al., 2012; Ciais et al., 2013; Friend et al., 2014; 
Gonzalez et al., 2010; Heubes et al., 2011; Huntingford 
et al., 2009; Rammig et al., 2010; Warszawski et al., 
2013; see also section 4.7). Regarding land-use change 
projections, impacts on biodiversity and ecosystems 
received so far much less attention compared to climate 
change (see 4.2.4.2, 4.2.4.3). Futures of other drivers still 
need to be explored despite of their known large impacts 
on biodiversity and ecosystems in the past, and today 
(pollution, invasive species). Moreover, model experiments 
as well as observational studies tend to concentrate on 
single-driver responses, despite indications that combined 
effects cannot be predicted from the sum of single-factor 
responses (Alkemade et al., 2009; Fu et al., 2018; Langley & 
Hungate, 2014; Visconti et al., 2015).

Clearly, improvements of scenarios and modelling tools are 
still needed to be able to represent the future environmental 
conditions (i.e. the range of conditions that will impact 
on biodiversity) in a way that is comparable across direct 
drivers and that enable us to make a fair comparison of their 
expected impact in the future. For that reason, the overall 
issue of the relative and combined expected impacts of 
different drivers in the future remains unresolved.
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4.3	PLAUSIBLE FUTURES  
FOR NATURE’S 
CONTRIBUTIONS  
TO PEOPLE

4.3.1	 Nature’s contributions to 
people across scenario archetypes

Scenarios and models are important tools for understanding 
how the multiple contributions of nature to people (NCP) 
might unfold in the future. Scenarios that are adverse for 
biodiversity and ecosystem function are likely to be adverse 
for NCP because of known links between biodiversity, 
ecosystem function and the material, regulating and 
non-material benefits to humans (Mace et al., 2012). 
Nonetheless, there is still a lack of robust knowledge and 

quantitative estimates of these relationships, and thus how 
they might impact future changes in NCP.

Scenario archetypes were used to examine the relationship 
between different socio-economic development pathways 
and their impacts on the three broad categories of nature’s 
contributions to people (regulating, material and non-material 
contributions), as interpreted mostly from the ecosystem 
services literature. Results from the systematic literature 
review of global and continental-scale scenarios (see 
Appendix A4.1.1) were classified as falling under “economic 
optimism” (75 = number of results), “global sustainability” 
(35), “regional competition” (59), “business-as-usual” 
(34), “regional sustainability” (14), and “reformed markets” 
(31) (Figure 4.3.1; see also section 4.1.3 for archetype 
descriptions). Overall, global and continental-scale scenarios 
addressing NCP are scarce and biased towards a few 
categories. Some NCP are relatively frequently analyzed 
such as food and feed, regulation of freshwater and climate; 

Figure 4  3  1   Results of the systematic literature review (Appendix A4.1.1) showing the 
three broad groups of nature’s contributions to people (material, non-
material, and regulating NCP) for each of the six scenario archetypes. 

The y-axis indicates the proportion of negative and positive trends reported in the literature review . Numbers (N) indicate the 
number of results, followed by the number of articles that report those results in parentheses . 
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while non-material NCP or some regulating NCP such as 
regulation of the impacts of hazards and extreme events and 
regulation of ocean acidification are covered by a very low 
number of studies at continental or global scales.

It should be noted that the reviewed literature usually uses the 
terminology of “ecosystem services” or reports on aspects of 
ecosystem services without making explicit reference to the 
ecosystem services framework. Chapter 1 presents a detailed 
discussion about the relationship between ecosystem 
services and NCP categories. The literature has been 
interpreted accordingly, and ecosystem services have been 
reclassified into IPBES NCP categories. In this section, the 
term “ecosystem service” is, however, used instead of NCP 
when it is helpful for clarity and understanding.

4.3.2	 Changes in nature’s 
contributions to people 

Regulating NCP show decreasing trends in the future in 
most scenario archetypes (Figure 4.3.1), with only “regional 
sustainability” and “economic optimism” scenarios showing 
mixed trends for regulating NCP. “Reformed markets” 
and “business-as-usual” scenarios present the highest 

proportion of declining trends for regulating NCP. Material 
NCP show mixed trends along scenario archetypes. 
“economic optimism” is the scenario that shows the lowest 
number of negative trends for material NCP followed by 
“business-as-usual” and “Global Sustainability”. In all cases, 
published studies focused on the supply of NCP (which is not 
deconvoluted with the demand of NCP) and did not take into 
account flows, uses, beneficiaries or values. 

Figure 4.3.2 shows the trends for three NCP with the most 
entries in the systematic literature review database. Food 
and feed show a mixed picture, while regulation of climate 
shows a more positive picture and regulation of freshwater 
a very negative one. This is especially worrisome, because 
water is the basis for the generation of all other NCP and the 
direct well-being of humans.

4.3.2.1	 Nature’s contribution to people – 
regulating contributions

Habitat creation and maintenance

Habitat creation and maintenance has crucial importance 
for facilitating all NCP. Considering the projected increasing 
loss of natural vegetation cover in nearly all future land-use 

Figure 4  3  2   Results of the literature review showing the trends for three NCP categories 
that are the most frequently represented in studies. 

There were insuffi cient entries to differentiate between archetype scenarios so this fi gure shows the general patterns over all 
scenario types . 
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change scenarios and the climate change induced shift in 
natural vegetation distribution (see section 4.2.4), it is to be 
expected that species with specific habitat requirements 
will be under increasing pressure. Homogenization of 
communities and habitats is expected to have negative 
consequences on the ability of ecosystems to maintain 
multiple ecosystem functions. In addition to habitat 
specialists, species that can be classified as being 
intermediate between specialists and generalists will be 
under increasing pressure, since these species tend to rely 
on intact metapopulations and are vulnerable to increasing 
degradation of landscapes. Their loss would have a 
particularly large impact on genetic diversity since generalist 
species tend to have more genetic variability compared to 
specialists (Habel & Schmitt, 2018). 

Projections of future interactions between changes in 
terrestrial habitats and biodiversity focus either on climate 
change impacts, or on the transformation of natural 
ecosystems into agricultural systems as main drivers (section 
4.2.4; Alkemade et al., 2009; Bellard et al., 2012; Jantz et 
al., 2015; Mantyka-Pringle et al., 2015; Pereira et al., 2010; 
Visconti et al., 2016; Warren et al., 2011). At the global 
scale, little attention has been paid to restoration scenarios. 
Likewise, most biodiversity and ecosystem models do not 
have the capacity to represent habitat degradation and 
fragmentation (Bonan & Doney, 2018). Beyond the use of 
species distribution models, actual movement of species, 
either as individuals or as groups is often not taken into 
account in models used to project interactions between 
changing environments and populations (Holloway & Miller, 
2017), which implies large uncertainty regarding the future 
vulnerability and/or resilience of habitats and their interactions 
with the populations these habitats sustain.

Pollination and propagule dispersal

Animal pollination and propagule dispersal play a vital role 
as a regulating NCP, including for food production and 
many other ecosystem services. Projected loss of diversity 
of pollinators and alteration of their communities generate 
risks for food security, human health and ecosystem 
function. Pollinators and the provision of pollination will 
be negatively impacted by land-use change (habitat 
destruction, fragmentation and degradation), intensive 
agricultural management and pesticide use, environmental 
pollution, invasive alien species, pathogens and climate 
change (Chagnon et al., 2015; IPBES, 2016a; Vanbergen 
et al., 2018). For instance, the spread of invasive ants that 
can deter pollinators and seed dispersers is anticipated 
to continue (see also section 4.2.4) and projected to 
substantially impact future pollination services (Vanbergen 
et al., 2018). Impacts of climate change on pollinators are 
the most commonly reported scenario results. Under all 
climate change scenarios, pollinator community composition 
is expected to change. The projected velocity of climate 

change, especially under mid- and high-end emission of 
greenhouse gas scenarios, exceeds the maximum speed 
at which several groups of pollinators (e.g., many bumble 
bees or butterflies) can disperse or migrate (IPBES, 2016a). 
Differential phenological shifts can cause mismatches 
between plant and pollinator populations and lead to the 
extinctions of plant or pollinator species, with expected 
consequences on the structure of plant pollinator networks 
(Hegland et al., 2009; Lavergne et al., 2010; Memmott et 
al., 2007). However, the inherent plasticity of plant–pollinator 
interactions suggests that many species may be able to 
persist, even though their mutualistic partners may change 
(Burkle & Alarcón, 2011). 

Many management responses are available that can reduce 
the risks of pollination deficit in the short term, including land 
management to conserve pollinator resources, decreasing 
pollinator exposure to pesticides, and improving managed 
pollinator techniques (IPBES, 2016b). The disruption 
of propagule dispersion due to biodiversity loss is also 
expected to disturb ecological communities and threaten 
important ecosystem functions and NCP. For example, 
frugivore defaunation in tropical forests can lead to local 
extinction of trees depending on them to reproduce and the 
induced changes in tree species composition will likely result 
in the loss of carbon storage capacity of tropical forests 
(Bello et al., 2015).

Regulation of air quality

Terrestrial ecosystems are large emitters of substances 
that are relevant for air quality, in particular biogenic volatile 
organic compounds (BVOC) and emissions from wildfires. 
Several studies using coupled vegetation and BVOC models 
show that climate change alone enhances emissions due 
to their temperature-dependent response (Arneth et al., 
2011; Niinemets et al., 2010). However, land-use change 
is simulated to counteract these effects, in particular for 
compound groups isoprene and monoterpenes, since 
woody vegetation tends to emit more BVOC than crops. 
The effects of rising atmospheric CO2 are difficult to quantify, 
because CO2 enhances productivity which increases 
emissions, but on the other hand high CO2 concentrations 
have been shown to reduce leaf-level emissions – at least 
for isoprene (Hantson et al., 2017; Heald et al., 2008; Squire 
et al., 2014; Szogs et al., 2017; Tai et al., 2013). Wildfire 
emissions, similar to BVOC, are expected to increase in 
a warmer climate as fire-prone conditions are enhanced 
(Hantson et al., 2016). In case of fire, atmospheric CO2 
enhances plant productivity, and hence combustible litter, 
but also leads to a shift towards more woody vegetation, 
which slows fire spread compared to grasslands (Hantson et 
al., 2016; Knorr et al., 2016; Rabin et al., 2017). How BVOC 
and wildfire emissions will affect future air quality and climate 
regulation will depend not only on how climate change will 
affect biogenic emissions, but also on how anthropogenic 
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air pollutants will alter biogenic emissions and chemical 
reactions in a future atmosphere (Shindell & Faluvegi, 2009; 
Shindell et al., 2009; Tsigaridis et al., 2014; Young et al., 
2009). Anthropogenic emission controls are much more 
important than biogenic emissions for air quality. However, 
assessments of impacts of bioenergy, reforestation and 
afforestation efforts on air quality and climate regulation 
must consider side effects of biogenic emissions on human 
health and on climate-related substances, as well as (in 
case of wildfire) the risk of forest loss (Ashworth et al., 2013; 
Rosenkranz et al., 2015; Simpson et al., 2014).

Regulation of climate

Oceans and terrestrial ecosystems currently take up around 
50% of anthropogenic CO2 emissions each year (sections 
4.2.2, 4.2.4; Le Quéré et al., 2016). In the future, these 
carbon sinks may weaken, resulting in amplifying feedbacks 
to climate change (Arneth et al., 2010; Ciais et al., 2013; 
section 4.2.4). In oceans, warmer temperature, increased 
stratification of the water column, deoxygenation, and 
acidification, as well as sea level rise in coastal wetlands, 
might lead to a reduction of the sink (see 4.2.2.2.1, 
4.2.2.2.2), while in terrestrial ecosystems, the interplay 
between CO2-fertilisation of photosynthesis, heterotrophic 
respiration stimulated by warmer temperatures, and 
episodic events such as fire, insect outbreaks, or heat 
waves are controversially debated with respect to their 
impacts on future carbon uptake and climate regulation 
(Ciais et al., 2013; Kautz et al., 2017). Reducing greenhouse 
gas emissions from land cover change and land use, 
mostly related to human conversion of forests to crops 
and pastures, fertilizer use, rice production and animal 
husbandry could contribute notably to mitigate climate 
warming (Bustamante et al., 2014; Smith et al., 2014b, 
2013; Tubiello et al., 2015). Changes in vegetation cover 
would impact also regional temperature and precipitation. 
In tropical regions, deforestation is simulated to lead to 
local warming, as croplands tend to have considerably 
lower evapotranspiration. By contrast, in boreal regions 
changes in surface reflectance is the predominating factor 
and deforestation results in local cooling (Alkama & Cescatti, 
2016). Therefore, in tropical regions, avoiding deforestation 
will contribute to reduce CO2 emissions, as well as contribute 
to moderate the impact of regional warming – supporting 
also the maintenance of biodiversity (Alkama & Cescatti, 
2016; Perugini et al., 2017; Quesada et al., 2017a).

Regulation of ocean acidification

Increasing atmospheric CO2 concentrations will increase 
the partial pressure of CO2 (pCO2) and its dissolution in 
the surface ocean (section 4.2.2; Le Quéré et al., 2016). 
It is expected that pCO2 might double its pre-industrial 
value within the next 50 years (Eyre et al., 2018; Hoegh-
Guldberg et al., 2017). Decreased calcification in calcified 

organisms due to increased acidification of the ocean is 
likely to impact marine food webs and, combined with other 
climatic changes in temperature, salinity, and nutrients, 
could substantially alter the biodiversity and productivity 
of the ocean (Dutkiewicz et al., 2015; Kawaguchi et al., 
2013; Larsen et al., 2014; Meyer & Riebesell, 2015). How 
species will respond to these changes depends on their 
capacity for adaptive responses. Many studies project the 
degradation of a large percentage of the world’s tropical 
coral reefs (Albright et al., 2018; Eyre et al., 2018; Sunday 
et al., 2017 section 4.2.2.2.2) and calcifying marine species 
like bivalves, might as well be significantly endangered 
due to ocean acidification (Hendriks et al., 2010; Kroeker 
et al., 2010). This is projected to impact many regulating 
ecosystem services and entire sectors of human activities 
and millions of livelihoods, both in developed and especially 
in developing countries that depend on fish and other 
marine products for their daily sustenance (Hilmi et al., 
2015; Mora et al., 2013a). Moreover, recreational activities, 
as well as tourism which are among the world’s most 
profitable industries (Rees et al., 2010) are projected to 
decline by up to 80% in some areas due to climate change 
(Moreno & Amelung, 2009; USGCRP, 2008). Although 
local and regional-scale management strategies may build 
resilience in the short term, longer term resilience will further 
require a successful shift to a low greenhouse gas emissions 
scenario, e.g., RCP2.6 or RCP4.5 (Anthony, 2016).

Regulation of freshwater quantity, location and timing

Today, two-thirds of the global population live under 
conditions of severe water scarcity at least one month of 
the year and half a billion people face severe water scarcity 
all year round (Mekonnen & Hoekstra, 2016). World water 
demand is estimated to increase significantly, up to 50% by 
2030 (UNDP, 2016), mostly due to population growth and 
lifestyle choices, such as shifting diets towards highly water-
intensive foods (see section 4.5.3). Scenarios of water use 
foresee overexploitation, pollution or degradation of aquatic 
ecosystems (see 4.2.3) and the ecosystem services they 
provide or produce together with other ecosystems (Molle 
& Wester, 2009). Societal problems and new inequalities will 
also emerge as a result (Bruns et al., 2016). The projected 
increases in human population and per capita consumption 
will likely lead to a sharpening of already existing water 
shortages if the demand of freshwater cannot be satisfied 
(Alcamo et al., 2007; Murray et al., 2012; Pfister et al., 
2011). Some estimates put demand surpassing supply 
significantly already in 2030 (Mekonnen & Hoekstra, 2016). 
Changing climate is progressively modifying all elements 
of the water cycle, including precipitation, evaporation, soil 
moisture, groundwater recharge, and run-off. But it is also 
expected to change the timing and intensity of precipitation, 
snowmelt and run-off (Murray et al., 2012). Indirect effects 
of land-use change, such as deforestation, is also expected 
to increasingly affect water quality, water quantity and 
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seasonal flows, especially in the tropics (Piao et al., 2007). 
Many of the world’s most water-stressed areas will likely get 
less water, and water flows will become less predictable 
and more subject to extreme events (Mayers et al., 2009; 
Mekonnen & Hoekstra, 2016). The additional challenges for 
water security posed by poor management are expected to 
first become apparent in mega-cities. Increasing demands 
for water by agricultural, industrial and urban users, and 
water for the environment will intensify competition (Mayers 
et al., 2009; Murray et al., 2012; Pfister et al., 2011). In order 
to address these challenges, water needs to be used more 
efficiently in agriculture (Fraiture & Wichelns, 2010) and caps 
to water consumption by river basin have been proposed 
(Mekonnen & Hoekstra, 2016).

Formation, protection and decontamination of soils 
and sediments

The Sustainable Development Goals related to food, health, 
water supply, biodiversity and climate all rely on healthy soils 
(Arcurs, 2017). Human activity has increased the erosion 
rates well above natural levels, degrading soils structurally 
and nutritionally and generating a surplus of sediment 
transport to rivers, which damages infrastructure, aquatic 
habitats and deteriorates water quality (Bouchoms et al., 
2017; Doetterl et al., 2016; Li & Fang, 2016). Whether or 
not the eroded material decomposes rapidly or even acts 
as a carbon sink is still being debated (see Doetterl et al., 
2016 and references therein). Climate change is expected 
to globally exacerbate erosion rates in the future although 
exact rates and magnitude are poorly understood and 
large regional variability is to be expected (Li & Fang, 2016). 
Water erosion caused by overall enhanced precipitation in 
some regions or by extreme precipitation can be expected 
to increase (Bathurst, 2011; Bussi et al., 2016; Hu et al., 
2013; Shrestha et al., 2013). In a recent compilation of 
erosion model studies, most at catchment scale, Li & Fang 
(2016) found enhanced future erosion in response to climate 
change in 136 of 205 listed studies. Soil erosion can be 
effectively reduced by land management practices (reduced 
tillage, vegetation cover) (Doetterl et al., 2016; Poesen, 
2018). However, models that combine soil organic carbon 
cycling with modelling of degradation processes at regional 
to global scales do not yet exist. Therefore, scenarios of 
possible futures are virtually absent, and global or sub-
global studies could not be found on future soil degradation, 
nor on soil restoration (IPBES, 2018f).

4.3.2.2	 Nature’s contributions to people 
– changes in material contributions

Energy

Ecosystems provide relatively inexpensive and accessible 
sources of traditional biomass energy, and therefore have a 
vital role to play in supporting poor populations. Bioenergy 

draws on a wide range of potential feedstock materials: 
forestry and agricultural residues and wastes of many sorts, 
as well as crops or short-rotation forests grown specifically 
for energy purposes (Smith et al., 2016). The raw materials 
can be converted to heat for use in buildings and industry, 
to electricity, or into gaseous or liquid fuels, which can be 
used in transport. Today’s global supply of bioenergy is 
around 10% of the total demand (Smith et al., 2016). The 
global demand for primary energy is projected to grow 
across future scenarios, unless the world’s energy system 
were to transformatively change within the coming two or 
three decades (IPCC, 2018, Chapter 2.3). Bioenergy is 
estimated to provide ca. 100-300 EJ a-1, accounting for 15-
25% of global future energy demand in 2050, but concerns 
about the sustainability have been raised even for amounts 
of 100 EJ a-1 or well below (Beringer et al., 2011; IPCC, 
2018, Chapter 2.3; Smith et al., 2016). Deriving about 20-
60% of total energy from energy crops would require up to a 
doubling of land and water resources (Beringer et al., 2011). 

Recent scenarios in Integrated Assessment Models that 
explore options to achieve global warming of 2°C or less 
include large-scale bioenergy for climate change mitigation 
(see 4.2.4.3; Bonsch et al., 2016; Smith et al., 2014b, 
2016). Combining bioenergy with carbon capture and 
storage (BECCS) may offer the prospect of energy supply 
with large-scale net negative emissions, which plays an 
important role in many low-emission scenarios (Bruckner et 
al., 2014; IPCC, 2018, Chapter 2; Tavoni & Socolow, 2013). 
However, there are challenges and risks entailed, as shown 
by an increasing number of studies, especially around 
potential conflicts with biodiversity and other NCP (Fuss 
et al., 2016; Humpenoder et al., 2014; Santangeli et al., 
2016; Smith et al., 2016). The use of different sources for 
bioenergy production will have large impacts on the capacity 
of energy crop production, climate change mitigation 
and thus on the trade-offs with other NCP (Gelfand et 
al., 2013). The trade-offs most often cited are with food 
production, biodiversity and terrestrial carbon storage 
(Beringer et al., 2011). Food production will be impacted 
not only by conflicts in land use as such, but also because 
of rivalling water use through irrigation of bioenergy crop 
production (Beringer et al., 2011). Also, the future benefit 
of CO2 savings of bioenergy crops is not completely clear, 
as many studies do not include the emissions of N2O in 
crop production that could offset CO2 savings (Don et al., 
2012), or the long-term CO2 emitted by land conversion or 
deforestation of natural vegetation to bioenergy crop areas 
(Don et al., 2012; Krause et al., 2017, 2018).

Food and feed materials

The largest anthropogenic use of land and water is related 
to the production of food. Also, food production is the 
largest component of human domination of the global 
nitrogen and phosphorus cycles (Bouwman et al., 2013). 
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The drivers are both the food demand (type of diets, wealth 
and population size) and the food production system 
(productivity of the agricultural, aquaculture and livestock 
systems, exploitation of wild species, transport, waste). 
Rapid changes in dietary patterns since the end of 20th 
century (mainly in transitioning countries: Latin America, 
East Asia, others) have become a major factor in global 
land-use change pressures, mainly related to the increase of 
animal products consumption (Kastner & Nonhebel, 2010; 
Kastner et al., 2012). In the coming decades, the increase 
in consumption of animal products is expected to play 
the strongest role in the demand of land, water, nutrients 
(N, P, K) and energy (and related CO2 emissions) for food 
production (Alexander et al., 2016; Peters et al., 2016; 
Ranganathan et al., 2016; Wirsenius et al., 2010), due to 
the poor resource efficiency in the production of animal, 
especially ruminant protein. Therefore, land degradation and 
its impacts on food security are likely to increase, especially 
in developing regions with high and increasing demographic 
pressure, pressures from export-oriented commodity 
production expansion, scarce land and water resources 
and weak governance structures. Importantly, effects of 
land degradation on food security are not considered in any 
global scenario study (IPBES, 2018f). For sufficient land 
and water resources being available to satisfy global food 
demands during the next 50 years, water will have to be 
managed much more effectively in agriculture (Fraiture & 
Wichelns, 2010). Supplying sufficient calories and an overall 
healthy diet to feed the global population with sustainable 
production systems is a recognized challenge and will 
require solutions from local to global levels, addressing both 
food production, distribution and trade, and consumption 
(Foley et al., 2011; Godfray et al., 2010; Tilman & Clark, 
2015). Closing yield gaps in many regions of the world 
may play a major role if done using sustainability principles 
for land management. This poses a large challenge as 
climate change has been projected to reduce crop yields 
in tropical and semi-arid regions; regions in which already 
today large yield gaps exist (Pugh et al., 2016a; Rosenzweig 
et al., 2013) and which include countries with projected 
fast changes in diets and population growth. There is 
large uncertainty in how extreme weather events, pest and 
diseases and atmospheric CO2 levels will interact with yields 
(Deryng et al., 2014; Gornall et al., 2010; Rosenzweig et 
al., 2013). Thus, it is necessary to increase productivity 
sustainably and at the same time reduce the vulnerability of 
agricultural production systems to climate change impacts.

Medicinal, biochemical and genetic resources 

Because genetic diversity of crops and their wild relatives 
is a product of both the natural process of evolution and 
the biocultural process of evolution under domestication, 
genetic diversity is a source of, and a proxy for options for 
the future, and hence maintains options for the supply of 
ecosystem services (Bellon et al., 2018; Faith et al., 2017). 

However, if yields continue to be increased by means of 
intensive agriculture, then the environmental consequences 
would be substantial (Tilman et al., 2001) and to the 
detriment of other NCP (section 4.5). The current diet 
worldwide is based on only 150 of the more than 7,000 
plant species that humans have utilized historically for food 
(Gepts, 2006) and food supplies have become increasingly 
similar in composition across the globe (Khoury et al., 2014). 

The conservation of genetic resources from local varieties 
and crop wild relatives plays an important role in increasing 
productivity sustainably, maintaining local food security 
and quality, as well as in providing adaptive options for 
agricultural systems to grow diverse and nutritious food 
with fewer resources in harsh environments. For instance, 
cultivars based on local varieties can be grown in marginal 
conditions where commercial varieties do not perform well 
(Ceccarelli, 2009), and crop wild relatives harbor genetic 
adaptations to drought, pest and diseases resistance 
(Maxted et al., 2013). Therefore, genetic diversity represents 
a source of options to face the increasingly uncertain and 
variable patterns of biotic and abiotic changes (Bellon et 
al., 2017). Similarly, deploying sufficient genetic diversity 
decreases the risk of pathogens reaching epidemic levels 
and causing large-scale crop failure (Heal et al., 2004). 

Indigenous Peoples and Local Communities play 
an essential role in this regard both in managing key 
agrobiodiversity areas around the world and holding the 
knowledge that gives meaning to the value of such diversity. 
Maintaining in-situ crop genetic diversity is at present 
done mostly by smallholders and indigenous communities, 
cultivating local varieties individually in small-scale mosaic 
production systems, but these constitute in many regions 
large effective systems in providing food to large regional 
populations within a wide range of environmental conditions 
and cultural preferences (Bellon et al., 2018; Enjalbert et 
al., 2011). If trends towards replacing local varieties with 
genetically homogeneous materials of the private sector 
continue (Heal et al., 2004; Howard, 2009), evidence 
suggests that while crop production yield may increase 
(particularly for crops destined to industrial uses and fodder), 
food security may be compromised not only in terms of 
lower crop production of food crops, but also in the form of 
higher risk and vulnerability of farmers and the food system 
to future challenges.

4.3.2.3	 Nature contributions to people – 
changes in non-material contributions 

The results of the systematic literature review highlight the 
scarcity of global or continental scale scenarios addressing 
non-material contributions to people: these have received 
far less attention than material and regulating NCP. Even 
on the local scale, the number of scenario studies dealing 
with the category of cultural ecosystem services is limited. 
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The sections below describe how different non-material 
NCP might unfold in the future based on scenario studies 
at different scales, including some local studies. In order to 
arrive at a better understanding on how changes in nature 
and changes in people’s demands interact for all NCP, future 
studies that target non-material NCP are needed.

Learning, artistic, scientific and technological  
inspiration

The published literature on the future evolution of this 
category of NCP is scarce with most studies focusing on 
the current state of nature-inspiration for learning, the arts, 
science and technology. Nature inspiration for the arts, 
including music, painting and literature comes ultimately 
from the fact that we are part of nature, and that when 
we are amazed by certain aspects of nature, this inspires 
individuals to express their creativity (Komorowski, 2016). 
Whether the ongoing disconnection of humans from nature 
(Soga & Gaston, 2016) will affect how art is inspired by 
nature in the future is unresolved. Nature-inspiration has 
advanced technology in multiple ways, the Lotus effect 
or the shark skin effect being some of the most common 
examples (Bhushan, 2016). Nature inspiration has played a 
significant role in computation and communication and it is 
likely that it will continue doing so (Vinh & Vassev, 2016). The 
self-organized architecture of nature can play a major role 
in nature-inspired algorithms and computing (Yang, 2014, 
2010). Bioinspiration and biomimetics in engineering and 
architecture has a long history of application, but its future 
development is uncertain (Ripley & Bhushan, 2016).

Physical and experiential interactions with nature

Connections to nature have been classified as being 
material, experiential, cognitive, emotional, and philosophical 
(Ives et al., 2018). Partially as a result of rapid urbanization 
(see section 4.3.3 and Jiang & O’Neill, 2017) some argue 
that urbanites are undergoing an “extinction of experience” 
resulting from decreasing contact with nature in everyday 
live (Soga & Gaston, 2016). Although varying significantly 
across and within regions, interactions with nature have been 
changing from direct subsistence interactions (i.e. through 
agriculture, farming, fishing, hunting, herding, foraging) 
to sporadic subsistence, leisure, education, or as health-
recommendation. This trend is expected to continue in the 
future although other forms of interaction with nature are also 
emerging, such as increasing attention to urban parks, river 
and lake restoration projects, urban gardens, and increasing 
green infrastructure in cities (Grimm & Schindler, 2018; 
Shanahan et al., 2015; Thompson et al., 2008). Indicators to 
assess interactions with nature are scarce. Visits to protected 
areas have been estimated at 8 billion per year (Balmford et 
al., 2015) with a generally increasing trend (except for some 
developed countries (Balmford et al., 2009), but it is unclear 
how this figure will evolve under different scenarios. Apart 

from protected areas, direct interactions with nature occur 
in many non-protected landscapes, from urban parks, to 
rural areas and remote landscapes. These interactions are 
more widespread than visits to protected areas and happen 
continuously. 

The main drivers expected to affect future physical and 
experiential interactions with nature through nature tourism 
are demographics, urbanization, climate change, technology, 
psychological drivers, health care trends and development 
(Frost et al., 2014). A warmer future may increase the visits 
to protected areas, especially to mountain protected areas 
where temperatures are cooler (Fisichelli et al., 2015; Steiger 
et al., 2016). In some areas, a business-as-usual scenario 
might reduce our interactions with nature due to the loss of 
natural ecosystems through deforestation. Local scenarios 
in the Eastern Arc Mountains in Tanzania show that non-
sustainability pathways would also reduce ecotourism 
(Bayliss et al., 2014). Participatory scenario planning 
approaches in which stakeholders co-develop different 
scenarios have been used in several local studies and 
assessed future trends of diverse non-material NCP such as 
interactions with nature (Oteros-Rozas et al., 2015). Future 
trends for ecotourism, for example, were analyzed through 
the integration of ILK and scientific knowledge for a case 
study in Papua New Guinea (Bohensky et al., 2011b).

Symbolic meaning, involving spiritual, religious, 
identity connections, social cohesion and 
cultural continuity

Among the very few existing scenario-based studies that 
specifically focus on this nature’s contribution to supporting 
identities (Díaz et al., 2018), some focus on sense of place, 
which is highly relevant for ecosystem service stewardship 
and for human well-being, particularly of IPLCs (Masterson et 
al., 2017). Some analyses suggest that climate change might 
negatively affect sense of place (Ellis & Albrecht, 2017), an 
issue of concern to an increasing number of people living in 
coastal areas and under increasing risks such as floods and 
sea level rise will increase (Neumann et al., 2015). Sense and 
forms of attachment to place are also negatively affected by 
changes caused by infrastructural responses, such as the 
need to construct flood defenses (Clarke et al., 2018). 

Identities that are linked to nature, such as those related to 
cultural keystone species, will probably decline under certain 
scenarios (Garibaldi & Turner, 2004). In business-as-usual 
scenarios indigenous identities are expected to decrease, 
as these are often linked to nature, and Indigenous People´s 
spiritual beliefs (Dudgeon et al., 2010). Hunting practices that 
have deep cultural meanings for some local communities 
and help to bound some societies might be affected as 
well (Luz et al., 2017). In cities, declining green space might 
produce feelings of loneliness and shortage of social support 
(Maas et al., 2009). Connecting theories and tools related 
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to sense of place within broader socio-ecological systems 
research is expected to enhance our understanding as to 
how and why people engage in solving challenges related to 
sustainable use of ecosystems (Masterson et al., 2017). 

Preservation of biodiversity and ecosystems, as 
options for the future

One of the challenges posed by the expected continuous 
degradation of ecosystems and loss of biodiversity in most 

scenario archetypes is to assess the implications of these 
trends in terms of options for the future (Pereira et al., 2010 
and see section 4.2). Local level examples (see Box 4.3.1) 
highlighting the interdependence between nature, indigenous 
and local knowledge, and local livelihoods provide powerful 
stories about economic-environmental trade-offs and the 
importance of maintaining options, including in terms of 
complementary knowledge systems, in times of accelerated 
environmental and social changes.

Box 4  3  1 	 An example of the role of Indigenous Local Knowledge in sustaining  
ecosystem services.

The shea tree is highly valued by rural households in Western 
and Central Africa. The shea fruit is a non-timber forest product 
that is indigenous to ecosystems in semi-arid regions of Africa 
(Jasaw et al., 2015). Shea is exported as raw kernels or as 
shea butter to serve the high-value cosmetic and personal 
care industry and the wide range of food products in USA, 
Europe, and Japan. It currently grows throughout semi-arid 
northern Ghana (CRIG, 2007; Naughton et al., 2015), with 
almost every rural household in the region engaging in shea 
fruit picking, and processing into shea kernels (shea nuts) and/
or shea butter. For years, local populations have followed local 
knowledge, norms and practices including not using shea 
for fuelwood and integrating it into farmlands to preserve and 
manage it (Jasaw et al., 2015). In recent years however, high 
disregard for indigenous knowledge practices, degradation 

and subsequent scarcity of traditional fuelwood tree species, 
and fluctuating world market prices for shea products, have 
pushed locals being faced with the dilemma of still preserving 
the tree to enable them earn income or cut the trees for 
fuelwood (Boafo et al., 2016; Jasaw et al., 2017). If current 
trends continue, the co-production of the shea butter will 
continue eroding indigenous and local knowledge (ILK), the 
management of common resources, as well as regulating 
and non-material contributions from nature to people. Both 
technological improvements (such as improved stoves) and the 
strengthening of community-based woodland management 
(such as harvesting tree branches instead of whole trees) need 
to be put in place to revert this trend (Boffa, 2015; Jasaw et al., 
2017, 2015).

Figure 4  3  3   Woman taking shea harvests home to process. 

Photo credit: Yaw Boafo, 2014 .
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Future scenarios of climate change predict in this case an 
increased climate suitability for the shea tree (Platts et al., 
2010). This could open certain opportunities to adapt to 
climate change and at the same time reinforce the value of 
ILK in landscape management. Since the traditional form of 
Shea butter production also requires large amounts of energy 

(Jasaw et al., 2015), six scenarios of future development of 
technologies were developed for Burkina Faso (Noumi et al., 
2013). The improvement of the energy systems would result 
in better incomes for women and reduced vulnerabilities of 
rural families whilst minimizing land degradation and enhancing 
carbon sequestration potential of savannah landscapes.

Figure 4  3  4   Woman sorting shea kernel for sale in Northern Ghana (left); Shea kernel 
being dried after picking from the wild in Northern Ghana (right). 

Photo credit: Yaw Boafo, 2014 .

Figure 4  3  5   Present situation and future scenarios of the climatic suitability for the 
distribution of the shea tree. 

In both scenarios, niche-based models predict an enhanced climatic suitability for the shea tree during the 21st century 
(Platts et al., 2010) . Top panels are projections based on a restrained geographical range for model calibration and lower 
panels are based on a broader geographical range . The suitable habitat for the shea tree in central Africa is projected to 
increase in two explored IPCC scenarios (A2 and B2) in 2020, 2050 and 2080 . According to these scenarios, the maximum 
suitability is predicted for 2080 .   
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4.3.3	 How changes in nature’s 
contributions to people will 
manifest in different regions, 
including teleconnections across 
regions

Ecosystems and biomes (or IPBES units of analysis) are 
interconnected, influence each other and thus many NCP 
are also interconnected in space (Álvarez-Romero et al., 
2018; Liu et al., 2015). These interactions can occur in the 
natural system (e.g., via the atmosphere, or through river 
flows), often called teleconnections. In socio-economic 
and socio-ecological systems the telecoupling concept 
considers interactions, feedbacks and spillover between 
different and typically distant system components (e.g., by 
trade or migration; Güneralp et al., 2013; Liu et al., 2013; 
Melillo et al., 2009). Through those mechanisms, resource 
use and ecosystem management in some regions affects 
NCP from other regions (Pascual et al., 2017; see section 
4.5 and Chapter 5). For example, the displacement of timber 
extraction from Finland to Russia has created environmental 
impacts in Russia that in turn affected migratory birds in 
Finland (Mayer et al., 2005).

Knowledge about the interaction, feedback and spill-
overs among regions, and implementation in future global 
scenarios is needed for better projections and management 
of NCP including flow-based aspects of governance beyond 
the classical territorial approaches (Liu et al., 2013; Sikor 
et al., 2013). Without such knowledge, decisions on the 
management of NCP in one region will lead to incomplete 
and skewed conclusions that affect sustainability at the 
global level (Schröter et al., 2018). For example, telecoupling 
is linked to remote, large-scale investment in land purchase 
or lease and freshwater demand, which is happening in 
all continents except Antarctica (Rulli et al., 2013). Also in 
context of urban-rural relations this consideration can help 
to better understand interactions with systems beyond their 
boundaries (Seto et al., 2012).

Urbanization is one of the global development trends that 
has large impacts on local and distant socio-ecological 
systems. The global urban population represents now 55% 
of the total population and is projected to reach 6.6 billion 
by 2050 (68% of the total population) (https://population.
un.org/wup/). 

In the vicinity of cities, urban growth leads to the loss of 
agricultural land and hence agricultural production, and 
associated land-use displacement to other regions as 
compensation. Overall it is estimated that, due to urban 
build up, 1.8–2.4% of the global croplands will be lost by 
2030 (Bren d’Amour et al., 2017). On local and regional 
level urban areas modify climate through the urban heat 
island effect, impacting also human health. In combination 

with altering of precipitation patterns, the heat island effect 
will possibly also have significant impacts on net primary 
production, functions of ecosystems, and biodiversity in 
larger urban regions (Seto et al., 2013). Urbanization also 
frequently correlates with lifestyle and dietary changes 
towards more meat and fish (Satterthwaite et al., 2010). As 
a result, long-distance connections intensify as demand for 
resources increases to support these urban lifestyles and 
activities. Often such change in demand is not only met by 
intensification but also by cropland expansion into semi-
natural or natural vegetation (DeFries et al., 2010), which in 
turn may lead to the displacement of local farmers due to 
loss of land and increases migration to urban areas. 

There are very few global scenario studies of telecouplings, 
and the related interactions between nature and NCP. 
For instance, most forward-looking studies on impacts 
of urbanization on ecosystems focus on impacts on 
biodiversity and habitats (Güneralp et al., 2013). There 
are no quantitative studies and scenarios that assess 
interactions of urban areas with ecosystem services at 
global and large spatial scales and there are only a few, 
mostly scenario-based, regional studies from developed 
countries (Deal & Pallathucheril, 2009; Eigenbrod et al., 
2011; Norman et al., 2010; Pickard et al., 2017). Virtual 
water import/export has been explored under future 
scenarios under climate change, stressing local water losses 
due to trade links (Konar et al., 2013; see also Chapter 5). 
For instance, continued increased consumption of meat or 
milk in China would have negative consequences on the 
virtual water imported by the country (Zhuo et al., 2016), 
as well as higher greenhouse gas emissions and land use 
in milk exporting regions (Bai et al., 2018). Results from 
the systematic literature review regarding future trends of 
various NCP in different world regions and the interlinkages 
between them do not show clear trends for many NCP 
because of the limited number of studies (Figure 4.3.6). 
Mixed trends prevail for regulating NCP in most parts of 
the world, with slightly more increasing trends in North 
America, Europe, and Australia. Material NCP are expected 
to mainly decrease in Central America, in Southeast Asia 
and Australia, stabilize in South America, South Asia and 
East Asia; a higher proportion of increasing material NCP 
are expected in Europe and North America. Not much 
data on non-material NCP is available but positive trends in 
Africa and Asia could emerge, while in South America the 
expected trends were mostly negative.

In addition to the systematic literature review, we 
reviewed the IPBES regional assessments (IPBES 
2018a, b, c, d) for relevant information of future trends of 
telecoupled interactions.

The IPBES regional assessment for Europe and Central 
Asia (IPBES, 2018i) highlights a variable but generally 
decreasing supply of regulating NCP in Europe (Harrison 

https://population.un.org/wup/
https://population.un.org/wup/
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Figure 4  3  6   Future trends of NCP in the different world regions. 

The height of the bars indicates the number of studies . The color of the bars shows the sign of future trend of NCP in the 
different world regions (IPBES regions shown in grey scale) . Results are based on the systematic literature review of future 
scenarios (Appendix A4 .1 .1) at the continental scale . Only the studies with an explicit distinction of NCP trends between 
countries or regions were selected .
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et al., 2018). Hazard regulation, climate regulation, water 
quality and quantity regulation show stable or increasing 
trends, whereas regulation of freshwater quantity, location 
and timing decreases, especially in Southern Europe. 
Pollination and pest regulation indicate mixed trends. 
Regarding material NCP, the results vary across subregions. 
An increase of food and feed is expected in western Europe 
due to increasing imports from other world regions (Dunford 
et al., 2015). Eastern Europe and Russia show increasing 
trends in food production, due to the increase in suitability 
for food production following climate change (Zabel et al., 
2014). Information on non-material NCP is scarce (Harrison 
et al., 2018).

The demand of material NCP in Europe, especially food and 
feed, materials and energy could increase up to 1.5-2 times, 
which not only means an increase in material NCP but will 
have considerable trade-offs with biodiversity and regulating 
NCP (Harrison et al., 2018). According to the BAU scenario, 
food production will be the economic sector with the largest 
impact on biodiversity, possibly contributing to 60-70% of 
terrestrial biodiversity loss and 50% in freshwater systems 
(Kok et al., 2014; van Vuuren et al., 2015). Other scenarios, 
such as the global technology, decentralized solutions and 
consumption change would result in preventing more than 
half of the loss of the biodiversity that is projected for 2050. 
Other models show that domestic greenhouse emissions 
can be reduced affordably by 40% in 2030, but would 
require strong policies and binding targets, and possibly the 
use of biofuels, which have associated negative effects on 
biodiversity (Harrison et al., 2018). 

In Africa a lack of studies that assess the future of NCP is 
apparent and the few existing ones focus on Southern and 
East Africa (Biggs et al., 2018). The systematic literature 
review shows that in different regions of Africa, the demand 
for food and feed will lead to an increase of this NCP, 
despite the pressure arising in many regions from climate 
variability and change (Palazzo et al., 2017). Scenarios show 
that increased water stress will have most adverse effects 
on food production, as areas suitable for agriculture along 
the margins of semi-arid and arid areas are expected to 
decrease (Biggs et al., 2018). An estimated 600,000 km2 
of arable land could be lost with 800 million people facing 
physical water scarcity. Rising sea levels will pose threats to 
Gambia around to the Gulf of Guinea and a predicted band 
of desiccation will wrap around the Congo Basin from the 
Gambia to Angola (Biggs et al., 2018). Given the general 
trade-off between material and regulating NCP, a decrease 
in the supply of regulating NCP is expected. In Sub-Saharan 
Africa, bans on food imports would negatively impact 
poverty (Bren d’Amour et al., 2016). 

Existing scenarios with information for NCP in the Americas 
focus on the strong competition among land uses, primarily 
agricultural lands and natural land cover (Klatt et al., 2018). 

The demand for food and feed will increase in the future 
with strong trade-offs for regulating NCP (e.g., water 
quality, increased greenhouse gas emissions, disruptions 
of natural pest control, pollination, and fertility and nutrient 
cycling; Diaz & Rosenberg, 2008; Matson et al., 1997). 
Co-benefits may occur, like e.g., incorporating biodiversity 
in agricultural production systems (Baulcombe et al., 2009; 
Chappell & LaValle, 2011; Clay et al., 2011; de Schutter, 
2011; Perfecto & Vandermeer, 2010). The supply of 
regulating NCP provided by natural ecosystem decreases 
under all scenarios (even under conservation scenarios), 
especially through tropical deforestation in Latin America, 
which is projected to continue. A similar pattern can be 
observed also for other ecosystems, like tundra, mangroves 
or wetlands. The decrease in supply of regulating NCP 
means that the tundra may convert from a carbon sink 
into a carbon source under the temperature increase that 
thaws the permafrost, leading to a feedback to accelerated 
climate change and sea level rises. The same applies for the 
prevention of soil erosion, coastal protection and fisheries 
support of mangroves. Also, the regulating services of 
wetlands may get traded by agricultural productions under 
the strong increase of population and other market forces. 
An example is the Amazon forest, where especially cattle 
ranching together with agriculture leads to deforestation, 
leading to a synergistic drying up of large parts of the 
watershed due to climate change (Klatt et al., 2018). 

In the Asia-Pacific region, expansion of urban industrial 
environments, consumption patterns and transformation 
of agriculture in favor of high yielding varieties and cash 
crops are the main drivers for changes in NCP, considering 
the current rate of human population growth (Gundimeda 
et al., 2018). The demand for material NCP is projected 
to increase, especially for food and feed in Southeast Asia 
and South Asia, leading to deforestation for monocrop 
plantations of oil palm, rubber or timber trees. This may lead 
to a decrease in the supply of some regulating NCP, and 
natural habitats in the Asia Pacific Regions are likely to be 
adversely affected in the coming decades (Gundimeda et al., 
2018). Telecouplings are very pronounced, especially within 
Southeast Asia (e.g. Vietnam- Laos) and between mainland 
Southeast Asia and North Asia, as between Southeast Asia 
and Latin America and Africa. Regarding other regulating 
NCP the results are mixed with increases and decreases in 
all subregions (IPBES, 2018h). 
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4.4	PLAUSIBLE FUTURES 
FOR GOOD QUALITY  
OF LIFE

4.4.1	 Linking good quality of 
Life to nature and nature’s 
contributions to people
Global scenarios of biodiversity and ecosystem services have 
paid scarce attention to plausible futures for people’s good 
quality of life (GQL), relative to those for nature and nature’s 
contributions to people (but see Butler & Oluoch-Kosura, 
2006). This gap is further pronounced for the analysis of 
future trends for the quality of life of Indigenous Peoples 
and Local Communities (IPLCs), who have been addressed 
typically at local and subnational scales rather than at the 
regional to global scales. However, a recent assessment of 
scenarios and models of ecosystem services and biodiversity 
brought to light some of the plausible futures of GQL 
(IPBES, 2016b), while earlier assessments highlighted the 
dependency of human beings on ecosystems for well-being 
and socio-economic development (MA, 2005; UK National 
Ecosystem Assessment, 2011).

To complement these efforts, in this section we seek to 
show how good quality of life has been integrated in the 
assessment of plausible futures of nature and nature’s 
contributions to people. To this end, we address how 
eleven key material and non-material dimensions of GQL 
(see also Chapter 1) are expected to evolve under the 
different archetype scenarios, and highlight the role of 
access, social values and other factors mediating the 
relationship between nature’s contributions to people and 
good quality of life. 

4.4.1.1	 Key Dimensions of good quality 
of life and their links to nature and 
nature’s contributions to people 

4.4.1.1.1	 Material dimension of good quality of 
life

In future scenarios governed by market forces (e.g., 
economic optimism, business-as-usual; see Section 4.1), 
multiple dimensions of good quality of life (GQL), both 
material and non-material, can be expected to decline 
(Figure 4.4.1). These projections are based on narratives 
associated with specific archetype scenarios, with numeric 
scores above zero indicating an anticipated positive 
(increased) GQL for the selected indicator, and negative 
indicating a decline. Projected declines are particularly 
pronounced for material indicators relative to livelihood 
and income security. The regional competition scenario, 
in particular, is assumed to be associated with the lowest 

expected GQL outcomes. On the other hand, the regional 
sustainability and reformed economic markets scenarios 
are expected to result in improved GQL outcomes 
across a large cross-section of material and non-material 
indicators. Overall, the global sustainable development and 
regional sustainability scenarios are associated with the 
most desirable GQL outcomes. Scenarios of direct and 
indirect drivers of change are expected to have regionally 
differentiated impacts on GQL, including where Indigenous 
Peoples and Local Communities (IPLCs) are located (see 
examples below). Many IPLCs are found in protected areas 
and indigenous areas where dimensions of a GQL such 
as food and energy security play out in context-specific 
ways. Indirect drivers of change such as climate mitigation 
policy (e.g., REDD+) disproportionately impact the possible 
trajectories towards achieving GQL by IPLCs (sections 
4.1.4, 4.1.5). 

Food and nutritional security

The 2018 annual report on the State of Food Security 
(http://www.fao.org/state-of-food-security-nutrition/en/), 
assessed that world hunger is on the rise again with the 
number of undernourished people having increased to an 
estimated 821 million (2017), compared with 804 million 
in 2016 and 784 million in 2015, although still below the 
900 million reported in 2000. Future projections raise 
important concerns about global food security and indicate 
widespread disparity in its outcomes, estimating that 
between 5 million and 170 million people will be at risk 
of hunger by 2080 (Schmidhuber & Tubiello, 2007). With 
continuing urbanization of the global population (see section 
4.3.3), much of this burden can be anticipated to be borne 
by the urban poor, especially in the developing south. Food 
security is related to cultural rights and human rights, and 
to processes of community change such as out-migration 
and livelihood shifts (e.g., changing migration patterns 
may leave fewer young people to hunt and fish, and elders 
often too old to engage in these activities). Access to 
resources (including financial resources) are also needed to 
participate in traditional activities securing access to food. 
Future food security scenarios refer to at least one of the 
four key dimensions of food security: availability, access, 
utilization and stability (FAO, 1998). All four dimensions 
are expected to be affected by climate change, although 
only food availability is commonly considered by simulation 
studies with a wide projected range of impacts across 
regions and time depending on the socio-economic context 
(Brown & Funk, 2008; Schmidhuber & Tubiello, 2007). 
The systematic literature review conducted in this chapter 
(Appendix A4.1.1) portends strong negative trends for 
food security in future scenarios (Figure 4.4.3). The IPCC 
Special Report on Emission Scenarios (SRES) depicted 
cereal production, cereal prices and food security under 
three conditions: no climate change, climate change 
with CO2 fertilization effects, and climate change without 
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Figure 4  4  1   Dimensions of Good Quality of Life (GQL) under archetype scenarios based 
on the narratives of these scenarios, taking also into account Table 6.3 of the 
IPBES methodological assessment of scenarios and models of biodiversity 
and ecosystem services (Cheung et al., 2016).  

The numerical scale (-2 .5 to 2 .5) refers to the progress from “very negative” status = -2 .5 to “very positive” status = 2 .5 in the 
corresponding GQL indicator . More detailed information is found in the Appendix, Table A4 .4 .1 . 
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CO2 fertilization effects (Parry et al., 2004). Under the 
assumption of no climate change and increasing yields due 
to technological change, it was estimated that cereal prices 
would increase due to an increase in global income. With 
climate change, food shortages were expected to drive 
up food prices. The MA scenarios projected an increase 
in total and per capita food production but variation in 
food prices, calorie availability and child malnutrition were 
also to be expected (Carpenter et al., 2006). More recent 
work agrees that the impact of climate change on food 
security varies across time, space and subpopulations. For 
instance, food insecurity is expected to be more severe 
in the Amazon floodplains (Oviedo et al., 2016; Vogt et 

al., 2016), polar regions such as the Arctic Bay (Pearce et 
al., 2015) and the Pacific Islands (McMillen et al., 2014). 
Small-scale farming, fishing and other communities that 
depend directly on local environments for food production 
(McDowell & Hess, 2012) especially in developing countries, 
indigenous communities (Huntington et al., 2016), or First 
Nations (Golden et al., 2015) are particularly vulnerable to 
climate-related food insecurity. A synthesis across a number 
of international assessments integrated and grouped factors 
impacting food security (Figure 4.4.2) and identified that in 
these assessments the individual factors underpinning food 
security were mostly not linked to other relevant factors, i.e. 
indicating substantial gaps in our understanding of the food 
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system, in particular how natural and socioeconomic system 
components interact. 

Water security

Regular access to clean water is a growing concern across 
multiple regions of the world, affecting two-thirds of the 
population (see 4.3.2.1). Water scarcity is strongly driven 
by behaviour driving overconsumption, infrastructure, and 
climate change. Climate projections indicate that a global 
temperature increase of 3-4°C could cause altered run-
off patterns and glacial melt that will force an additional 
1.8 billion people to live in a water scarce environment by 
2080 (UNDP, 2007). Other drivers such as rising populations 
in flood-prone lands, climate change, deforestation, loss 
of wetlands and rising sea levels are expected to increase 
the number of people vulnerable to floods to 2 billion in 
2050 (WWAP, 2012). Drylands are particularly vulnerable to 
changes in rainfall (Carpenter et al., 2006), and with climate 
change, drought impacts are anticipated to intensify across 
increasing extents of the world’s drylands (IPCC, 2013). The 
world’s megacities are already facing increasingly frequent 
and acute water shortages, which can be expected to 
worsen in the future (Li et al 2015a). Similarly, in coastal 
regions, decreases in precipitation and fresh water supplies, 
along with projected increases in sea level, sea surface and 
air temperatures, and ocean acidification are projected to 

have major negative effects on water security for societies 
(McMillen et al., 2014). The ‘fresh water planetary boundary’ 
is approaching rapidly (Dearing et al., 2014; Rockström 
et al., 2009), and sustainability of water use will likely be 
difficult to achieve in the near future (Gosling & Arnell, 2016). 
According to the results of the systematic literature review, 
water security indicators show negative trends in global and 
continental scale scenarios (Figure 4.4.3).

Energy security

Ensuring the global population’s access to modern 
and sustainable energy services in consideration of 
environmental integrity remains a major challenge for 
policymakers and practitioners worldwide. According to 
the systematic literature review, energy security derived 
from nature appears to be the only indicator with no 
identified negative trends in global scale scenarios (Figure 
4.4.3). However, scenarios such as decarbonisation ones, 
appear to also provide other benefits in addition such as 
lower energy market risks (Jewell et al., 2014). However, 
energy security faces several other challenges. Energy 
security has both producer and consumer aspects (UNDP, 
2004). Access to sustainable energy, which can include 
bioenergy sources, is critical in enabling people to meet 
essential needs linked with good quality of life as energy 
security encompasses availability, affordability, efficiency 

Figure 4  4  2   Food Security impacts pathways in different global environmental assessment 
studies.

Arrows indicate links in the analyses from environmental conditions (left) to food security outcomes (right) . 
Source: Wood et al. (2010) .  

Changing level/Rate/
Abundance

GHG concentrations
Ozone
Aerosols

Rainfall
Solar radiation
Temperature
Humidity

Nutrient cycling

Sea level and circulation

Changing intensity of 
extreme events

Heat waves/Frosts

Droughts

Tropical storms
Floods and surges

Changing geographical and 
temporal patterns of environmental 
context and stresses

Atmospheric composition

Changing agroecologies
Water shortage/Excess/Quality stresses
Heat stress

Soil fertility loss

Biodiversity/Habitat loss and 
genetic erosion
Pollinator stress
Pest and disease stresses
Physical land degradation (erosion and 
subsidence)

Increased submergence/Salt water 
intrusion

Changing geographical 
and temporal patterns 
of food systems and 
their performance

Land-use change/Production 
extent
Productivity

Timing
Supply stability
Post harvest losses

Prices (inputs, outputs)

Income
Storage, distribution and 
transportation

Trade (local, international)
Preparing/Processing food

Availability

Production
Distribution
Exchange

Access
Affordability
Allocation
Preferences

Utilization

Nutritional value
Social value
Food safety

CHANGING
ENVIRONMENTAL
CONDITIONS

IMPACT OF ENVIRONMENTAL
FUNCTIONS AND SERVICES
LINKED TO FOOD SYSTEMS

LINKAGES OF 
FOOD SYSTEMS 
ACTIVITIES

IMPACT ON
FOOD SECURITY
OUTCOMES

SOCIO-ECONOMIC CONDITIONS AND SCOPE FOR APPROPRIATE INTERVENTIONS



CHAPTER 4. PLAUSIBLE FUTURES OF NATURE, ITS CONTRIBUTIONS TO PEOPLE AND THEIR GOOD QUALITY OF LIFE

680

and environmental acceptability. The development of 
energy models in the 1970s in response to the energy 
crisis has provided relevant insights into the consumption 
and management patterns towards a sustainable energy 
for all future. On the other hand, current uneven global 
consumption coupled with the dearth of studies and 
quantitative data on energy use, especially from developing 
economies, presents a challenge for developing effective 
forecasting models. Scenarios based on non-linear energy 
consumption consider limiting overconsumption can keep 
2040 energy consumption at 2010 levels, while increasing 
energy-for-life efficiency can keep 2040 energy use at 2010 
levels (Pasten & Santamarina, 2012).

Livelihood and income security

While global scenarios lack sufficient attention to livelihood 
impacts, the results of the systematic literature review 
indicate regionally differentiated negative trends projected 
for livelihood and income security in the future (Figure 
4.4.3). Employment and incomes derived from nature 
are indicative for value derived in cash or direct use that 
impact good quality of life. Nature-based income, as part of 
environmental income, includes that derived from resources 
such as fish, timber, and non-timber forest products such 
as fuel wood, game, medicinals, fruits and other foods, 
and materials for handicrafts or art. It also includes income 
from nature-based tourism, as well as payments that rural 
landowners might receive for environmental services such 
as carbon storage or preservation of watershed functions. 

Also included is income from aquaculture as well as from 
small-scale agriculture, including commodity crops, home 
gardens, and large and small livestock. Nature-based 
livelihoods may become precarious with intensifying future 
trends in environmental change and its drivers (Hopping et 
al., 2016). Climate change-induced depletion of household 
assets may have especially negative impacts on the future 
welfare of populations already fighting poverty. For example, 
farmers in Sub-Saharan Africa will spend an increasingly 
high share of their income on securing basic needs such as 
food, while housing and related needs also intensify (Enfors 
& Gordon, 2008). 

Health 

The future of biodiversity and ecosystem services is 
inextricably linked to that of human health and well-being, 
for instance, through supporting healthy diets to mitigating 
the health impacts of climate impacts or pollution. Many 
health benefits are related to the conservation or use 
of specific elements of biodiversity such as species or 
genetic resources. Indigenous communities increasingly 
anticipate, and are impacted by, changes to traditional 
practices and pathways of food, toxicity impacts from distant 
(e.g., pesticides) and local (e.g. mining) sources, hunting 
and gathering of medicinal plants, and experience their 
consequences for local diets and resistance to diseases, as 
exemplified in Queensland Australia (McIntyre-Tamwoy et 
al., 2013), by Arctic Bay Inuit (Ford et al., 2006), and across 
North American and Russian indigenous populations. As 

Figure 4  4  3   Trends in selected indicators of GQL in terrestrial ecosystems. Colors 
indicate the value trend of the indicator.  

“N” indicates the number of results reported per facet, with the number of papers indicated in parentheses . 
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environmental hazards and extreme weather events increase 
in frequency, intensity or duration, they are expected to have 
increasingly visible consequences for health (Bai et al., 2016).

Projected increases in the production of biofuel crops, in 
particular in case of woody bioenergy species (eucalypt, 
poplar) which emit more isoprene than traditional crops, 
suggest important impacts on ground-level ozone 
concentrations, and consequently on human health and 
mortality (Ashworth et al., 2013). On the other hand, 
projected reductions of anthropogenic air pollutants point 
towards a widespread decline of small aerosol particles; 
projected future wildfires may not alter this general trend 
except for some parts of the wildfire season (Knorr et al., 
2017). Projected environmental changes are also expected 
to impact the prevalence of vector borne diseases such 
as malaria. Of the four MA scenarios, health under the 
“techno garden” scenario was expected to ameliorate 
due to technological advancements (Butler & Oluoch-
Kosura, 2006; Carpenter et al., 2006). Likewise, climate 
change under the five shared socio-economic pathways 
affects health outcomes (Ebi, 2014). Some health 
indicators can be expected to decline according to the 
systematic literature review (Figure 4.4.3), however, more 
comprehensive global scenarios need to address various 
dimensions of health impacts.

4.4.1.1.2	 Non-material dimensions of good 
quality of life

Along with material needs, human well-being depends 
profoundly on non-material and experiential factors (Butler 
& Oluoch-Kosura, 2006). However, narratives around 
good quality of life in global scenarios typically ignore such 
non-material dimensions which include but are not limited 
to: social relations, equity, cultural identity, values, security, 
recreation, knowledge and education, spirituality and 
religion, and freedom of choice and action.

Good social relations

Social relations refer to the degree of influence, respect, 
co-operation, and conflict that exists between individuals 
and groups (MA, 2005). Good social relations underlie the 
development of strong institutions and collective action, 
providing routes for sustainable use and management of 
nature and nature’s contribution to people. The natural 
environment has important influences not only on individual 
well-being, but social relations as well (Hartig et al., 2014). 
Good social relations also include mutual respect, social 
cohesion, and good gender and family relations. The 
linkages between good quality of life, nature and nature’s 
contribution to people were explicitly identified in the 
Millennium Ecosystem Assessment, with an emphasis 
on cultural and spiritual values (MA, 2005). Even though 
the world is more connected than ever before, social 

differentiation remains a major constraint to social relations 
at multiple scales and in many cases is closely associated 
with inequality in access to nature and natural resources. 
Thus, it is crucial to address disparities among stakeholders 
in and across socio-ecological systems and the role of 
social relations in negotiating such disparities, in order to 
more fairly and equitably address how nature and NCP 
can be leveraged to promote a good quality of life. The 
degradation of ecosystems, highly valued for their aesthetic, 
recreational, or spiritual benefits, can also damage social 
relations, by introducing or exacerbating disparities among 
social groups and reducing the bonding value of shared 
experience, including resentment towards and resistance 
against groups that disproportionately profit from their 
damage. While global scenarios of future trends in social 
relations are elusive, climate and land-use changes in the 
future are highly likely to accentuate social inequity in use 
of and access to resources, in the absence of changes in 
governance arrangements to address current disparities.

Equity

Equity broadly concerns an even distribution of nature’s 
contributions to people, and access to natural resources 
and rights (see also section 4.4.3). Typically three 
dimensions of equity are considered: (1) distribution, 
(2) procedure, and (3) context, access and power 
(McDermott et al., 2013). Equity concerns evidence of 
parity in processes and outcomes across gender, age, race 
and ethnicity, income and other social indicators or axes of 
difference. It is fundamental to human rights, including the 
rights of IPLCs (see also Box 4.4.1), and implicitly influence 
nature, its contributions to people and good quality of life 
(Breslow et al., 2016). Equity addresses fairness or justice 
in the way people are treated. In principle, equity concerns 
pertain to at least three domains –international, intra-country, 
and inter-generational. Social justice (equity) constitutes one 
of the three pillars of sustainable development, along with 
economic prosperity (development) and ecological integrity 
(sustainability) (Banuri et al., 2001). Equity may increase 
in scenarios where the consumption of material goods is 
reduced relative to that of services and intangibles, such as 
the new welfare scenario (Sessa & Ricci, 2014). Equity is 
also expected to increase in global sustainable development 
scenarios such as SSP1, B1 (A1T), B2, sustainability 
first, global orchestration and techno garden, and some 
economic optimism scenarios such as SSP5. In regional 
competition scenarios such as SSP3/4, A2, security first 
and order from strength, equity is expected to be low (see 
section 4.1).

Cultural identity

Cultural identity includes concerns related to the terms, 
language, activities and practices that embody the 
relationships of people and nature. The cultural identity 
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of IPLCs is particularly linked to long-term material and 
non-material relationships to nature and place, with direct 
and sustained physical and experiential interactions (e.g., 
see section 4.3.2.3 above). As indicated earlier, among the 
direct and indirect drivers of changes to such interactions, 
and to fundamental aspects of IPLCs cultural identity, 
are urbanization, climate change, demographic changes, 
technology, psycho-social or cultural factors, and health and 
development. Future threats to biodiversity and ecosystem 
services also constitute imminent challenges to the cultural 
identity of communities, particularly when faced with 
environmental degradation. For example, “blue-ice,” as a 
term inherent to First Nation languages and as the material 
formation on lakes and rivers, links transportation to access 
to food and energy. It is thus central to First Nations‘ cultural 
identity and traditional activities, and their future well-being 
(Golden et al., 2015). Such relations are at once material 
and symbolic. As section 4.3.2.3 also highlights, symbolic 
meaning is intimately tied to spiritual, religious and cultural 
identity, and strongly shapes social cohesion, and future 
trends in these relations are central to IPLC futures.

Personal and physical security

Future climate change poses physical risks with implications 
for human safety and security. Such risks emanate from 
multiple dimensions, including those linked to increased 
exposure to episodic stress (e.g., extreme climate events) 
as well as chronic pressures (e.g. related to warming 
temperatures and sea level change). For instance, climate 
change scenarios in the Great Barrier Reef indicate marked 
declines in security that accompany declines in ecosystem 
services, along with indicators of equity, education, health 
and shelter (Bohensky et al., 2011a). In other examples, 
projections of future population dynamics have indicated that 
more people may live in areas that are prone to both floods 
and wildfires in the future (Knorr et al., 2016). In northern 
regions, among other risks, for some populations, traveling on 
thinning ice in winter is becoming more dangerous, restricting 
movement of people and goods (Ford et al., 2006).

Recreation and leisure

There is considerable research from environmental 
psychology on the human health and well-being benefits 
from recreation in nature (Barton & Pretty, 2010; Marselle 
et al., 2014). The Millennium Assessment Technogarden 
scenario (see section 4.1) argues for the multifunctionality 
of land-use including recreational opportunities, seen as an 
affordable luxury in e.g., the Order from Strength scenario 
(MA, 2005; see also Appendix 4.4). Similarly, the SRES 
B1 (A1T) mentions the preservation of recreational spaces 
(Nakicenovic et al., 2000; see also Appendix 4.4). Loss 
of coral reefs under the RCP2.6 and RCP8.5 scenarios 
(section 4.2.2.2.2) could cost between U.S. $1.9 billion 
and U.S. $12 billion in lost tourism revenues per year, 

respectively (Gattuso et al., 2015). The loss of recreational 
areas such as camping sites is signaled as a regional 
concern by indigenous participants in case studies in 
Australia (McIntyre-Tamwoy et al., 2013).

Knowledge and Education

Knowledge and education related to biodiversity and 
ecosystem services are essential for ensuring good quality 
of life. The taxonomic records of world fauna and flora 
indicate 8.7 million known species (Mora et al., 2011), 
which represent only a fraction of the species that may exist 
(WRI et al., 1992), indicating a large knowledge gap on 
fundamental aspects of biodiversity. It has been estimated 
that 86% of existing species on Earth and 91% of species 
in the ocean still await description (Mora et al., 2011). Much 
of the knowledge used in scenarios of biodiversity and 
ecosystem services is derived from biology, ecology and 
related disciplines. 

Yet, a variety of conceptualizations of biodiversity are 
embedded in local knowledge and cultural memories 
directly relevant to regional and global resource and food 
production systems (Nazarea, 2006), but poorly represented 
in future scenarios. Additional perspectives could be derived 
from work on human cognition, decision-making, and 
behavior. For example, ethnobiology of agricultural diversity, 
cultural ecology of plant genetic resources, participatory 
conservation, politics of genetic resources, and legal 
dimensions of biodiversity conservation are very poorly 
represented in scenario development. The role of education 
has been to some extent explored in global scenarios. 
Specifically, the narratives of scenarios SSP1 and SSP5 
assume that the human capital component of education is 
highest compared to SSP2, SSP3 and SSP4 (KC & Lutz, 
2017). Schools play an important role in educating pupils 
and students to be active and responsible towards the 
environment, and the challenge of biodiversity conservation 
(Torkar, 2016; Ulbrich et al., 2010).

Spirituality, religion

A number of studies highlight the ways in which 
spirituality is related to good quality of life. Spirituality has 
been considered in a variety of ways, ranging from the 
traditional understandings of spirituality as an expression 
of religiosity in search of the sacred, to humanistic views of 
spirituality not specifically anchored in religion, or at least, 
ecclesiastical religion. Fisher (2011) noted that the spiritual 
health of individuals has four important domains: personal, 
communal, environmental and transcendental. Many 
religions emphasize a deep connection or oneness with 
nature, including Hinduism, Buddhism, Jainism, Christianity 
and Islam. For example, in India, patches of forest frequently 
constitute sacred groves of varying sizes, which are 
communally protected with significant spiritual connotations. 
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The rapid retreat of the Gangotri Glacier, the sacred source 
of the Ganges, is alarming for Hindu religious practitioners 
(Verschuuren et al., 2010). The landscape that surrounds 
sacred groves has a vital influence on biodiversity within 
them (Bhagwat et al., 2005). Similarly, sacred sites in Italy 
often display ecological features that highlight their important 
conservation role (Frascaroli, 2013). These sacred places 
are, symbolically, repositories of knowledge of our planet 
as ‘home.’ Our relationship with nature and GQL, where 
the spirit of nature and culture meet, and are additionally 
memorialized and maintained by rituals and festivities 
performed there. However, most of the current archetype 
scenarios of biodiversity and ecosystem services fail to 
incorporate the spiritual and cultural significance of nature.

Freedom of choice and action

Freedom emphasizes a person’s social, political, economic, 
and personal rights, and whether one is actually able to 
exercise these rights. Freedom of choice and action is a 
vital pre-requisite to GQL. In practical terms, freedom can 
promote or inhibit access to nature and its multiple benefits 
needed to sustain life. Human and natural constraints 
prevent different groups of people around the world from 
having or exercising freedom of choice and action to access 
nature and its benefits needed for good quality of life. Thus, 
even though nature and its contributions to good quality of 
life may be abundant in certain areas, lack of freedom may 
impede access. Projected changes to climate, biodiversity 
and ecosystem services can be expected to directly impact 
social access to nature and its benefits. In addition, future 
changes can strongly impact the institutions shaping 
freedom and choice. For instance, experience has shown 
that sociopolitical institutions and environmental regulatory 
regimes tend to favour certain groups over others. In the 
Doñana protected area from Southern Spain, freedom of 
action and choice is completely reduced in a future scenario 
of market liberalization (Palomo et al., 2011). Similar 
trade-offs with GQL are evident in the varying degrees of 
environmental protections at the global scale. For instance, 
different IUCN categories in protected areas, from the most 
stringent preservationist approaches excluding human use, 
to the more integrated protection categories incorporating 
some (sustainable) use, have vastly different implications for 
GQL in different communities living in those regions.

4.4.1.2	 Good quality of life across 
worldviews and knowledge systems

GQL conceptualizations across worldviews and knowledge 
systems vary considerably due in part to values, beliefs and 
worldviews, as well as social and political contexts. What 
GQL entails is highly dependent on place, time and culture, 
with different societies espousing different views of their 
relationships with nature and placing varying emphasis on 
collective versus individual rights, or the material versus 

the spiritual domain. Understanding and appreciating 
plausible GQL scenarios require an integrative assessment 
of subjective and objective approaches and indicators for 
quality of life, including quantitative or qualitative social 
and economic measures (Cummins et al., 2003; Diener et 
al., 1999; Easterlin, 2003; Haas, 1999). Over the past half 
century, increasing research and policy attention has been 
directed to socio-ecological concerns relevant to Indigenous 
People and Local Communities (IPLCs) (e.g., Box 4.4.1), 
with recognition of long histories and ongoing processes of 
exclusion and marginalization of IPLCs in ecosystem and 
biodiversity conservation and management across socio-
ecological regions. The IPBES framework acknowledges the 
varying perspectives of GQL across knowledge systems, 
cultures and societies (Díaz et al., 2015). 

While indigenous worldviews differ from one community to 
another, indigenous understandings of well-being are also 
frequently intertwined with understandings of nature; the 
relationship between people and their environment happens 
not only at a cognitive level. In many societies, “prestige 
and satisfaction are gained through relationships and 
generosity rather than in accumulation of personal wealth. 
A good life is one spent in service to one’s community, in 
living in balance with the other lifeforms of one’s homeplace. 
Responsibilities extend not just to the present, but to 
many generations into the future” (Turner & Clifton, 2009). 
Different understandings also exist around the notion of 
‘time’. In Iñupiaq and Siberian Yupik culture, for instance, 
it is important for hunters to avoid speculating about the 
future, reflecting the belief that one should be humble about 
one’s abilities to predict it, and not expect any one particular 
outcome over another (Voorhees et al., 2014). Addressing 
quality of life under different plausible futures will benefit 
from bridging indigenous and local epistemologies with 
scientific knowledge systems (Tengö et al., 2017), such as 
initiatives addressing mitigation and adaptation from a local 
perspective (UNU-IAS & IGES, 2015).

4.4.2	 Linking good quality of 
life to nature and nature’s 
contributions to people across 
future scenarios

4.4.2.1	 Mediating factors of future GQL 
and NCP 

Future quality of life and its relation to nature and its 
contributions to Ppeople (NCP) is expected to be mediated 
by a bundle of overlapping factors across socio-ecological 
systems at local and global levels, from the individual or the 
household to the system (Figure 4.4 4). These mediating 
factors are fundamental to shaping the productive base of 
a society, including substitutable capital assets, i.e. natural, 
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produced, and human capital (Duraiappah et al., 2014). 
They are akin to indirect drivers of changes to nature, 
NCP and GQL, and include tenure security (e.g., use and 
access rights), equity concerns, power relations, formal and 
informal institutions and human rights, technology access, 
financial assets, and social capital and social resilience 
(Horcea-Milcu, 2015; Shapiro & Báldi, 2014; Spangenberg 
et al., 2014). However, inequities, political challenges and 
distributional issues are seldom discussed by scenarios 
considering implications for GQL.

Social groups have distinct ways to derive well-being from 
NCP, as a result of a range of interlinked mediating factors 
(Horcea-Milcu, 2015). For example, policies such as the 
European Common Agriculture Policy rural development 
program of agri-environment schemes may increase 
nature’s contributions to people, but because it does not 
holistically engage with mediating factors it will not equitably 
increase access to benefits (Horcea-Milcu, 2015). Although 
people’s values and attitudes are crucial in shaping the 
future, they are rarely central to scenario exercises. Novel 
methods, such as the three horizons approach (Sharpe et 
al., 2016) have been developed to fully integrate people’s 
worldviews into scenario planning, however transcendental 
values held by the social groups are only beginning to 
be considered (Kass et al., 2011). For example, the 
ethnographic futures framework focuses on how changes in 
the natural environment take place through human agency 
and how society will act as recipient in the future (Kass et 

al., 2011). Importantly, the process of elaborating scenarios 
is increasingly taking into account participatory approaches 
and corresponding value negotiations around the meaning 
of good quality of life. Consequently, ethical questions 
emerge regarding how to build scenarios so that local 
knowledge and IPLCs are not coopted in ways that may 
exacerbate processes of their social marginalization (but see 
also Box 4.4.1). 

How mediating factors may be expected to change 
in magnitude and direction across different archetype 
scenarios remains to be explored. Scenarios of regional 
sustainability seem more suited for mitigating the negative 
influence of mediating factors (Hanspach et al., 2014). 
Mismatches among mediating factors, nature and NCP 
may pose challenges. For instance, Duraiappah et al. 
(2014) identified mismatches of individuals’ values (e.g., 
of ecosystem services within different social contexts), 
mis-matches in ecosystem services and ecosystem scales 
(at which levels of biodiversity, ecosystem processes and 
functions operate to produce the bundle of provisioning, 
regulating, and cultural services), and mis-matches of 
institutions (those that account for spatial, temporal, and 
functional fit in managing ecosystem services).

The way NCP components will be filtered and transformed 
to GQL components and reach beneficiaries such as 
individual, social groups or societies will be highly influenced 
by mediating factors such as: access arrangements, assets, 

Figure 4  4  4   Conceptual model of mediated relationships between nature’s contributions to 
people and good quality of life (GQL).  
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institutions, values and norms. One avenue to incorporate 
this variability is integrating more participatory, deliberative 
or transdisciplinary processes into scenario building 
endeavors towards improved considerations of GQL in its 
variety of components, whether material or non-material, 
of local or global concerns. Storylines of socio-economic 
development used in global scenarios include few indicators 
of GQL, typically predicated on its material aspects. 
Given these limitations, lessons learnt from the current 
assessment is that indicators of GQL in global scenarios 
generally improve in the future in the “global sustainability”, 
“regional sustainability”, and “economic optimism” scenario 
archetypes. However, continued degradation of nature and 
non-provisioning NCP in the “Economic optimism” scenarios 
suggests that the decoupling of GQL from Nature and 
non-provisioning NCP that is often currently observed could 
potentially continue into the future. Indicators of GQL have 
the poorest future trajectories in the “regional competition” 
scenarios and do only slightly better in “business-as-usual” 
scenarios at the global scale. 

4.4.2.2	 Future scenarios of GQL and NCP 

Key characteristics of GQL indicators are assumed to 
substantially improve in the future with a reduction in 
global poverty in the “global sustainability” archetype and 
to a lesser extent in the “regional sustainability,” but with 
recognizable regional differentiation (section 4.1). These 
improvements in GQL in sustainability scenarios go hand-in-
hand with the most favorable projections of future dynamics 
of nature and NCP. However, continued degradation of 
nature, especially in developing economies of the tropics, 
and the consequences on NCP in the “economic optimism” 
scenarios suggest that the decoupling of economic growth 
on the one hand and nature, NCP and GQL on the other 
hand (see Chapters 2 & 3, and sections 4.2.2-4.2.4) could 
potentially continue into the future.

Indicators of GQL (Table A4.4.1, Appendix 4.4) have the 
poorest future trajectories in the “regional competition” 
scenarios and do only slightly better in “business-as-usual” 
and “economic optimism” scenarios at the global scale 
with substantial geographical differentiation. One of the 
underlying components of these storylines (particularly in the 
regional competition archetypes) is fragmentation, and large 
geographical variation in indicators of GQL. These scenarios 
also lead to the least optimistic future projections of nature 
and NCP (sections 4.2 & 4.3). These scenarios suggest that 
many of the current trends in socio-economic development 
(see Chapters 2 & 3) are projected to lead to lose-lose-lose 
responses of nature, NCP and GQL in the future (section 
4.5) with inhabitants of developing economies expected to 
be severely impacted.

The literature review also finds that plausible scenarios are 
more likely to recognize the importance of nature for fulfilling 

material dimensions rather than the non-material ones. 
Similarly, there is a gap in the literature on the extent to 
which GQL dimensions depend on nature’s contributions, 
and how they fit together. The literature clearly documents a 
strong correlation between nature’s contributions and good 
quality of life (Figure 4.5.2b in section 4.5). Notably, positive 
trends in NCP are correlated with corresponding positive 
trends on GQL (top right of Figure 4.5.2b). Negative trends 
in NCP and GQL are similarly correlated (bottom left of 
Figure 4.5.2b) and comprise the bulk of the correlations 
reported as scenarios’ outcomes. Nevertheless, analyses 
of such NCP-GQL relations could be further specified for 
scenarios exploring how those relations are mediated by 
contextual factors. For instance, future scenarios voiced 
by Amazonian communities reveal concerns with regard to 
livelihoods, equity aspects and the long-term impacts for 
communities and nature (Evans & Cole, 2014).

A challenge to the assessment of NCP and GQL under 
different future scenarios is their socially differentiated nature. 
This means that different groups may experience changes 
in NCP differently and with distinct impacts on GQL, so 
that a given change scenario usually implies winners and 
losers. People vary in their access to ecosystem services, 
exposure to disservices, dependence on ecosystems, and 
needs and aspirations for NCP. These are influenced by 
societal structures and norms as individual characteristics 
(Daw et al., 2011) and power relations (Berbés-Blázquez 
et al., 2017; Horcea-Milcu, 2015). Access shapes the 
transformation of ecosystem services to human well-being. 
For example, the perception of, dependence on and access 
to ecosystem services are strongly gendered. Men and 
women participate in different ecosystem-based livelihoods 
due to gendered roles and responsibilities gendered access 
to physical space, and gendered knowledge systems about 
ecosystems and NCP.

Thus, decision-making about environmental management 
with implications for different bundles of ecosystem services 
is an intently political process, with different stakeholders 
favouring different outcomes and holding different levels 
of power within those processes (Schoon et al., 2015). 
Value systems and societal preferences for example 
evolve through globalisation of culture, or from burgeoning 
environmental consciousness in society (Everard et al., 
2016). Thus, changes in NCP and GQL are affected by 
social, economic, institutional change as well as biophysical 
change. Also how GQL of particular groups of people 
will respond to changes in biophysical conditions will be 
influenced by a wide range of factors (Daw et al., 2016); see 
also section 4.4.2). 

Evaluating GQL under different scenarios of change can 
benefit from deliberative and participatory approaches that 
consider a wide range of stakeholder views, and disciplinary 
perspectives (e.g., Brand et al., 2013). Such a diversity of 
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perspectives is necessary to take account of the multiple 
interacting factors and socially differentiated experiences, 
vulnerabilities and preferences for NCP (Barnaud et al., 
2018) as well as complexity and uncertainties in how NCPs 
evolve (Lele & Srinivasan, 2013).

Narrowly informed assessments of change may overlook 
socially differentiated outcomes. For example, aggregate 
analysis of a small-scale fishery in Kenya showed a win-
win opportunity to improve profitability and conservation 
outcomes by reducing fishing effort and the use of 
small meshed beach seine nets. However, an inclusive 
participatory modelling approach showed that the livelihoods 
of certain groups, such as women traders would be 
negatively impacted by such a change due to the gendered 
nature of the value chain (Daw et al., 2015). Likewise, in 
southern India, a disaggregated economic analysis shows 
how different stakeholder groups would experience different 
benefits and costs from the implementation of a forest 
conservation area (Lele & Srinivasan, 2013). For example, 
non-indigenous groups would suffer from curtailment of 
firewood and grazing benefits while indigenous groups 
would also lose out on these services but benefit to a 
greater extent from increased opportunities and sale of non-
timber forest products. Importantly, from the perspective 
of developing scenarios, these wins and losses are shown 
to be highly contingent on complex institutional, technical 
and ecological dynamics in terms of access arrangements, 
irrigation methods and invasive species, respectively (Lele & 
Srinivasan, 2013).

Trade-offs between the good qualities of life of particular 
societal groups might easily be overlooked due to the 
complexity of ecological and social relationships, because 
the ‘losers’ of such trade-offs are marginalised or lack a voice 
in assessment processes and because of the psychological 
and political biases towards ‘win-win’ narratives that overlook 
uncomfortable or inconvenient trade offs (Daw et al., 2015). 
A limitation with participatory approaches is the difficulty of 
imagining future scenarios of changes in the ‘demand side’ 
of NCP. So, a group may discuss how changes in a resource 
might be affected by climate change, but it is often framed 
in terms of current social conditions. Social, economic and 
political changes can have major impacts on NCP and 
subsequent effects on GQL.

Perspectives on GQL are also disputed and dynamic 
amongst modern and urban populations in wealthy 
countries. Increasing interest in well-being by Western 
governments (e.g., the OECD better life index http://www.
oecdbetterlifeindex.org/) is critical for future scenarios 
because development trajectories, informed by the pursuit of 
economic growth are a major driver of ecosystem change. 
The possibility of a broader conceptualisation of well-being 
informing economic and development policy could have a 
major impact on the drivers behind environmental change.

Different conceptualisations or subjective experiences of GQL 
extend into relationships with ecosystems. While dominant 
economic framings in modern societies have emphasised 
instrumental values of nature, spiritual and aesthetic-cultural 

Box 4  4  1 	 Climate Futures and Rural Livelihood Adaptation in Nusa Tenggara Barat, 
Indonesia.

What different futures are plausible for Indigenous People 

and Local Communities (IPLCs)?

Nusa Tenggara Barat (NTB) Province in the island archipelago 
of Eastern Indonesia is one of the country’s poorest regions, 
and highly vulnerable to climate change due to dependence 
on rural, ecosystem-based livelihoods (Kirono et al., 2016). It 
is therefore representative of other island regions in the tropical 
Asia-Pacific, which share the challenges associated with rapid 
change and entrenched poverty intertwined with complex 
traditional culture (Butler et al., 2014, 2016a). 

To assist communities to navigate future changes, from 2010-
14, the Australian Government funded a series of scenario 
planning workshops with multiple stakeholders to investigate 
alternative development pathways and potential impacts on 
ecosystem services (Butler et al., 2015). The project’s Theory 
of Change assumed three evolutionary stages of adaptive 
co-management that would be triggered: 1) capacity building, 
2) policy and program development and 3) implementation, 

adoption and scaling out. A participatory evaluation was carried 
out to test these assumptions and measure outcomes (Butler 
et al., 2016c).

A key principle of the scenario planning process is that multiple 
stakeholders must be engaged through collaborative learning 
and knowledge co-production (Butler et al., 2016c). Scientific 
and local knowledge was integrated in an interactive and 
iterative process throughout the workshops with the goal of 
co-producing knowledge via a ‘learning spiral’ (Figure 4.4.5). 
Stage 1 scenario workshops were carried out with provincial 
level stakeholders, and then repeated in Stage 2 for five 
sub-districts and their community level stakeholders; Stage 3 
then integrated the outputs of Stages 1 and 2 (Figure 4.4.5). 
Stages 1 and 2 were structured around four questions: 1) What 
are the drivers of change for livelihoods? 2) What is the desired 
future for livelihoods? 3) What are the possible futures for 
livelihoods? and 4) What are the priority ‘no regrets’ adaptation 
strategies required to achieve the desired future in spite of 
future uncertainty? 

http://www.oecdbetterlifeindex.org/
http://www.oecdbetterlifeindex.org/
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Figure 4  4  5   Stage 1 and 2 scenario planning workshop steps and primary outputs (bullets) 
based on Brown’s (2008) learning spiral. 

Also shown are the links to the subsequent Stage 3 sub-district integration workshops . From Butler et al. (2016b) .   
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Figure 4  4  6   The ‘roadmap’ used in the Stage 1 and 2 scenario planning workshops to explain 
the sequential learning steps. 

The step numbers and questions correspond to the learning spiral in Figure 4 .4 .5 . From Butler et al. (2016b) .   
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Participants in Stage 1 identified two key drivers from a list of 
50 current drivers of change: development of human resources 
and climate change. They described a desired future vision 
for NTB rural livelihoods in 2090 based on adequate income, 
health, food security, social cohesion and freedom of choice 
for a good life. A matrix of four possible future scenarios was 
created from better or worse extremes of human resources 
development and climate change. Participants created 
narratives and illustrations for each scenario (Figure 4.4.7). 

An ecosystem goods and services typology and model was 
used to project future ecosystem goods and services and 
impacts on human well-being in 2030 for the business-as-
usual scenario (Figure 4.4.6). The most affected ecosystem 
types were rice and bandeng (fish) ponds, diverse cropping 
and coastal activity, diverse agriculture and forest use, and rice 
and tobacco (Skewes et al., 2016). However, communities 
dependent on these ecosystem types for their livelihoods 
have varying levels of adaptive capacity. Hence, an adaptive 
capacity index was developed to rank vulnerability of NTB 
livelihoods, which identified the diverse cropping and coastal 
activity livelihood as most vulnerable. This assessment helped 
the participants to select sub-districts for community case 

studies in the next phase. Based on ecosystem goods and 
services and human well-being impacts and adaptive capacity 
for each typology, participants designed adaptation strategies 
for livelihoods to steer them away from ‘business-as-usual’ 
towards the NTB vision and the ‘Best Case’ Well-being 
Village scenario.

The same process was undertaken for each case study sub-
district in the Stage 2 workshops, with more focus on local 
issues, knowledge and ecosystem goods and services.

Through the process, surveys identified distinct ‘knowledge 
cultures’ amongst stakeholder types in this region (e.g. 
government, communities and NGOs), with differing 
perceptions of future time horizons, climate change and 
development priorities (Bohensky et al., 2016; Butler et 

al., 2015). This finding justified the project design, which 
intentionally carried out the process at multiple scales in Stages 
1 and 2, and then finally integrated the results by bringing 
stakeholders representing different scales together in Stage 
3 (Figure 4.4.5). As a consequence, learning and innovation 
was one of the primary outcomes of the process (Butler et 

al., 2016c).

Figure 4  4  7   Driver themes, sub-themes and exploratory scenarios for 2090 from the Stage 1 
provincial workshop. 

From Butler et al. (2016b) .   
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How indigenous and local knowledge (ILK) can be 

integrated with scientific knowledge in scenario-based 

projects towards Sustainable Development Goals (SDGs)

Participatory scenario planning has become a popular tool 
for navigating changes faced by many Indigenous Peoples 
and Local Communities. Integrating knowledge and multiple 
perspectives on change drivers, how the future might look 
and how stakeholders might respond, can potentially catalyse 
single-, double- and triple-loop learning that enable adaptation 
(Butler et al., 2016c; Totin et al., 2018).

The power of scenario planning to effect real change may be 
limited, however. While such scenarios present local visions 
for alternative futures in ways that conventional models, 
projections and forecasts cannot (Peterson et al., 2003; 
Wollenberg et al., 2000), their widespread adoption has not 
been matched by adequate resources. A review of place-
based participatory scenarios found that very few projects 
complete a rigorous evaluation of outcomes (Oteros-Rozas 

et al., 2015). Even in well-funded, multi-year projects such 
as the project in NTB, scenarios have only catalysed partial 
learning and change (Butler et al., 2016a). In particular, the 
adoption of incremental rather than transformative adaptation 
strategies suggest that root causes of community vulnerability 
were not fully acknowledged, although numerous systemic 
drivers were identified. Scenario planning should be considered 
as only one tool in a process of capacity-building. This is 
particularly important in developing country contexts where 
capacity of stakeholders is low (Chaudhury et al., 2013; 
Vervoort et al., 2014). One-off scenario planning can generate 
enhanced learning and social networks but is unlikely to create 
transformational change needed to address systemic issues 
such as politics and institutions (Totin et al., 2018). Ideally, 
the principles of futures analysis and learning should also be 
integrated within existing decision-making or development 
planning processes (Butler et al., 2016c). If sustained, 
such grassroots platforms may catalyse and implement 
transformation, and ultimately enable vulnerable communities to 
leap-frog the SDGs (Butler et al., 2016b).

values, whether of indigenous or modern societies, are hard 
to capture by instrumental thinking that underlies economic 
ecosystem service approaches. Instead, they are grounded in 

conceptions of nature that differ from the ecosystem services 
conceptual framework (Cooper et al., 2016).
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Figure 4  5  1   Number of results in the systematic literature review (for details, see 
Appendix A4.1.1) which report projections of at least one indicator of nature, 
nature’s contributions to people (NCP), or good quality of life (GQL).   

Overlaps of the circles indicate that a result contained trends for more than one group of indicators .
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4.5	TRADE-OFFS, 
CO-BENEFITS AND 
FEEDBACKS BETWEEN 
NATURE, NATURE’S 
CONTRIBUTIONS TO 
PEOPLE AND GOOD 
QUALITY OF LIFE

4.5.1	 Analysis of interactions from 
the Systematic Literature Review

Very few models and scenarios have been developed that 
simulate the complex interactions between nature, nature’s 
contributions to people and good quality of life at continental 
or global scales, although such interactions are qualitatively 
well described and documented in the literature. As a result, 
scenario outcomes developed so far do not cover the 
full range of plausible futures. In the systematic literature 
review conducted for this chapter (Appendix A4.1.1), only 
14 papers (out of a total of 572 papers), reporting a total 
of 41 different scenarios outcomes, addressed interactions 
between nature and NCP and GQL (Figure 4.5.1). 
Advancing scientific knowledge about such interactions is 

crucial because of their relevance for identifying feedback 
effects, understanding trade-offs or win-win solutions 
and the risk of breaching thresholds and so–called 
“tipping points”.

Analyses of the systematic literature review (Figure 4.5.2) 
suggest further that while relationships between nature, 
NCP and GQL are both positive and negative, the reported 
results indicate that the majority of indicators’ trends are 
correlated either positive-positive or negative-negative. For 
instance, if a trend in a nature indicator is positive, there 
is more chance that a trend in an associated NCP is also 
positive (Figure 4.5.2a), and conversely for negative/
negative relationships. 62% of the simulated interactions 
between nature and NCP indicators’ trends are correlated 
that way (excluding cases where both indicators of Nature 
and NCP have null trends). Likewise, the majority of 
relationships between NCP and GQL are positive-positive 
or negative-negative (80%; Figure 4.5.2b). The high 
proportion of such correlations suggests the existence of 
opportunities and potential co-benefits of measures aimed 
at preserving a specific nature’s component, or a specific 
ecosystem service (section 4.5.3). However, the literature 
analysis does not allow to decipher whether there are causal 
relationships behind the positive correlations, and whether 
there are differences across regions or changes in trend 
over time (near vs. longer-term future). In addition, the level 
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of correlation is neither quantified, nor linked to any potential 
feedback effects that can dampen or amplify the drivers 
impacts on nature, NCP and GQL (section 4.5.1). There 
are a few numbers of negative correlations between nature, 
NCP and GQL indicator trends, which, although found in a 
lower proportion, can represent difficult trade-offs between 
different policy targets, e.g. between conservation and food 
provisioning targets (section 4.5.2).

4.5.2	 Feedbacks 

Feedbacks are processes that either reinforce or degrade 
the resilience of a stable state (Briske et al., 2006), with 
both damping (also known as negative or balancing) and 
amplifying (also known as positive or reinforcing) feedbacks 
acting together or separately in a complex system to hold it 
in a particular state. A compilation of studies illustrative for 
feedbacks can be found in the Appendix (Table A4.5.2).

Feedbacks are well documented in the climate system 
(Ciais et al., 2013). For example, increases in atmospheric 
concentration of CO2, warmer temperatures and/or 
altered precipitation impact uptake and release of CO2 in 
vegetation and soils, which in turn amplifies or dampens the 
original forcing via feedbacks on atmospheric CO2. Along 
coastlines, global sea level rise, temperature extremes and 
storm surges are projected to damage marine vegetated 
habitats and decrease wetlands area (Crosby et al., 2016; 
Hoegh-Guldberg et al., 2018), with potential negative 
feedbacks on climate change as these areas play key role 
in carbon burial and sequestration (Duarte et al., 2013; 

section 4.2.2.2.2). In terrestrial systems, shifts in vegetation 
cover associated with climate change and atmospheric 
CO2 (such as changes in woody type and cover, reduction 
of permafrost and peatlands, or shifts in fire regimes) play 
additional important roles in these dynamics (see section 
4.2.4.1; Achard et al., 2014; Arneth et al., 2010; Davidson 
et al., 2012; Lenton et al., 2008; Lenton & Williams, 2013; 
Pearson et al., 2017; Stocker et al., 2013). In addition, 
reduced evapotranspiration due to climate change (or 
deforestation) feeds back on surface humidity, formation of 
regional cloud or rainfall which could also enhance forest 
vulnerability to fire and drought (Avissar & Werth, 2005; 
Devaraju et al., 2015; Lenton & Williams, 2013; Quesada et 
al., 2017b; Ray et al., 2006). However, there remain large 
uncertainties in the magnitude and direction of feedbacks 
(Arneth et al., 2010; Friedlingstein et al., 2014; Raes et al., 
2010; Roy et al., 2011; Stocker et al., 2013). 

Feedbacks also exist in coupled socio-ecological systems 
(and hence between nature, NCP and GQL; Hersperger 
et al., 2011; Hull et al., 2015; Robinson et al., 2017). 
For instance, infrastructure used for extraction and use 
of natural resources generates wealth, which amplifies 
technological development and further extraction of 
resources. As the demand of a natural resource intensifies, 
its economic value increases. To seek monetary profits, 
exploitation increases as well and as long as the demand is 
high, economic value and exploitation continue to increase 
(Cinner et al., 2011; Leadley et al., 2010, 2014; Walker et 
al., 2009. A social driver like market demand increases the 
value of natural resources with increasing scarcity of the 
resource. This negative feedback starts to be accounted 

Figure 4  5  2   Heatmap showing the relationship between negative, neutral and positive trends 
reported for indicators of nature and nature’s contributions to people (NCP, left 
panel, A  ), and NCP and good quality of life (GQL, right panel, B  ) in output of the 
models and global scale scenarios from the systematic literature review (Appendix 
A.4.1). n: number of results reported (i.e. multiple results per paper possible).
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for in fishing scenarios, with for example, high short-term 
economic incentives to exceed sustainable exploitation 
targets of marine resources, potentially leading to increases 
in fishing capacity and rapid depletion of fish stocks (Merino 
et al., 2012). This often happens with large predatory fishes 
that are of high monetary value (Tsikliras & Polymeros, 
2014). Overfishing leads to their depletion, new global 
markets develop for alternative species in turn (Quaas et al., 
2016), often their own prey, which leads to further depletion 
of marine resources (Steneck et al., 2011). In addition, 
economic market feedbacks in response to a conservation 
intervention can hinder conservation efforts (Lim et al., 
2017). In this case the price increase of e.g., timber 
following future logging bans or other protective measures 
such as protected areas might be counterbalanced by illegal 
trade and enhanced logging elsewhere (“leakage”) and 
these unintended feedbacks on timber supply via market 
responses could be amplified even further if interventions 
shift the competitive ratio of efficient to non-efficient 
producers. Leakage effect from protected areas could also 
take place, when protected areas reduce threats within 
their boundaries by displacing a part of these threats into 
adjacent areas (Renwick et al., 2015).

One of the key interactions between climate change and 
socio-economic changes is human population distribution 
and mobility. Climate change-induced migration, also 
referred to as “environmental migration” (Black et al., 2011), 
can exert additional pressure on the environment in regions 
of migratory influx of people, which in turn exacerbates 
degradation of resources. Likely, migrants would choose 
urban or developed areas as their destinations (Tacoli, 
2009). Enhanced pressure on resources around cities 
(see 4.3.3) following the influx of large number of people 
might lead to further environmental degradation, and 
pressure of people to move elsewhere. There are inherent 
difficulties in explicitly monitoring and predicting the effects 
of environmental migration caused by migration due to lack 
of comprehensive data (Kniveton et al., 2008). However, 
evidence from the past (including non-environmental 
migration) can already illustrate the potential impacts 
(Reuveny, 2007).

Changes in value systems and lifestyle, sense of nature and 
loss of indigenous or local knowledge can be side effects of 
globalization and commercialization that ultimately impacts 
the GQL which in turn leads to more exploitation of natural 
resources (Hubacek et al., 2009; Reyes-García et al., 2013; 
Uniyal et al., 2003; Van der Hoeven et al., 2013). Robust 
identification and quantification of feedbacks is a challenge for 
future scenario projections, in part because of teleconnections 
and telecoupling that need to be considered (Liu et al., 2013). 
Both are interactions over distances; teleconnections refer 
often to interactions in the natural environment such as through 
atmospheric transport or ocean currents, while telecoupling 
explicitly acknowledges that in today’s world interactions occur 

in coupled human-environment systems (Liu et al., 2013; 
Robinson et al., 2017). Global scale scenarios and models 
that would allow to assess the complex interactions between 
nature, NCP and GQL, and to identify the role of amplifying or 
damping feedbacks not only locally but also between regions 
do not yet exist.

4.5.3	 Trade-offs

The use of a given ecosystem service by human societies 
affects in most cases the availability of other ecosystem 
services. In many cases trade-offs arise, especially between 
material NCP vs. regulating NCP and biodiversity (see 
sections 4.3.2 and 4.3.3; Bennett et al., 2009; Bonsch et 
al., 2016; Carpenter et al., 2017; Clark et al., 2017; Di Minin 
et al., 2017; Krause et al., 2017; Lafortezza & Chen, 2016; 
Powell & Lenton, 2013; Seppelt et al., 2013; Tscharntke 
et al., 2012; Vogdrup-Schmidt et al., 2017). Similar results 
have been found across all the IPBES regional assessments 
(IPBES, 2018b, 2018e, 2018c, 2018d) and UNEP’s Global 
Environmental Outlooks (e.g., UNEP, 2012). In most future 
scenarios, the demand for material NCP increases because 
of population growth and consumption pattern changes 
(Popp et al., 2017), which can be considered principal 
drivers for the declines in regulating NCP and biodiversity. 
In absence of targeted policy, future global demand for 
food, energy, climate and biodiversity may be very difficult to 
achieve simultaneously (e.g., Henry et al., 2018; Obersteiner 
et al., 2016; von Stechow et al., 2016). Trade-offs (but also 
co-benefits) in ecosystem service supply can be considered 
important components of feedback loops (see 4.5.2), since 
in the long term a substantial decrease in regulating services 
will also negatively affect provision of material services that 
depend on the regulating ones (Cavender-Bares et al., 
2015). For instance, the destruction of pollinator habitat as 
part of agricultural expansion or intensification, can lead 
to declines in food production (IPBES 2016b), resulting in 
the need for further agricultural expansion (and associated 
further loss of pollinator habitat). The implications of future 
trade-offs will be influenced by regionally specific biophysical 
settings in combination with cultural preferences and thus 
should be considered in decision-making (Cavender-Bares 
et al., 2015) (see chapter 6). However, since scenarios 
and models for many NCP are non-existent or incipient, 
many trade-offs and synergies remain unknown (Mach 
et al., 2015). In particular cultural services are usually not 
considered in scenarios development or in models (see 
section 4.3), therefore future trade-offs with material and 
non-material aspects are poorly understood.

Food, bioenergy and water

Increasing consumption of food, and associated 
terrestrial and marine food production sectors, are seen 
as a main driver of biodiversity loss. Overexploitation 
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of wild marine resources is expected to increase in the 
future under current management schemes (Costello et 
al., 2016; see section 4.2.2.3.1) but could be alleviated 
by the growth of the aquaculture sector (Merino et 
al., 2012; Quaas et al., 2016). However, aquaculture 
development is challenged by a number of trade-offs 
related to fishmeal provisioning (Blanchard et al., 2017) 
from wild marine resources (and potential further decline 
of marine populations, especially those serving as prey 
for already overexploited marine predators) or from 
cereal and soya production affecting land-based food 
production. Terrestrial ecosystems are impacted through 
cropland expansion as well as intensification on existing 
agricultural land and associated inputs of water and 
fertilizer (Foley et al., 2011; Tilman et al., 2011; Tilman 
& Clark, 2015). The pressure on agricultural systems will 
be increasing not only due to the continued population 
growth but also due to projected changes in dietary 
preferences towards meat-based protein intake in many 
countries. Under continuation of current trends, global 
food, water or timber demands are estimated to increase 
by 30% (timber), 65% (food and feed) and 75% (water) 
by 2050 (van Vuuren et al., 2015).

Land-based climate change mitigation requires additional 
land area (e.g. for bioenergy or reforestation), which is 
projected to be lowest in sustainability scenarios that 
assume changes in consumption patterns (e.g., 250-
530 Mha, SSP1/RCP2.6), and highest in scenarios that 
describe a world with large regional competition (e.g., 
250-1500 Mha, SSP4/RCP2.6) (Popp et al., 2017). In 
view of food and water demands of a growing human 
population, the question remains whether (and where) 
the required land area would be available for large 
bioenergy plantations or afforestation/reforestation 
efforts. Likewise, large direct or indirect side effects have 
been shown to arise for the global terrestrial ecosystem 
carbon balance, and hence climate regulation, other 
ecosystem functionality and biodiversity (Bird et al., 
2013; Jantz et al., 2015; Krause et al., 2017; Kraxner 
et al., 2013; Melillo et al., 2009; Plevin et al., 2010; 
Santangeli et al., 2016). It is well documented that 
the use of ecosystem services regionally will impact 
ecosystem functioning and services in other regions 
(Jantz et al., 2015; Krause et al., 2017; Seppelt et al., 
2013; and see section 4.3.3). For tradeable goods, and 
in absence of changing demand, land-use change in a 
given region (for instance, converting land to bioenergy 
rather than food production) will result in compensatory 
land-use changes elsewhere (for instance, conversion 
of natural habitat to food production) (Bird et al., 2013; 
Krause et al., 2017; Kraxner et al., 2013; Melillo et al., 
2009; Plevin et al., 2010).

Future land-use change scenarios with Integrated 
Assessment Models (Popp et al., 2017) assume that land 

for bioenergy growth or afforestation and reforestation 
can be freed up through continued strong increases 
of crop yields (Bijl et al., 2017; Bonsch et al., 2016; 
Humpenoder et al., 2015; see also Table 4.1.6, section 
4.1), but the environmental and societal issues associated 
with the intensification of agricultural production are 
insufficiently considered in these scenarios. For an end-
of-century 300 EJ bioenergy target to be produced from 
plants, Bonsch et al. (2016) found a doubling of global 
agricultural water withdrawal and a bioenergy production 
area of 490 Mha, or a land requirement of 690 Mha if no 
irrigation of bioenergy plants is considered. The latter 
increased to approximately 1000 Mha land for bioenergy 
if technology effects on increased yields would be only 
half of those in bioenergy than in food crops (Bonsch et 
al., 2016). Krause et al. (2017) found both increases and 
decreases in different ecosystem functioning in response 
to scenarios under a RCP2.6 umbrella that included 
large-scale land-related climate change mitigation 
efforts, with large variability across regions and land-
use scenarios. Large nitrogen losses were simulated in 
response to fertiliser needs to support yield increases, 
indicative of air and water pollution. Competition for land 
in climate change mitigation scenarios based heavily on 
bioenergy production has also been shown to increase 
food prices (Kreidenweis et al., 2016). Detrimental 
societal impacts will arise if these price increases cannot 
be met by economic growth. It has now been consistently 
demonstrated that regional surface temperature can 
be strongly affected by land cover change, arising 
from altered energy and momentum transfer between 
ecosystems and atmosphere, with either an increase or 
decrease in temperature depending on the geographic 
context (Alkama & Cescatti, 2016; Li et al., 2015; 
Perugini et al., 2017; Quesada et al., 2017a). Thus, 
changes in surface climate arising from large-scale land 
cover change in mitigation efforts can regionally amplify 
or reduce climate change. Large-scale land-based 
climate change mitigation efforts need to take account 
of unintended consequences on ecosystems that could 
undermine climate regulation or provisioning of a range of 
important ecosystem services. 

An important element of the SSP1/RCP2.6 scenarios 
which limit global warming to about 2°C is that much 
of agriculture and bioenergy production relocates 
from high-income temperate regions to low-income 
tropical ones (van Vuuren et al., 2011) where most of 
freshwater diversity is concentrated (Tisseuil et al., 
2013). Deforestation, extraction of high amounts of 
water withdrawal for irrigation, and use of pesticides and 
fertilizers to increase productivity in expanding bioenergy 
croplands are known to adversely affect natural aquatic 
systems and their biodiversity, notably fishes through local 
extinctions and alteration of their community structure 
(sections 4.2.3.2; 4.2.3.3). Inland fisheries are particularly 
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important in tropical developing countries and currently 
provide the major dietary protein source for well over 
half a billion people (FAO, 2016; Lynch et al., 2016). An 
increase in bioenergy production in these low-income 
food-deficit countries is thus expected to strongly impact 
fisheries and compromise further their food security.

4.5.4	 Co-benefits

In order to sustain and enhance the future supply of NCP, in 
particular between regulating and non-material contributions 
(Ament et al., 2017; Hanspach et al., 2017; Potts et 
al., 2016; Vogdrup-Schmidt et al., 2017), changes in 
consumption patterns, globally, alongside changes in supply 
has emerged as crucial in scenarios of ecosystem change, 
NCP and GQL. In this context, reduction of food waste and 
shifts in diets are most illustrative. 

Enhancing efficiencies in the food system, including the 
reduction of food losses and waste that occurs at several 
stages in the food production system, has large potential 
to enhance food security in a world where still every third 
person is malnourished, and 815 million people are hungry 
(FAO et al., 2018). It may also free up land for other uses 
such as for biodiversity conservation, and entail additional 
co-benefits such as reduced greenhouse gas emissions 
from the land sector, and reduced irrigation water needs 
which will also release pressure on freshwater pollution 
and biodiversity (Alexander et al., 2017b; Godfray et al., 
2010; Kummu et al., 2012; Pfister et al., 2011; Smith et al., 
2013). Nearly one-quarter of total freshwater used today in 
food crop production could be spared if wastes and losses 
in the food system were minimized (Kummu et al., 2012). 
Nearly 10% of the agricultural land area could be spared 
globally through halving consumer waste arising from over-
consumption in some sectors of society (Alexander et al., 
2017b). For the period 1961-2011, waste and losses in the 
food system were estimated to sum to approximately 68 
GtCO2 equivalents (Porter et al., 2016). 

A number of studies address the potential of reducing future 
expansion of croplands and/or reducing environmental 
impacts from agriculture and pastures (especially climate 
regulation related to reduced greenhouse gas emissions) 
through changes in diets. Studies that explore dietary 
scenarios of either reduced consumption of animal protein 
(combined with a globally more equitable distribution of 
animal protein) or no consumption of animal protein estimate 
that between about 10% and 30% of today’s area under 
agriculture could be freed for other purposes (Alexander 
et al., 2016; Bijl et al., 2017; Ridoutt et al., 2017 and 
references therein; Roos et al., 2017; Tilman & Clark, 2014; 
Wirsenius et al., 2010). A further positive side effect of these 
dietary shifts are health benefits in overweight population 
categories (Roos et al., 2017; Tilman & Clark, 2014). The 

evidence base on impacts of diets on biodiversity, arising 
from reduced agricultural expansion is limited and context 
specific; however, a consumption-change scenario that 
included, among other changes in lifestyle, a shift towards 
a more vegetarian diet found positive effect on biodiversity 
of terrestrial mammals, in particular those with large ranges 
(Visconti et al., 2015). 

Additional cost-efficient measures to address 
environmental challenges have been demonstrated in 
studies that investigated optimizing crop distribution or 
the combination of several climate change mitigation 
options, while respecting food and fiber demand and 
conservation needs (Davis et al., 2017; Griscom et al., 
2017). Through the globally optimal distribution of major 
crops, agricultural water use could be reduced by 12-
14%, in a process-based crop-water-model combined 
with spatial information on yields, with large co-benefits 
for calorie and nutrient supply (Davis et al., 2017). In 
particular, a move from some of the main cereal and sugar 
crops to e.g. roots, tubers and nuts underpinned these 
positive impacts. While cultural barriers, such as dietary 
preferences, will prevent to reach these potential gains 
of reduced water loss and enhanced food security, the 
analysis nonetheless puts forward a cost-efficient strategy 
towards sustainable intensification that could maintain 
small-holder farm systems and avoid large investments 
in technology-driven agriculture. From the perspective of 
contributing towards the achievement of the 2°C warming 
goal, economically-constrained greenhouse-gas reduction 
measures in the agriculture and livestock sector were 
estimated to contribute 1.5-4.3 Gt CO2-eq. a-1 emission 
reductions (Bustamante et al., 2014; Smith et al., 2013; 
Tubiello et al., 2015), which can be substantially enhanced 
further if consumer demand measures were also included. 
Recently, a combination of 20 different management 
measures in forests, agricultural land and wetlands 
achieved a maximum reduction of ca. 11 Pg Ceq a

-1 when 
constrained by food security, conservation considerations 
and cost-efficiency (Griscom et al., 2017). In addition, 
the future of land use and its impacts on biodiversity and 
ecosystem services depends on opportunities for building 
climate-resilience across sectors, including fisheries and 
aquaculture production systems (Blanchard et al., 2017). 
As fish production has been the fastest growing food 
industry for the last 40 years, outpacing growth in all other 
livestock sectors (Béné et al. 2015), adaptive sustainable 
fisheries management (Costello et al., 2016; Gaines et al., 
2018) combined with the development of sustainable low 
input and low impact aquaculture could generate co-
benefits for food security, conservation of biodiversity, and 
climate regulation.
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4.5.5	 Regime Shifts, Tipping 
Points and Planetary Boundaries

There is a growing body of evidence that socio-ecological 
systems can be pushed past certain limits, beyond 
which they are profoundly altered in their structure 
and functioning. These are variously referred to as 
“regimes shifts”, “tipping points” and “moving beyond 
planetary boundaries” and can be caused by a number 
of mechanisms (see Table A4.5.3 in Appendix 4.5). In 
some cases, these shifts occur rapidly and are difficult 
to reverse (Hughes et al., 2013). The term “regime shifts” 
encompasses most of the concepts found in the definitions 
of tipping points and planetary boundaries, and so it will 
be used throughout this section except in cases where the 
distinction between concepts is important (Hughes et al., 
2013; Leadley et al., 2014).

In some cases, regime shifts arise from relatively well 
understood physical and biological processes or 
feedbacks (Table A4.5.2) and have been included in 
models. In many cases, however, regime shifts arise from 
the complex interplay and feedbacks between people and 
nature (Table A4.5.3), and in general have not been well 
accounted for in scenarios and models. In addition to the 
underlying mechanisms, the spatial and temporal scales of 
regime shifts are extremely important when assessing the 
importance of their impacts and the evidence base for their 
past, current and possible future occurrence (Hughes et 
al., 2013; IPCC, 2018; Steffen et al., 2018). 

Regime shifts that occur over the span of several years 
to several decades are well documented at local to 
small regional scales and occur frequently in response 
to increasing human pressure. In some cases, these can 
be reasonably well foreseen with scenarios and models. 
These regime shifts have large impacts on nature, 
nature’s contributions to people and good quality of life 
at local scales, but may also have important impacts 
at much larger scales when they occur in many places 
at the same time (Leadley et al., 2014). The collapse of 
local and regional fisheries is a salient example in marine 
ecosystems. The accumulation of these collapses at local 
to regional scales has reached a point where a substantial 
fraction of the world’s fisheries is either collapsed or near 
the limits at which they could collapse (section 4.2.2.3.1). 
Land degradation is a good example in terrestrial socio-
ecological systems. Land degradation is often the result 
of complex human-nature interactions and therefore the 
causes of land degradation are not the same everywhere 
in the world (Table A4.5.3). Land degradation is, however, 
sufficiently widespread that it is “negatively impacting the 
well-being of at least 3.2 billion people” (IPBES, 2018a). 
The increasing widespread phenomena of eutrophication 
of ponds and lakes by excess nutrient input is an excellent 
example in freshwater ecosystems (section 4.2.3.3). The 

common characteristics of these examples are that i) 
there is a rapidly increasing number of areas affected by 
these regime shifts, to the point that they now have global 
scale implications for nature and people, ii) scenarios and 
models of business-as-usual trajectories indicate that the 
pressures driving these regime shifts will increase over the 
coming decades in many regions and iii) scenarios and 
models suggest there are plausible alternative pathways 
that avoid aggravation of these regime shifts and, in many 
cases, lead to partial restoration of these systems (e.g., 
land restauration scenarios in IPBES, 2018f; Leadley et 
al., 2010).

There are several regime shifts at large regional scales 
underway that have been initiated by human disturbance 
and are projected to have direct impacts on biomes over 
the next several decades (Leadley et al., 2010; Steffen 
et al., 2018). There is strong evidence that large-scale 
regime shifts have begun for tropical coral reefs (section 
4.2.2.2.2, Box 4.2.3), large-scale changes in marine 
communities and ecosystem function due to the loss of 
summer sea ice in the Arctic Ocean (sections 4.2.2.2.1 
and 4.2.2.2.4); and degradation of permafrost and 
increasing woody vegetation in arctic tundra systems 
(Settele et al., 2014; section 4.2.4.1.1). Models foresee 
rapid aggravation of these regime shifts over the coming 
century (IPCC, 2018; Leadley et al., 2010; sections cited 
above). Further rapid, global-scale degradation of tropical 
coral reefs — which are driven by the combined impacts of 
climate change, ocean acidification, sea level rise, pollution 
and overexploitation — is of particular and immediate 
concern because of the severe impacts on biodiversity 
and because large human populations depend on coral 
reef ecosystems for food, income and shoreline protection 
(IPCC, 2018; see Box 4.2.3 and section 4.3.2.1). Several 
other postulated regime shifts at large regional scales are 
more uncertain. For example, the large-scale collapse of 
the Amazonian rainforest has been postulated due to the 
combined effects of deforestation and climate change 
and regional scale feedbacks, but observational and 
experimental evidence, as well as modeling studies are 
equivocal about the likelihood of a large-scale regime shift 
(Settele et al., 2014; section 4.2.4). There are also early 
signals of tree dieback in boreal forests due to climate 
change, and some models project large-scale boreal forest 
degradation over the coming century, but the spatial scale 
and magnitude of this regime shift remains speculative 
(Settele et al., 2014). A key feature of these regime shifts 
is that they are driven in large part by climate change and/
or rising atmospheric CO2 concentrations and therefore 
require strong international actions to reduce greenhouse 
gas emissions (IPCC, 2018). However, adaptation to 
and attenuation of climate change impacts also require 
additional local and national scale efforts to reduce other 
pressures under biophysical and economic limits (e.g., 
Smith et al., 2016).
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The likelihood of the occurrence of regime shifts, tipping 
points, or boundaries being exceeded for biodiversity and 
ecosystem services at global scales are speculative. The 
planetary boundaries literature posits that there are a few 
indicators that can be used to identify boundaries beyond 
which the planet will leave the relatively stable “safe 
operating space” that it has operated in over the last 10 
millennia (Hughes et al., 2013). There is growing evidence 
that some indicators, especially for climate change, are 
useful for identifying potential global scale regime shifts 
(Steffen et al., 2018), but there is little evidence yet for a 
global scale indicator for biodiversity loss or degradation 
of ecosystem integrity (Mace et al., 2014). It has also 
been postulated that the Earth is approaching a global 
scale regime shift that would lead to a massive loss of 
biodiversity and incalculable impacts on people (Barnosky 
et al., 2012; Brook et al., 2013; Steffen et al., 2018). The 
mechanisms for these Earth scale tipping points are not 
well defined and not included in any models (Hughes 
et al., 2013), but the combined effects of several large-
scale regime shifts including the irreversible melting of 
the Greenland ice sheet, the loss of the West Antarctic 
ice sheet and several other regime shifts could plausibly 
combine to create a shift to a very hot global climate 
regime once moderate levels of global warming have been 
exceeded (Steffen et al., 2018). There are also plausible 
mechanisms leading to telecoupling between regions such 
as atmospheric transport, movements of organisms, or 
human migrations that can greatly increase the spatial 
extent or impact of regime shifts (Leadley et al., 2014). 
While these global scale regime shifts and planetary 
boundaries are speculative, the potential magnitude 
and scale of the impacts are so large that further work 
to understand and model the underlying mechanisms 
is essential.

4.6	LINKS TO SUSTAINABLE 
DEVELOPMENT GOALS, 
AICHI BIODIVERSITY 
TARGETS AND OTHER 
INTERNATIONAL 
OBJECTIVES FOR 
NATURE AND NATURE’S 
CONTRIBUTIONS TO 
PEOPLE

4.6.1	 How good will we be at 
reaching international biodiversity 
and sustainability targets beyond 
2020?

Scope: How are scenarios and models addressing 
international biodiversity targets and sustainability goals 
and what insights do they provide? This section builds on 
Chapter 3 (Progress towards Aichi Biodiversity Targets) by 
looking at projections beyond 2020.

The Aichi Biodiversity Targets agreed to in the Strategic 
Plan for Biodiversity 2011–2020, targets in other 
multilateral environmental agreements, and the Sustainable 
Development Goals (SDGs) have been adopted to 
motivate actions to sustain nature and its contributions 
to the promotion of human well-being and sustainable 
development (Chapter 3). Although many of the SDGs do 
not explicitly focus on nature, with the notable exception of 
goals related to life below water and life on land (SDGs 14 
and 15), the supply of multiple ecosystem services is critical 
to achieving many SDGs. And despite the fact that relatively 
few SDG targets (as currently expressed) map directly onto 
nature or its contribution to people, most Aichi Biodiversity 
Targets are clearly related to SDGs.

Analysis of the data sourced from the systematic literature 
review (Appendix A4.1.1) shows that despite the importance 
of SDGs and Aichi Biodiversity Targets for sustainability 
and human well-being, few scenario analyses have a 
specific focus on achieving them, at least at global scale. 
Scenarios of biodiversity and ecosystem services can 
contribute significantly to policy support in all the major 
phases of a policy cycle, including agenda setting and 
policy design (Ferrier et al., 2016; IPBES, 2016b, figure 
SPM3). Several scenario and modeling analyses provide 
useful indications related to policy targets, albeit indirectly 
(Figure 4.6.1), but the vast majority of these relate to 
species declines and extinctions, therefore informing only 
on Aichi Target 12 (conservation of threatened species) and 
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a small subset of targets related to SDG 15 (life on land). 
The reason for this imbalance probably lies in the different 
level of development of methods in the research community. 
Models for projecting species distributions under climate 
scenarios (which relate to Target 12 and SDG 15) are well 
established and widely used in the literature, while the 
exploration of other targets and goals is hampered by the 
scarcity of appropriate models at global scale. Global scale 
scenarios specifically addressing Aichi Biodiversity Targets 
are scant (Figure 4.6.1A), and most of them relate to Target 
12 (conservation of threatened species) and 6 (sustainable 
fisheries). Scenarios addressing SDGs focus mostly on SDG 
15 (life on land), 2 (zero hunger) and 14 (life below water), 
but this also reflects the fact that the focus of the systematic 
literature review for this chapter was restricted to biodiversity 
and ecosystem services, rather than encompassing 
other societal goals. Therefore, the SDGs other than 14 
and 15 represented in Figure 4.6.1B were addressed in 
conjunction with SDG 14, 15 or both.

For Sustainable Development Goals, scenario analyses 
are usually sector-specific (Obersteiner et al., 2016), and a 
review of 22 modelling case studies has shown that it would 
be unlikely that any scenario modelling exercise could cover 
all (Allen et al., 2017). Most studies focus on environment-
economy interactions, such as greenhouse gases (GHG) 
reduction and impacts of this on growth and employment, 

and consideration of broader social issues is limited (Allen et 
al., 2017). Various models have been used to assess SDGs 
including top-down system dynamics, macro-economic and 
hybrid models as well as bottom-up sectoral models across 
multiple sectors such as energy, agriculture, transport, land 
use, etc. (Allen et al., 2016, 2017).

Biodiversity targets have been missed in the past for 2010 
(Butchart et al., 2010), and the mid-term progress towards 
Aichi Biodiversity Targets for 2020 was insufficient (Tittensor 
et al., 2014). The world is still far or very far from achieving 
most of the Aichi Biodiversity Targets by 2020 (Chapter 3). 
Evidence from the limited number of scenario analyses from 
the systematic literature review (Appendix A4.1.1) shows 
that these targets are unlikely to be achieved even at some 
point in the future in most scenarios (2050 and beyond). 
However, for most targets, delayed achievement in the 
future is possible under some scenarios (Figure 4.6.2). 
Recent scenario research has explored the likelihood that 
global biodiversity targets can be achieved by steering from 
business-as-usual to more sustainable socio-economic 
development trajectories. For example, Visconti et al. 
(2016) have projected policy-relevant indicators (Living 
Planet Index, LPI, and indicator of species abundance, 
and Red List Index, RLI, an indicator of extinction risk) for 
large mammals to 2050, comparing a reference scenario 
to sustainability scenarios (van Vuuren et al., 2015). 
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Figure 4  6  1   Number of scenario studies addressing  Aichi Biodiversity Targets A  and SDG 
thematic policy areas B  based on the systematic literature review carried out 
for this chapter (Appendix A4.1.1). 
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They showed that after a mid-term increase until 2030, 
biodiversity indicators would decline again afterwards as 
the projected effects of climate change outpace mitigation 
actions. This analysis showcases how scenario modelling 
links long-term results to short- and medium-term action. 
It has been proposed that for achieving future targets, 
bold goals like the CBD 2050 Vision be adopted, and 
that integrative policies for sustainable production and 
consumption (e.g., a shift towards a more balanced diet, 
Chapter 5) be adopted (Mace et al., 2018).

The global results on achievement of biodiversity targets 
do not scale down to the IPBES regions where the same 
topic has been addressed. The IPBES regional assessment 
for Africa (IPBES, 2018g) found low likelihood to ever 
achieve most Aichi Biodiversity Targets, except Target 1 
(awareness of biodiversity) and 14 (ecosystem services), 
for which the regional trend is positive. Under the “fortress 
world” archetype scenario (similar in characteristics to the 
“regional competition” archetype defined in this chapter, 
section 4.1), the trend in Africa is negative for all Targets. 
For Europe and Central Asia, sustainability scenarios are 

expected to achieve most Aichi Biodiversity Targets, but still 
fail a few (in particular Targets 1, awareness of biodiversity, 
and 17, national biodiversity strategies) (IPBES, 2018i). The 
information is not available for other IPBES regions.

If the global socio-economic development continues 
according to a business-as-usual scenario, it is likely that we 
will fail to achieve several biodiversity-related SDGs (SDG 
14, Life below water, and 15, Life on land). Three-quarters 
of the scenario and models that address SDG 15 project 
that we will be far or very far from achieving it. A similar 
outcome is projected for SDG 14 (Figure 4.6.3). In Europe 
and Central Asia scenarios of sustainable production and 
consumption are expected to achieve most SDGs (IPBES, 
2018i). In this region, the economic optimism archetype 
scenarios are expected to achieve most SDGs, but notably 
fail SDG 14 and 15. A recent study stressed that under the 
current trajectory of socio-economic development, progress 
in SDGs related to poverty and social inclusion happens 
at the expense of the environment, and this will lead to 
missing environmental SDGs in most of the world countries 
(Figure 4.6.4; Spaiser et al., 2017). This is attributed to the 

Figure 4  6  2   Achievement of  Aichi Biodiversity Targets in the future (2050 or beyond) 
across different global scale scenarios, based on our systematic literature 
review (Appendix A4.1.1).  

N: number of indicators, with number of studies in parenthesis, each study usually projecting several different indicators . Many 
scenarios dealing with  Aichi Biodiversity Targets did not report results in a way that could be interpreted as level of target 
achievement, therefore the numbers here are smaller than in Figure 4.6.1 . 
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Figure 4  6  3   Achievement of SDGs across different global scale scenarios, based on our 
systematic literature review (Appendix A4.1.1).  

N: number of indicators, with number of studies in parenthesis, each study usually projecting several different scenarios . Many 
scenarios dealing with SDGs did not report results in a way that could be interpreted as level of target achievement, therefore 
the numbers here are smaller than in Figure 4.6.1 . The systematic literature review focused on Nature and NCP, therefore 
SDGs other than 14 and 15 were captured only if they were assessed in conjunction with them .  
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focus on economic growth and consumption as means 
for development.

Several emerging issues have been identified as influential to 
the achievement of the SDGs. These include new scientific 
knowledge, new technological development, new scales or 
accelerated rates of impact, a heightened level of awareness 
and new ways to respond to a known issue (UN, 2016). 
Despite the uncertainty associated with these emerging 
issues, various aspects have been identified as necessary 
to achieve the SDGs. First, measuring progress at all 
scales, and integrating global targets with local policies is 
fundamental towards achieving the SDGs (Biermann et al., 
2017). Goal 17 on revitalizing the “global partnership”, for 
example, will require increased funding and clear leadership 
(Biermann et al., 2017). Increased funding is also one of the 
fundamental needs to achieve the SDGs in some regions 
within the African Continent (Kedir, 2017). Controlling 
consumption and demand remains an important issue. A 
recent work combing literature review and a comparison 
exercise of integrated energy-economy-climate models, 
AMPERE, found out that in order to achieve a 2ºC scenario, 

lowering the global growth of energy demand is key 
according to energy-economy-climate models (von Stechow 
et al., 2016). Several local scenario studies provide useful 
insights towards achieving SDGs. In South Asia, industrial 
transformation, sustainable agriculture and innovations 
have been identified as key aspects to achieve SDGs 
(Kumar et al., 2016). Participatory scenarios to achieve 
visions coherent to SDGs and to adequately adapt to future 
climate change impacts have also been applied with local 
communities in Indonesia (Butler et al., 2015).

Scenarios have proven useful to identify and analyze 
synergies and trade-offs among biodiversity targets and 
SDGs. Glover and Hernández (2016) applied foresight 
techniques with experts in international development studies 
and found out that SDGs are not necessarily harmonious 
and mutually reinforcing but that trade-offs exist. According 
to this study, without strategic planning, advances towards 
one SDG might lead to negative consequences to others. 
Sustainable Consumption and Production policies (SDG 
12), assessed through the GLOBIOM model, shows the 
need of inclusive policies among global development and 
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Figure 4  6  4   World maps with countries being coloured based on an SDG index scores for 
2011. 

The SDG index is based on the rate of change in three variables (child mortality, education, and CO2 emissions) representing 
the three SDG pillars (ending poverty, social inclusion and environment) . White colour indicates that an index could not be 
calculated, due to missing data in one or several of the predictors in the modelling approach used by Spaiser et al. (2017) . 
The modelling approach used country and year specifi c data and combined confi rmatory and exploratory factor analysis with 
dynamic systems modelling . Panel A  reveals which factors are associated with development and negative values indicate 
a reduction of child mortality and an increase in education, as well as increased CO2 emissions . Countries such as Russia, 
China and India present negative values of this indicator, showing that they perform well at reducing poverty and increasing 
socio-economic inclusion, but with associated environmental trade-offs in terms of CO2 emissions . Developed countries like 
Australia, USA and UK, which have high levels of socio-economic development, show little room for improvement of their SDG 
index . Other countries like Brazil, Thailand and South Africa seem to present slower socio-economic development trends . 
Panel B  uses a similar modelling approach but combined with a Bayesian model . The SDG index shows similar results for 
rich countries . However, contrarily to results of panel B , in panel A  Russia presents a slow socio-economic development and 
several African countries such as Angola and Kenya make some progress in terms of socio-economic development . The trade-
off between environment and the other two SDG pillars means that based on this analysis, under the current socio-economic 
model not all SDGs can be achieved together .

SDG INDEX 1

-0,5 1

SDG INDEX 2

-2 .73 0 .429

A

B

conservation agendas to minimize trade-offs and foster 
synergies (Obersteiner et al., 2016). In another recent study 
using the IMAGE integrated assessment model, van Vuuren 
et al. (2015) have shown that achieving 2050 goals for both 
biodiversity and hunger would require a substantial increase 
in agricultural productivity per hectare, to accommodate 

a 50-70% increase in demand for food while halting the 
conversion of natural habitats. Another study found that 
implementing ambitious protected area expansion plans, 
under business-as-usual socio-economic trends, may result 
in a shortfall in productive land, as well as displacement 
of agricultural areas with consequential socio-economic 
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impacts (Visconti et al., 2015). Eradicating extreme poverty 
however, does not necessarily mean jeopardizing climate 
targets, even in the absence of specific climate policies 
and technological innovations (Hubacek et al., 2017). Di 

Marco et al. (2016) explored the interactions between Aichi 
Biodiversity Targets 5 (reducing the loss of natural habitat), 
11 (expanding the global coverage of protected areas) and 
12 (conserving threatened species). They showed that the 
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Table 4  6  1 	 Synergies and trade-offs between different sustainability objectives. 
Colours indicate synergies (green) and trade-offs (red) in various intensities. Source: van Vuuren et al. (2015).

Note: *denotes that the linkages is addressed quantitatively by the modelling framework.
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expansion of the global protected areas to 17% of land area 
resulted in different priorities of sites depending on whether 
the goal was to reduce habitat loss or conserve species. 
In addition, expanding protected area coverage to 17% to 
conserve threatened species would result in safeguarding 
30% more carbon stock than targeting areas under high 
deforestation rates. The reason is that areas under rapid 
deforestation are not necessarily those with the highest 
capacity to stock carbon. While the figures relate to the 
Aichi Biodiversity Targets for 2020, the same trade-offs 
are likely to apply to post-2020 biodiversity targets. Table 
4.6.1 highlights some of the most significant synergies and 
trade-offs between different objectives associated with the 
Sustainable Development Goals.

Further modelling on policy targets that explicitly embodies 
nature into scenarios is of outmost importance. Scenarios 
developed for global environmental assessments have 
explored impacts of direct and indirect drivers on nature 
but have not embedded nature in the scenario itself. 
The effects of alternative pathways of socioeconomic 
development on nature have thus been assessed as one-
way outcomes, ignoring the possible feedbacks of nature 
on the system (Rosa et al., 2017). Existing scenarios ignore 
policy objectives related to nature protection. As targets for 
human development become increasingly connected with 
targets for nature, such as in the SDGs, the next generation 
of scenarios should explore alternative pathways to reach 
these intertwined targets and address feedbacks between 
nature, nature’s contributions to people, and human well-
being. Several desirable properties of this new generation 
of scenarios have been identified, including the use of 
participatory approaches, the integration of stakeholders 
from multiple sectors (for example, fisheries, agriculture, 
forestry) (Rosa et al., 2017), and addressing decision 
makers from the local to the global scale (Biermann et 
al., 2017).

4.6.2	 How can the evidence 
from scenarios contribute to the 
development of future biodiversity 
targets and the 2050 vision?

Scope: How can scenarios and models help to reformulate 
the new set of targets? To address this issue, this section 
uses the Aichi Biodiversity Targets for 2020 as templates 
for setting the next generation of targets. Only a subset of 
the targets is discussed, with the purpose to demonstrate 
the type of considerations that should underpin the new 
targets. Existing scenarios and models for biodiversity and 
ecosystem services are used to explore: i) how targets can 
be formulated in ways that can more easily be understood 
and evaluated by both policymakers and practitioners; ii) 
which kinds of indicators, that come from observations 
and scenarios, can be used to evaluate progress towards 

the objectives of this target; and iii) what scenarios and 
models tell us about ambitious vs. aspirational targets, i.e. 
whether they can be achieved under plausible conditions 
represented by a variety of exploratory scenarios of societal 
and economic development.

4.6.2.1	 Habitat loss and degradation 
(Target 5)

“By 2020, the rate of loss of all natural habitats, including 
forests, is at least halved and where feasible brought 
close to zero, and degradation and fragmentation is 
significantly reduced.”

Analyses based on satellite remote sensing identified over 
the period 2000-2012 a net global loss of ca. 1.5 million km2 
of forest (Hansen et al., 2013), including substantial loss 
of structurally intact pan-tropical forests (Tyukavina et al., 
2016). At current trends, even the target specified in the 
New York Declaration of Forests (to halve the rate of natural 
forest loss by 2020) is highly unlikely to be achieved (Zarin et 
al., 2016). Under most future scenarios, the future net loss 
of natural habitats is partly counterbalanced by secondary 
regrowth. This is true for both forest and non-forest natural 
habitats (Hurtt et al., 2011). Secondary habitat types 
typically host a fraction of the biodiversity present in primary 
habitats of the same type (Alkemade et al., 2009; Newbold 
et al., 2013), and this fraction depends on the integrity 
and age of the secondary vegetation. Therefore, numeric 
targets for the rate of loss of natural habitat are insufficient 
to capture the complex dynamics of habitat change, and 
the proportion of biodiversity that they retain compared to 
pristine habitats should also be considered.

From a scenario and modelling perspective, assessing the 
current and future state of forest globally is challenging for a 
number of reasons: 1) very different classifications as to what 
is a forest and which forest is considered intact, which one 
degraded (Alexander et al., 2017c; Thompson et al., 2013); 2) 
Most land-use change scenarios do not yet tend to consider 
environmental policies such as the Aichi Biodiversity Targets, 
the SDGs or REDD+ (Alexander et al., 2017c; Eitelberg et al., 
2016, 2015; Popp et al., 2017); 3) Integrated Assessment 
models that are often used to produce scenarios typically 
do not have the forest sector explicitly included at their core 
(Schmitz et al., 2014); 4) Models that seek to assess future 
ecosystems from state of, e.g., carbon cycle and climate 
regulation perspective do not yet account well for forest (or 
other habitat) management (Arneth et al., 2017).

In principle, activities to achieve Target 5 could have large 
co-benefits with achieving Targets 11 and 17, if protected 
area expansion could be dedicated to cover habitats of 
both high species density (in particular threatened or rare 
species) and regions of high carbon density (Di Marco et al., 
2016). Under otherwise unchanged conditions, scenarios 
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in which multiple demands for land resources are aimed to 
be met resulted in intensification of croplands (adding to the 
“land sharing/land sparing” debate) and enhanced areas 
with tree cover (Eitelberg et al., 2016). However, accounting 
for demand for protected area had no effect on reducing 
the projected loss of grassland, compared to business-
as-usual (Eitelberg et al., 2016). Maximizing forest habitat 
conservation as well as forest species conservation was 
estimated to be possible in 73% of the area identified to be 
also most appropriate for expanding the current protected 
area to meet Target 11 (Di Marco et al., 2016).

Recent and projected trends in population growth and 
lifestyle (e.g., dietary changes), jointly with enhanced 
requirements for bioenergy crops are expected to maintain 
large pressures on further cropland expansion (Alexander 
et al., 2017a; Eitelberg et al., 2015). Agriculture is one of 
the largest drivers of biodiversity loss, and a large source of 
greenhouse gases and pollutants (McLaughlin & Kinzelbach, 
2015; Newbold et al., 2015). Therefore, achieving 
conservation goals alongside meeting demand for food and 
fibre, water, bioenergy and climate mitigation will require a 
dedicated effort that considers both changes in supply and 
demand, as well as equitable trade (Alexander et al., 2017a; 
McLaughlin & Kinzelbach, 2015).

4.6.2.2	 Sustainable fisheries (Target 6)

“By 2020, all fish and invertebrate stocks and aquatic 
plants are managed and harvested sustainably, legally and 
applying ecosystem based approaches [...].”

Whilst the objectives of Target 6 are relatively clear, some 
terms remain imprecise. The primary facets of the Target 
which remain loosely defined are the concepts of ‘safe 
ecological limits’ and ‘no significant adverse impacts’ (also 
the issue of ‘vulnerable’ ecosystems; see Target 10). ‘Safe 
ecological limits’ as a term lacks indication of whether 
these limits are structural (e.g. maintenance of facets such 
as ecosystem trophic structure or species composition) 
or functional (e.g. continued provision of goods and 
services). Without clarification, it is then difficult to know 
what aspects of ecosystems should be maintained, nor the 
level of degradation that is to be tolerated. Furthermore, the 
margins of safety are not clearly specified –how are these 
limits to be measured, quantified, and monitored? How 
close to the ‘safe ecological limit’ is acceptable? Finally, 
the term “safe limits” has been used with many contexts 
including the planetary boundary framework (Steffen et 
al., 2015) and, therefore, might benefit from clarification. 
It is important not to confound ‘safe ecological limits’ and 
‘safe limits for humanity’ since these refer to very different 
reference baselines, as well as very contrasted spatial and 
temporal scales. 

Regarding ‘no significant adverse impacts’, the lack 
of specificity here is to do with the meaning of the 
word ‘significant’ (note that Target 5 also includes this 
terminology). Scientifically, ‘significant’ generally has a 
statistical meaning, indicating evidence at some level of 
likelihood that an effect is not attributable to chance. It 
seems unlikely that this is the intended meaning here, 
but significant can be so broadly interpreted as to make 
consistency of application across national and regional 
scales extremely challenging.

Quantification of progress towards this target through 
appropriate indicators has shown that at least some 
indicators exist for monitoring resource state (e.g., the 
proportion of fish stocks within safe biological limits), the 
pressures on it (e.g., global effort in bottom trawling), and 
fisheries responses to pressures on fish stocks (e.g. Marine 
Stewardship Council certified fisheries). However, indicators 
of whole ecosystem (as opposed to stock) status and 
recovery plans remain limited or absent, and the scope and 
alignment of existing indicators varies. Recent focus has been 
put on ecosystem-based indicators for assessing the state 
of exploited species and the ecosystems they are embedded 
in (Coll et al., 2016; Shin et al., 2012), some of which have 
been retained in the list of IPBES “Highlighted indicators” but 
still lack global scale coverage for nations to be able to report 
routinely (proportion of predators, mean fish size).

Projecting plausible futures for marine and aquatic biological 
resources is aided by the fact that there has been a long 
history of model development for these systems, with a 
particular profusion of models emerging over the past 
decade or so (Fulton, 2010). Models range from single 
species stock assessment models to whole ecosystem 
approaches, and in some cases such models incorporate 
large parts of the socio-economic and management 
components as well as the biological ones (Nielsen et al., 
2018). The heterogeneity of models is also beginning to be 
addressed by applying standardised ensemble modelling 
approaches across specified scenarios (Tittensor et al., 
2018b), akin to model intercomparison studies in the 
climate and earth science communities. Perhaps more 
challenging is the specification of socio-economic storylines 
that can then be translated into projections that can be 
used to force ecosystem models. While storylines have 
recently been in development at both regional (CERES, 
2016) and global (Maury et al., 2017) scales, specifying 
how the developments in economics, management, and 
governance that are outlined in scenarios can then be 
used to force models, especially spatially explicit models, 
is difficult. Furthermore, management and stewardship of 
marine resources remain varied among nations in terms 
of capacity, approach, and effectiveness (Bundy et al., 
2017). Management regimes can also change radically 
and rapidly in response to changes in national policy 
environments (e.g., the enactment and amendments of 
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the U. S. Magnuson-Stevens Fishery Conservation and 
Management Act), and resource management plays an 
integral role in terms of the status of both target species and 
ecosystems (FAO, 2016), and furthermore adaptation to a 
changing climate. Nonetheless, the continued development 
of scenarios, together with the broad and growing range 
of marine ecosystem models at multiple scales, suggests 
that Target 6 can be usefully and increasingly informed by 
their application.

Broadly speaking, the development of future policy 
targets needs to further incorporate the role of climate 
change on the sustainability and use of aquatic resources. 
Furthermore, objectives may need to be reframed or 
at least clarified in order to address the challenges of 
measuring ‘significant adverse impacts’ and ‘safe ecological 
limits’ whilst still allowing for national level variation in 
how objectives are attained and recognizing differences 
in capacity for stewardship of aquatic resources. When 
specifying targets, it also needs to be made clear whether 
the goal is maintaining ecosystem structure, the provision 
of goods and services (including contributions to food 
security), or both. Currently, there is also potential overlap 
between Targets 6 and 7, in that Target 6 includes the 
management and harvest of fish and invertebrate stocks 
and aquatic plants, which will be increasingly linked to the 
development of aquaculture in the future that is addressed 
in Target 7 (section 4.2.2.3.1). Given the continued growth 
in the importance of aquaculture, its impacts on broader 
ecosystem health, including indirect effects such as fishing 
wild stocks to provide fishmeal for aquaculture (not explicitly 
mentioned in Target 7, but implicitly included in Target 6) 
needs to be further integrated into future targets. Similarly, at 
present there is overlap with Target 10, since anthropogenic 
impacts on coral reefs (and other vulnerable aquatic 
ecosystems) include those integrated into Target 6.

4.6.2.3	 Sustainable agriculture (Target 7)

“By 2020, areas under agriculture, aquaculture and forestry are 
managed sustainably, ensuring conservation of biodiversity.”

The scientific community has been engaged in a 
controversial debate about whether biodiversity 
conservation can better be achieved by improving 
habitat availability and quality on farmland (i.e. through 
wildlife-friendly farming – “land sharing”), or whether it 
is dependent on natural habitat and thus requires high-
yielding agriculture to reduce land requirements (i.e. 
sparing land for nature – “land sparing”) (Fischer et al., 
2014; Phalan et al., 2011). But recently consensus has 
started to develop that convey that different strategies are 
needed in different contexts and for different conservation 
goals (Ramankutty & Rhemtulla, 2012) and that sustainable 
agricultural management includes both measures to 

increase on-farm habitat quality, as well as increasing 
productivity while minimizing harm to biodiversity (Clough 
et al., 2011; Kremen, 2015; Seppelt et al., 2016).

Currently, however, it appears unlikely that we will achieve 
either wildlife-friendly farming or stop the conversion of 
natural habitats by 2050 if current trends continue. Crop 
production is projected to increase by 50-100% by 2050 
to meet future demand under current population and 
diet trends (Alexandratos & Bruinsma, 2012; Tallis et al., 
2018; Tilman et al., 2011). According to a comparison of 
the best state-of-the-art land-use models, the combined 
effect of projected climate change, as well as middle of the 
road population and economic development projections, 
would result in an expansion of global cropland by about 
20% by 2050 (Schmitz et al., 2014). Business-as-usual 
trends would also result in the further conversion of >50% 
of natural habitats to croplands in important ecoregions 
like Mediterranean forests and temperate grasslands 
(Tallis et al., 2018). In addition to this conversion of natural 
habitats, fertilizer use, which has large negative impacts 
on biodiversity and ecosystem services especially in 
freshwater systems, is projected to increase by 58% by 
2050 (Alexandratos & Bruinsma, 2012). Wildlife-friendly 
farming methods are still restricted to comparatively small 
areas: only about 1% of global agricultural land is, for 
example, managed organically (Willer & Lernoud, 2017), 
and approximately 7.5% of it is managed with agroforestry 
with more than 50% tree cover (Zomer et al., 2009).

Numerous analyses show, however, that achieving 
sustainable agriculture that produces enough food for 
everyone while ensuring conservation of biodiversity 
is possible, if far-reaching food system changes are 
implemented. Recent scenario analyses have shown that 
globally enough food could be produced for everyone in 
2050 on existing agricultural land, while halting deforestation 
and protecting 17% of the world’s terrestrial habitats if 
we shifted towards more sustainable diets, reduced food 
waste and closed yield gaps (Erb et al., 2016; Foley et 
al., 2011; Muller et al., 2017; Tallis et al., 2018; West et 
al., 2014). A recent study, for example, estimated that by 
closing yield gaps and optimizing where crops are grown, 
>50% of each of the world’s biomes could be set aside, 
while still producing enough food for all people in 2050 
(Tallis et al., 2018). Similarly, organic agriculture could 
be used as a wildlife-friendly agricultural management 
strategy, if combined with other food system strategies, 
e.g. reductions in food waste and changes in livestock feed 
composition, to provide enough food for people in 2050 on 
current agricultural land while also reducing pesticide use 
and nitrogen pollution (Muller et al., 2017). These various 
scenarios show that both land-sharing and land-sparing 
strategies would be possible to help conserve biodiversity 
while feeding humanity if broad food system changes 
were implemented.
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4.6.2.4	 Vulnerable ecosystems (Coral 
Reefs) (Target 10)

“By 2015, the multiple anthropogenic pressures on coral 
reefs, and other vulnerable ecosystems impacted by climate 
change or ocean acidification are minimized, so as to 
maintain their integrity and functioning.”

The Global Biodiversity Outlook 4 (GBO-4), which evaluated 
progress towards the Aichi Biodiversity Targets in 2014, 
focused on the aspects related to climate change impacts 
on tropical coral reefs and the importance of reducing 
multiple pressures to minimize these impacts – and 
concluded that this target had been missed. Observations, 
experiments and models provide sound arguments for 
maintaining a strong priority on tropical coral reefs due 
to their exceptional vulnerability to climate change (IPCC, 
2018). Warm-water coral reefs are one of the most 
biodiverse marine ecosystems in the world and provide 
a wide range of ecosystem services, especially to people 
living in tropical regions (CBD, 2014). They are also one 
of the most rapidly degrading ecosystems globally due 
to a combination of many pressures including pollution, 
overexploitation and ocean warming (see sections 4.2.2.2.2, 
Box 4.2.3 in section 4.2.2.3.1; Butchart et al., 2010; CBD, 
2014; IPCC, 2018). Models and observations indicate that 
tropical coral reefs are exceptionally vulnerable to future 
ocean acidification and warming due to their very high 
sensitivity to these factors compared to most other systems 
(Bay et al., 2017; Gattuso et al., 2015; IPCC, 2018). Models 
project that there will be significant negative impacts 
even if the most ambitious targets of the Paris agreement 
of limiting global warming to 1.5°C are achieved (IPCC, 
2018). For higher CO2 emissions and warming scenarios, 
models project severe degradation of nearly all tropical coral 
reefs and the limits of natural adaptation and ecosystem 
management to preserve the integrity of these ecosystems 
will be exceeded (Bay et al., 2017; Gattuso et al., 2015).

Observations and models also indicate that all ecosystems 
are vulnerable to climate change or acidification to some 
extent (IPCC, 2014). Some ecosystems are projected to be 
particularly vulnerable because exposure to climate change 
is high – these include Arctic tundra and ocean ecosystems 
where warming is projected to be higher than elsewhere 
on the globe (Settele et al., 2014). Other ecosystems are 
projected to be especially vulnerable due to their high 
sensitivity to climate change or acidification, and little space for 
adaptation – in addition to coral reefs, these include mountain 
terrestrial and freshwater ecosystems, tropical ecosystems, 
and deep oceans (section 4.2.2.2.3; Settele et al., 2014). All 
ecosystems of the world are projected to experience changes 
in species composition and abundance due to species ranges 
shifts and modifications of ecosystem function caused by 
rising CO2 and climate change (IPCC, 2014). A consensus 
ranking of ecosystem vulnerability to climate change is not 

available due to unsettled scientific debates and uncertainty in 
modelled impacts (e.g., Settele et al., 2014).

Because there is a lack of consensus on the vulnerability 
of ecosystems to climate change outside of coral reefs, 
this target currently suffers from a lack of clarity. This target 
has been dubbed “Vulnerable Ecosystems” for shorthand 
(Aichi Passport, UNEP-WCMC) and covers “other vulnerable 
ecosystems”, which poses problems of definition because 
all ecosystems are vulnerable to climate change or 
acidification to a greater or lesser extent (IPCC, 2014). As 
such, this target has been associated with a loosely related 
set of indicators, some very narrow and others overly broad, 
that are used to assess progress towards this target; for 
example, the Biodiversity Indicators Partnership lists the 
Ocean Health Index (extremely broad), Climatic impacts 
on European and North American birds (taxonomically 
and spatially restricted), Red List Index for reef-building 
corals (not well targeted for climate change impacts), 
and Cumulative Human Impacts on Marine Ecosystems 
(exceptionally broad) as indicators for this target. 

There is strong evidence that reducing other stresses 
on ecosystems will generally improve the capacity of 
ecosystems to adapt to climate change. For tropical 
coral reefs, reducing nutrient loading and maintaining or 
reinforcing herbivorous fish populations helps reduce the 
competition by algae and these and other measures are 
projected to substantially improve the capacity of coral reefs 
to maintain their integrity in the face of climate change (Box 
4.3.2 in section 2.2.3.1; Gattuso et al., 2015; Kennedy et 
al., 2013). Other examples include the importance of halting 
terrestrial habitat fragmentation and increasing connectivity 
between natural habitats to allow species to move so that 
they can track favourable climates (Imbach et al., 2013).

Public policy and ecosystem management strategies for 
adaptation to climate change are being developed and 
deployed for some ecosystems. Forest managers, for 
example, have been very active in developing climate 
adaptation strategies based on projected impacts of climate 
change on trees, some of which depend on maintaining 
or reinforcing genetic and species diversity of trees and 
protecting ecosystem integrity (Keenan, 2017). However, 
not all climate change adaptation strategies for ecosystems 
are biodiversity friendly; for example, some forest adaptation 
strategies put an emphasis on the introduction of fast-
growing alien tree species (Keenan, 2017). Evidence-based 
action plans for tropical coral reefs are in place for some 
reef systems, and most put an emphasis on maintaining 
ecosystem integrity as a key to enhancing resilience and 
resistance to climate change and acidification (e.g., Great 
Barrier Reef Climate Change Adaptation Strategy and 
Action Plan, see also Gattuso et al., 2015; Kennedy et al., 
2013). Scientists are also actively exploring other strategies 
requiring much more active intervention such as protective 
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sun screens, cultivation of warming adapted corals and 
climate geoengineering (Kwiatkowski et al., 2015; van 
Oppen et al., 2015).

These considerations suggest that future policy targets 
could highlight the relationships between climate change 
adaptation and biodiversity protection. They could include 
relatively broad objectives that are common to all climate 
adaptation strategies for ecosystems, as well as a particular 
emphasis on tropical coral reefs, focusing on: the vital 
importance of meeting the 2°C goal, and if possible the 
1.5°C goal of the Paris Agreement in order for adaptation to 
be effective in highly vulnerable ecosystems (new emphasis); 
the need to reduce multiple pressures on all vulnerable 
ecosystems, so as to improve their resistance and resilience 
in the face of climate change and acidification (maintained 
emphasis); the key role of developing and implementing 
climate change adaptation measures for all ecosystems 
with a wide range of stakeholders that take into account 
the protection of biodiversity and emphasize the importance 
of nature-based adaptation strategies (new emphasis); 
the need to develop strategies of societal response to 
projected inevitable changes in highly vulnerable systems 
(new emphasis); and the special and urgent need to develop 
protection and adaptation measures for tropical coral reefs 
(maintained emphasis).

Models and other considerations also suggest that a more 
focused set of indicators would be helpful for monitoring 
progress towards such a target. For example, trends and 
projections of sea surface temperatures, ocean acidity, coral 
reef bleaching events, proxies of marine nutrient loading in 
coral reef areas, etc. are readily available from observations 
and models and may be much better adapted to monitoring 
progress towards a component focusing on tropical coral 
reefs than very broad indicators of ocean health or human 
impacts on marine ecosystems.

4.6.2.5	 Protected Areas and other 
Effective Area-based Measures  
(Target 11)

“By 2020, at least 17 per cent of terrestrial and inland 
water, and 10 per cent of coastal and marine areas, 
especially areas of particular importance for biodiversity and 
ecosystem services, are conserved [...]”

While the world may be on track to meet or exceed the 
numeric target of protecting globally 17% of the land and 
10% of the oceans by 2020 (Chapter 3), other aspects 
of the target, including the global connectivity and 
representativity of protected areas, and their coverage of 
areas important for biodiversity (including Key Biodiversity 
Areas), have made little or no progress (Butchart et al., 
2015; Santini et al., 2016). These aspects may be more 

important that numeric targets per se, as demonstrated by 
the evidence that if new protected areas between 2004 and 
2014 had targeted unrepresented threatened vertebrates, 
it would have been possible to protect >30 times more 
threatened species for the same area or cost as the actual 
expansion that occurred (Venter et al., 2014).

In theory, it would be possible to hit much larger numeric 
targets for protected areas in the future. Depending on 
scenarios, between 30-40% of the land would remain 
primary (forest or non-forest) habitat in 2050, and artificial 
land-use types (urban, cropland and pasture) would occupy 
30-40% of the land (Hurtt et al., 2011). In practice, much 
land is already degraded by processes that can spread 
globally including climate change and invasive species, 
thus restoration will be required in addition to protection 
(IPBES, 2018a).

The uneven distribution of biodiversity (Butchart et al., 
2015), projected expansion of human population, and 
regional differences in projected land-use change (Hurtt 
et al., 2011) suggest that global percentage targets do 
not necessarily achieve effective biodiversity conservation. 
Indeed, an analysis looking at Target 11 for 2020 (Visconti et 
al., 2015) showed that expanding protected areas to protect 
17% of the land while minimizing the opportunity cost for 
people (i.e. by prioritizing protection of unpopulated areas) 
would reduce habitat available to threatened mammals. The 
reason is that threatened mammals occupy areas densely 
populated by humans, and protecting unpopulated areas 
displaces further land conversion in highly populated areas. 
In addition, climate change may change dramatically the 
suitability of protected areas for their native biodiversity in 
the future (Hole et al., 2009; Loarie et al., 2009). Therefore, 
dynamic scheduling (Wilson et al., 2007) based on 
scenarios of climate and land-use change and allowing 
species to move across landscapes to track suitable habitat 
and climatic space should be used to translate numeric 
targets into allocation of protected areas in space and time 
(Pressey et al., 2007).

4.6.2.6	 Preventing Extinctions and 
Improving Species Conservation Status 
(Target 12)
“By 2020 the extinction of known threatened species has 
been prevented and their conservation status, particularly of 
those most in decline, has been improved and sustained.”

Forecasts of species decline are blurred by several sources 
of uncertainty. While scenarios exist for climate change and 
land-use change (which can be used to derive habitat loss), 
for other direct drivers of species loss, including invasive 
species, overexploitation, disease spread, scenarios are 
lacking. These drivers and their impacts start being projected 
into the future though rarely at global scale and with wide 
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coverage of species biodiversity, but they will interact with or 
add up to land use and climate change, intensifying species 
declines. Interactions among drivers have only partly been 
explored (e.g., climate and land-use change; Mantyka-Pringle 
et al., 2015). Even projections based on the same driver can 
differ widely. For example, the proportion of species that is 
projected to go extinct based on climate change varies with 
model assumptions (amount of extinction debt, species’ 
ability to disperse) and modelling technique (species-area 
curves: 22% extinctions; mechanistic or correlative models: 
6-8% extinctions) (Urban, 2015). Uncertainty on the species’ 
response to global change (adaptation / plasticity, dispersal, 
or local extinction) is also reflected in uncertainty in the 
scenario outcome (Rondinini & Visconti, 2015). Finally, 
extinctions are fundamentally stochastic events caused by 
extinction vortexes (Soulé, 1986), which are difficult to predict 
and prevent.

Despite wide uncertainty in the projections, business-as-usual 
scenarios produce substantially different outcomes compared 
to scenarios having a strong focus on sustainability typically 
(Alkemade et al., 2009; Newbold et al., 2015; Visconti et al., 
2016). Assuming that species can cope with climate change, 
sustainability scenarios can almost halt their decline due to 
land-use change (Rondinini & Visconti, 2015). This, in addition 
to the evidence that conservation action alone is insufficient 
(Butchart et al., 2010; Hoffmann & Sgrò, 2011; Tittensor et 
al., 2014) suggests that halting biodiversity loss for some 
indicators such as population size or average conservation 
status is within the boundaries of scenarios, provided that 
a mixed strategy of stepped up conservation action and 
societal changes is adopted. However, the stochasticity 
of extinctions means that even in the best-case scenario, 
considering the current depauperate state of biodiversity, 
some extinctions may still occur.

4.6.2.7	 Ecosystem Restoration and 
Resilience (Target 15)

“By 2020, ecosystem resilience and the contribution 
of biodiversity to carbon stocks has been enhanced, 
through [,,,] restoration of at least 15 per cent of degraded 
ecosystems [...]”

The main issue with quantifying degradation and 
restoration is the lack of a clear baseline (IPBES 2018e). 
Several possible baselines can be chosen as a reference 
for restoring degraded land, including pre-modern 
(<10,000 years BCE), historical (typically between 300 
and 50 years ago), counterfactual (how an ecosystem 
would look like in the absence of human pressures). For 
this reason, the scientific community has not been able to 
provide a detailed global assessment of land degradation, 
and different models estimate the proportion of degraded 
land between 7-40% (Gibbs & Salmon, 2015; Van der 
Esch et al., 2017).

Given the uncertainty in the quantification of current 
land degradation, scenario analysis cannot provide 
strong quantitative predictions around restoration, 
but boundaries for restoration opportunities can be 
identified. According to the World Resource Institute, 
over 20 million km2 of degraded tropical and temperate 
forests would be suitable for restoration (Laestadius 
et al., 2011). Extending afforestation further, to non-
forest biomes, would have significant negative effects 
on ecosystem services (Veldman et al., 2015) as well as 
inevitably on the biodiversity adapted to these biomes. A 
trade-off between restoration of natural ecosystems and 
bioenergy production exists, since under a business-as-
usual scenario, limiting warming to 2° C will require an 
expansion of bioenergy production to abandoned and 
degraded land (Dauber et al., 2012; Nijsen et al., 2012) to 
achieve negative emissions from biofuels (van Vuuren et 
al., 2011).
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Box 4  7  1 	 Case studies of uncertainty and scale in decision-making using models and 
scenarios.

Example 1: Forest management and climate change – Forest 
managers are very actively using scenarios and models to 
develop management strategies for dealing with climate change 
because tree growth is very sensitive to climate and because 
trees generally live a long time, often more than a century, before 
they are harvested (Keenan, 2015). Forest managers often desire 
very fine spatial resolution climate projections (ca. 1 km2) in order 
to make site-based management decisions, and the climate 
modeling community has made tremendous efforts to downscale 
global scale climate projections in order to meet this type of 
demand from a wide range of stakeholders (Giorgi et al., 2009). 
However, downscaling introduces new sources of uncertainty 
that can degrade the quality of climate projections (Stefanon et 

al., 2015) and often contribute little to improving management 
strategies (Keenan, 2015). Forest managers are also often 
presented with projections of climate impacts on trees and 
forests based on a single type of impact model. However, several 
model inter-comparisons show that different types of models 
– for example, correlative and mechanistic models – often give 
very contrasting projections of tree growth and distributions in 
response to future climate change (Cheaib et al., 2012). High 
uncertainty in future global climate projections, high uncertainty 
in modeling impacts on trees and uncertainties introduced 
when downscaling climate projections have left many forest 
managers in a quandary about how to plan for climate change. 
Current recommendations focus on managing for uncertainty by 
employing forest management schemes that are robust under 
a broad range of climate and impact projections, for example 
by increasing resilience, by managing for higher genetic and 

species diversity, or by promoting natural regeneration (Cheaib 
et al., 2012; Keenan, 2015). More importantly, there is a growing 
recognition that adaptive strategies for dealing with an uncertain 
future must be developed much more inclusively by creating 
partnerships between researchers from multiple disciplines, 
forest managers and local actors including indigenous 
communities in many cases (Keenan, 2015).

Example 2: Climate change and biodiversity at national and 

regional scales – The PARCC West Africa Project (Belle et al., 
2016) conducted a biodiversity risk and adaptation assessment 
using a combination of IPCC AR5 global scale climate 
projections, together with finer scaled assessments driven by 
higher resolution climate downscaling for five focal countries. 
While uncertainty in temperature projections was reduced 
through confirming consensus between local and global model 
projections, uncertainty in rainfall projections remained high in 
many areas, even though only one general circulation model 
was applied. A representative range of scenarios was used to 
assess risks to biodiversity especially in the context of protected 
area networks, and from this to design adaptation strategies 
and build regional capacity to enhance implementation. Multi-
country efforts were integrated from local to regional scales to 
develop policy recommendations for climate change adaptation 
and management at national and regional levels.

Example 3: Participatory scenarios at local scales – Oteros-
Rozas et al. (2015) reviewed 23 case studies of place-based 
participatory scenarios to assess the characteristics, strengths 

4.7	DEALING WITH 
UNCERTAINTY, SPATIAL 
SCALE AND TEMPORAL 
SCALE ISSUES WHEN 
MOBILIZING SCENARIOS 
AND MODELS FOR 
DECISION-MAKING

4.7.1	 Scenarios and models help 
prepare decision makers for 
uncertainty and long-term thinking

In the IPBES methodological assessment of scenarios and 
models, Ferrier et al. (2016) provide several examples of the 
use of scenarios and models in support of decision-making 
and policy. The methodological assessment highlights, 
in particular, the importance of matching the spatial and 

temporal scales of scenarios and models to the needs of 
the specific policy and decision context, and of identifying 
sources of uncertainty, communicating uncertainty in a 
transparent way to decision makers and providing tools to 
deal with uncertainty. 

When these issues are dealt with appropriately, scenarios 
and models can help people prepare for future uncertainty, 
promote long-term thinking and broaden perspectives. For 
example, Johnson et al. (2016) found that reading scenarios 
of future land-use changes increased the willingness of 
a wide range of stakeholders to participate in land-use 
planning. Scenarios and models have also proven to be 
effective tools for engaging indigenous and local knowledge 
holders in planning management of socio-ecological 
systems (Ferrier et al., 2016; Hartman et al., 2016; Oteros-
Rozas et al., 2015). Ground truthing through monitoring, 
especially with engagement of stakeholders, is a valuable 
approach for reducing uncertainties (Robinson et al., 2017). 
Box 4.7.1 provides examples of the use of scenarios and 
models in support of decision-making, with a focus on the 
role of uncertainty and scale.
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and weaknesses of participatory modeling. All but one study 
involved local communities, most included members of local 
governments and sixteen involved indigenous communities. 
Qualitative storylines in the form of drawings, or illustrations 
were the most common output (Figure 1), but most participatory 
processes also produced reports and scientific publications. 
Local communities were the most common primary audience, 
and fifteen studies had the explicit objective of informing policy 
or decision-making. Uncertainty was examined in sixteen of 
the studies, most focusing on uncertainty in drivers. Only six 

studies explicitly accounted for drivers or impacts at spatial 
scales above the local scale under consideration. The authors 
concluded that well-designed participatory processes enriched 
both local environmental management and scientific research 
by generating shared understanding and fostered thinking about 
future planning of social-ecological systems. Unfortunately, in 
most cases there was insufficient follow-up to determine the 
contribution to long-term policy or management outcomes. 
Numerous additional examples can also be found at the 
consortium of ‘companion modeling’ (www.commod.org).

A C

Figure 1  Examples of outreach material used for communicating scenarios results: 
A  leafl et of the Ciénaga Grande of Santa Maria case in Columbia; B  postcard of the Southern Transylvania case in Romania; 
C  poster of the drawing of the four scenarios of the Papua New Guinea case; and D  poster of the socio-ecological system of 
Doñana Protected Area case in Spain (from Oteros-Rozas et al., 2015) . 

B D

4.7.2	 Dealing with uncertainty 
when using scenarios and models 
to support decision-making 

Uncertainty in scenarios and models arises from many 
sources including insufficient data for development and 
testing, inadequate representation of complex socio-

ecological systems and intrinsically low predictability of the 
system being analyzed (Ferrier et al., 2016). The importance 
of these sources of uncertainty differs greatly between 
scenarios of direct and indirect drivers and models of impacts 
on nature and NCP (Brotons et al., 2016; Ferrier et al., 2016). 
As noted in the introduction of this chapter, the exploratory 
scenarios assessed in this chapter can help address the high 
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level of uncertainty in many components of direct and indirect 
drivers by exploring a wide range of plausible futures (Pichs-
Madruga et al., 2016). Evaluation of uncertainty in models of 
nature and NCP are typically addressed using comparisons 
of model outputs with data, intercomparisons of multiple 
types of models, sensitivity analyses and measures of error 
propagation in coupled models (Brotons et al., 2016).

Uncertainty in scenarios and model projections is not 
necessarily a major obstacle to acceptance by stakeholders, 
especially if it does not directly conflict with their recent 
experiences (Kuhn & Sniezek, 1996). Indeed, despite the 
common perception that communication of uncertainty can 
lead to confusion for decision makers, recent studies show 
that most audiences value the communication of uncertainty 
in scientific evidence as opposed to oversimplification 
(Fischhoff & Davis, 2014; Rudiak-Gould, 2014). This highlights 
the importance of transparency as well as sustained, effective 
communication between scientists and decision makers 
throughout the processes of using models for decision 
support (Acosta et al., 2016; Ferrier et al., 2016). There are 
also a wide range of qualitative and quantitative decision 
support mechanisms that can help decision makers deal with 
uncertainty, even though these tools are underexploited in 
many decision-making contexts (Acosta et al., 2016).

The literature survey carried out for this chapter (Appendix 
A4.1.1) highlights the challenges facing the scientific 
community in dealing with uncertainty. The majority of studies 
did not include an analysis of uncertainty (Figure 4.7.2a). Of 
those that did include an analysis, most focused on uncertainty 
associated with different scenarios of direct and indirect drivers 
and less than half provided quantitative analyses of uncertainty. 
Relatively few studies examined multiple sources of uncertainty. 
This analysis shows that significant progress needs to be 
made in understanding, quantifying and communicating 
uncertainty in order for scenarios and models to be more 
widely used in decision-making.

In the small number of studies that have assessed uncertainty 
across a wide range of sources, the relative contribution of 
sources of uncertainty varies substantially over time, space 
and different measures of nature or NCP (e.g., Figure 
4.7.2b; Payne et al., 2016). These analyses also indicate 
that currently the largest sources of uncertainty arise from 
differences in model structure or application rather than data, 
scenarios or models of direct drivers (e.g., Figure 4.7.2b; 
Payne et al., 2016). It is important to note as well that the 
range of scenarios typically used in many analyses may not 
cover plausible extremes and potential regime shifts (Leadley 
et al., 2010; Pereira et al., 2010; Prestele et al., 2016).

Figure 4  7  2   Treatment and importance of different sources of uncertainty in models and 
scenarios of nature and NCP.

A  Outcome of the analysis of the systematic literature review (Appendix A4 .1 .1) showing the percentage of studies that 
include estimates of different sources of uncertainty . B  An example of systematic analysis of sources of uncertainty in models 
of fi sh community responses to climate change (from Buisson et al., 2010) .
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Comparisons of models and observations provide a powerful 
means of evaluating uncertainty in models of impacts on 
nature and NCP, and for communicating with decision 
makers. Considerable work has been done to evaluate 
models of ecosystem functions and some categories of NCP 
(e.g., ecosystem carbon stocks and fluxes; Zaehle, 2013), 
that indicated large variation between models, and helped 
improving the understanding of the capacities and limits of 
these models. On the other hand, models of global change 
impacts on species diversity, species range, habitat change 
and many NCP suffer from a chronic deficit of comparison 
with independent datasets (i.e., datasets that are entirely 
independent from the data used to develop and calibrate 
the model (Araújo & Guisan, 2006; Settele et al., 2014). 
Those studies that have made robust comparisons between 
models and data indicate that agreement between models 
and data varies greatly between species, habitats and NCP 
(Araujo & Rahbek, 2006; Sitch et al., 2008). It is widely 
acknowledged that significant progress needs to be made 
in comparing models and data in order for scenarios and 
models to be more widely used in decision-making (Araújo & 
Guisan, 2006; Dawson et al., 2011).

There is a growing consensus that triangulation of 
multiple approaches, e.g., ecosystem and species 
models, projections based on trend extrapolation, in situ 
observations and experimentation, should be used to 
increase confidence in models (Dawson et al., 2011). There 
are a number of efforts underway to improve international 
collaboration to including efforts being supported by IPBES 
(Rosa et al., 2017; Tittensor et al., 2018b).

4.7.3	 The challenge of spatial  
and temporal scales in using 
scenarios and models to support 
decision-making

The IPBES conceptual framework emphasizes the 
importance of considering multiple temporal and spatial 
scales (e.g. local, national, regional and global scales) 
in understanding, assessing and managing nature and 
nature’s contributions to people (Diaz et al 2015a, b) note 
that “although the biodiversity crisis is global, biodiversity 
distribution and its conservation status is heterogeneous 
across the planet; therefore, the solutions will have to be 
scalable to a much finer level”. As such, scenarios and 
models used for assessments and decision support need to 
be developed at a wide range of spatial and temporal scales 
and relationships between scales need to be explicitly 
accounted for (Ferrier et al., 2016; Rosa et al., 2017). 

The IPBES methodological assessment of scenarios and 
models highlighted the strong relationships between spatial 
and temporal scales, types of scenarios employed and 

decision-making contexts (Ferrier et al., 2016; Figure 4.7.3). 
Participation of stakeholders in developing scenarios is more 
common and better formalized at the local scale than at 
regional or global ones. Local scale scenarios and models 
also often focus on projections over much shorter time 
horizons, several years to a few decades, whereas supra-
national scenarios and models are often multi-decadal 
(Ferrier et al., 2016). Local policy and decision-making more 
often mobilize intervention scenarios to examine policy 
design and implementation with the objective of providing 
input to decision support. At the other end of the spectrum 
of spatial scales, global policy and decision-making tend to 
rely on exploratory scenarios for agenda setting or policy 
review (Figure 4.7.3). These relationships between spatial 
and temporal scale with their use within different parts of the 
policy cycle are important to keep in mind as a context for 
interpreting the analyses presented earlier in this chapter.

Explicitly accounting for linkages across spatial and temporal 
scales can, in some decision contexts, enhance the ability 
of existing scenarios and models to address the multi-
scale nature of environmental policy and decision-making 
(Cheung et al., 2016; Rosa et al., 2017). For example, 
studies undertaken at larger scales lose the site specificity 
that policymakers and managers often desire. On the other 
hand, local case studies provide a refined understanding 
of local issues based on long term investigation at specific 
locations, but the possibility of generalizing findings is 
limited by the geographic coverage of the studies and the 
locality-specific conditions (Castella et al., 2007). These 
are common and well-known trade-offs among precision, 
realism and generality one faces when constructing and 
analyzing models (Levins, 1966).

Existing scenarios and modeling tools and approaches typically 
do not capture, or poorly capture the linkages across scales, 
including interactions and feedbacks between them (Carpenter 
et al., 2009; Cheung et al., 2016). This is in large part due 
to methodological limitations that are difficult to overcome, 
although ambitious efforts are now addressing solutions (e.g., 
Purves et al., 2013). The IPBES methodological assessment 
report on scenarios and models of biodiversity and ecosystem 
services explored how to address societal and ecological 
processes that act at multiple spatial scales, and the 
challenges they present for decision-making (Cheung et al., 
2016). Multi-scale processes can be forecasted by linking 
(coupling) across scales, scenarios and models developed 
at particular scales. This process often requires some 
harmonization of scenarios across spatial scales.

Harmonization across spatial scales involves upscaling 
(summarizing fine-scale information at coarser scale) 
and/or downscaling (inferring fine-scale information from 
coarser scale). Existing applications have greater emphasis 
on downscaling than upscaling. Downscaling provides 
information for local-scale policy making using the large 
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Figure 4  7  3   Examples of the use of scenarios and models in agenda-setting, policy design 
and policy implementation relating to the achievement of biodiversity targets 
across a range of spatial scales. 

The diagram indicates the typical relationships between spatial scale (top arrows), type of science-policy interface (upper set 
of arrows at bottom), phase of the policy cycle (middle set of arrows at bottom) and type of scenarios used (lower set of arrows 
at bottom) . Source: IPBES (2016b) .
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scale information and projections as boundary conditions 
and using the most refined local information to represent 
local processes more reliably. However, while the objective 
is to decrease process uncertainty at the local scale, the 
change of scale can introduce new sources of uncertainty, 
because downscaling is usually done through modelling or 
heuristic rules that introduce errors. Models and scenario 
comparison across multiple sites is another means to 
upscale scenarios and infer generalities, and there is a 
growing number of applications of this approach: Fish-Mip 
(Tittensor et al., 2018b); IndiSeas (Fu et al., 2018; Shin et 
al., 2018); Madingley Model (Bartlett et al., 2016; Harfoot et 
al., 2014). Technical progress is being made in downscaling 
and upscaling, in particular by integrating data from a wide 
variety of sources and using powerful mathematical tools 
that combine spatial interpolation, upscaling, downscaling, 
data fusion, and data assimilation (Hoskins et al., 2016; Yue 
et al., 2016). 

Despite these methodological challenges, there are 
substantial potential benefits of using multi-scale scenarios 
and models for improving understanding of system 
dynamics and for providing better support for decision-
making. Ferrier et al. (2016) recommend that the scientific 
community works “on methods for linking […] scenarios and 
models across spatial and temporal scales” and in particular 

that IPBES works with the scientific community to “develop 
a flexible and adaptable suite of multi-scaled scenarios” 
(see also Rosa et al., 2017). Approaches for developing 
multi-scale scenarios include using global-scale scenarios 
as boundary conditions for regional-scale scenarios, 
translating global-scale storylines into regional storylines, 
using standardized scenario families to independently 
develop scenarios across scales, and the direct use of 
global scenarios for regional policy contexts. These methods 
of upscaling can minimize inconsistencies between local 
scale contexts with larger scale assumptions, while also 
representing a diversity of local scale contexts (see Biggs et 
al., 2007 for an example). However, substantial resources 
and effort are needed to coordinate the development and 
aggregation of multiple local scale scenarios, so it is rarely 
done. Of particular importance, is the post-hoc approach 
to scaling used in Chapter 5 of this assessment and the 
IPBES regional assessments that have used common (or 
“archetype”) scenarios in order to make qualitative linkages 
across spatial and temporal scales (see also Biggs et al., 
2007; Kok & van Delden, 2009).

However, multi-scale scenarios and models are not 
appropriate in every decision context, particularly when error 
propagation increases uncertainty to an unacceptable level. 
When system processes interact across scales resulting 
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in nonlinear dynamics, harmonizing of models and their 
outputs across these scales is more prone to scaling error, 
therefore the uncertainty resulting from model linkages 
should be quantified (Cheung et al., 2016), but the literature 
survey suggests this is rarely done (see section 4.7.2). 

4.7.4	 Improving communication 
and building capacity to enhance 
the use of scenarios and models 
in decision-making

The IPBES methodological assessment of scenarios and 
models highlighted cases in which scenarios and models 
have been successfully mobilized for policy and decision-
making (Ferrier et al., 2016). It also, however, identified 
several key factors that have limited the mobilization of 
scenarios and models for policy and decision-making 
(Acosta et al., 2016). Many of these factors are related to 
insufficient communication between scientists and decision 
makers and the willingness and capacity of scientists and 
decision makers to engage in long-term interactions but 
may also run into more fundamental problems such as 
complex political agendas that are not compatible with 
the transparency associated with good scientific practice 
(Acosta et al., 2016).

The IPBES methodological assessment of scenarios and 
models made several recommendations for improving the 
use of scenarios and models in decision-making to address 
these deficiencies (Ferrier et al., 2016). One of the most 
important keys is to establish and maintain interactions 
between policymakers, stakeholders and scientists (see also 
Fiske & Dupree, 2014; Scheufele, 2014). In most successful 

applications, this typically involves many cycles of feedback 
between these groups during the development and use 
of scenarios and models. Sustained interactions between 
these groups help ensure that a relationship of trust is built 
between modelers and decision makers, that scenarios 
and models are adapted to the decision-making context, 
and that all parties understand the capacities and limits of 
scenarios and models. 

Human and technical capacity for scenario development 
and modeling needs to be enhanced in order to 
address these shortcomings (Lundquist et al., 2016). 
Recommendations for capacity building include promoting 
of open and transparent access to scenario and modelling 
tools, to data required for the development and testing, and 
to training programs on scenarios and models for scientists 
and stakeholders (Biggs et al., 2018; Lundquist et al., 2016).
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