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a b s t r a c t

The Kangchenjunga Landscape, an important repository of biodiversity, faces several
challenges owing to various drivers of change. Human‒wildlife conflict (HWC) is one of
such issue that transcends social, economic, environmental, as well as national and in-
ternational borders among the three participating countries e Bhutan, India, and Nepal e
making it a complex, transboundary issue. Based on the existing literature, earth obser-
vation data, and geographic information system, we used maximum entropy along with
relevant environmental predictor variables to model and map HWC hotspots. The results
suggested that about 19 per cent of the area within the landscape is at high risk of human‒
wildlife conflict, with an anthropogenic factor ‒ distance to roads ‒ as the top predictor.
Some protected areas are at higher risk than others. The Himalayan subtropical pine forest
ecoregion is a high HWC zone (~63 per cent), followed by the Terai‒Duars savannah and
grasslands ecoregion (~43 per cent). They also revealed that the low- and mid-elevation
zones are prone to conflict due to greater forest fragmentation; patchy protected areas
are disconnected from each other, and not big enough for large mammals like elephants
and tigers. Human-wildlife conflict is observed to vary across different elevation and
climate region of the landscape and highly correlated with forest fragmentation of the
midhills. Hence, a holistic approach at the landscape level is needed for tackling human‒
wildlife conflict. Connecting good habitats by restoring fragmented inter and intra-country
areas would be an effective measure to mitigate human‒wildlife conflict.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human‒wildlife conflict (HWC) is one of the most prominent global challenges faced by conservation biologists and
decision-makers worldwide (Torres et al., 2018) and could be interpreted as wildlife-human conflict as well. It occurs when
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the behaviour of humans andwildlife affects each other negatively as a result of competition for space and resources (Karanth
and Kudalker, 2017). The increasing need of the growing human population for food and space ultimately results in the
shrinkage of wildlife’s natural habitat, which further manifests in various types of conflicts between the two (Acharya et al.,
2016). The loss of human life, damage to crops and property, and livestock depredation have indirect consequences for the
livelihoods of communities, their psychological and economic well-being, and food security (Barua et al., 2013). On the other
hand, the retaliatory killing of animals contributes to the loss of biodiversity and changes in ecosystem structure as a whole
(Nyhus, 2016).

The Kangchenjunga Landscape (KL) is a transboundary initiative by three countries, Bhutan, India and Nepal, in the Eastern
Himalaya. The Kangchenjunga Landscape is one of the richest regions in terms of species, genetic, and ecosystem diversity
among the global mountain biomes (Chettri et al., 2010; Choudhury, 1999, 2002; Dorji et al., 2018). It encompasses 19 pro-
tected areas, some of which are globally significant, such as the Khangchendzonga Biosphere Reserve and Buxa Tiger Reserve
in India, the Jigme Keshar Strict Nature Reserve in Bhutan, and the Kangchenjunga Conservation Area in Nepal. About 45 per
cent of the landscape’s area is dominated by forests (ICIMOD, WCD, GBPNIHESD, RECAST, 2017), characterized by both the
Indo-Malayan realm of Southeast Asia (with species such as Dipterocarpus, Shorea, and Terminalia) as well as the Palearctic
realm of Eurasia (including conifers such as spruce, fir, and larch, and deciduous broadleaf taxa such as birch, alder, and
willow).

Considered a part of the 36 Global Biodiversity Hotspots e the Himalaya (Mittermeier et al., 2011), the Kangchenjunga
Landscape has been experiencing rapid demographic and economic growth, leading to the overexploitation of natural
resources, significant land use, land cover changes (LULC), and loss of forests (Chettri et al., 2010). Owing to such changes,
the landscape experiences various types of conflicts with wildlife, ranging from monkeys raiding crops to tigers assaulting
human beings. For instance, Bhutan experiences an annual crop loss of up to 25 per cent of total household income due to
crop raids by foraging animals (Tobgay et al., 2019) and about 10e19 per cent through livestock depredation (Jamtsho and
Katel, 2019). An average of 115 people are reported to have been killed or severely injured annually in Nepal between 2010
and 2014 by large mammalian species such as Asian elephants, tigers, common leopards, and bears (Acharya et al., 2016). It
is estimated that up to 20,000 people in the southern lowlands of Nepal are affected by conflicts with elephants (Elephas
maximus) (Yonzon, 2008) that raid, on average, 68 per cent of harvest-ready crops each year (Karmacharya, 2004). Likewise,
some anecdotal reports revealed the deaths of at least 450 people in India and Nepal since 1986 due to HWC (ICIMOD,
2019). Losses due to HWC are not only restricted to humans, but extend to wildlife species. About 54 per cent of re-
ported annual elephant deaths in the transboundary habitat of Nepal and India are a result of retaliatory killings due to
gunshot, iron wounds, electrocution, and chemical poisoning (Roy, 2015). A recent report documented a loss of 55 per cent
of livestock on average annually due to attacks by wild carnivores in villages in the Himalayan state of Sikkim, India
(Pradhan, 2018).

Deforestation and forest fragmentation due to anthropogenic factors, such as the construction of transport networks,
human encroachment, and the conversion of forest to arable lands are deemed responsible for the reduction in the ability of
wildlife to disperse in their home ranges, thereby bringing them into proximity with humans and human settlements
(Acharya et al., 2017; Koirala et al., 2015). Topographic factors such as elevation and terrain also influence HWC because a
rough terrain can make access difficult and limit human‒wildlife interaction (Neilson et al., 2013). The climate exerts a
dominant influence over the natural distribution of species by providing unique habitat ranges to wildlife, and hence indi-
rectly affecting the nature and extent of interaction between humans andwildlife (Aryal et al., 2014). Since the region is highly
vulnerable to changes in both temperature and precipitation, more than the global average (Sharma et al., 2010), any such
climatic changes would affect the wildlife’s habitat composition, availability of forage, and water accessibility, triggering
conflict beyond political borders (Cushman et al., 2018; Mallick, 2012). It is therefore crucial to identify the areas in the region
under high risk of HWC, understand the mechanisms of interaction, analyse possible drivers, and prioritize conservation
efforts.

Reducing the damage to livestock requires understanding how depredation varies in space and time (Gastineau et al.,
2019), and spatial risk modelling can prove to be a useful tool in predicting and mapping HWC hotspots by using loca-
tions of past interaction (Miller, 2015; Ruda et al., 2018). Modelling approaches such as maximum entropy (MaxEnt), when
used along with various geospatial datasets, are effective in identifying hotspots of human‒wildlife conflict and under-
standing their potential drivers (Constant et al., 2015; Mateo-Tomas et al., 2012; Phillips et al., 2006; Vilar et al., 2016).
Although several researchers have focused their studies on HWC in the region by quantifying the damage, analysing pat-
terns, examining its relationship with habitat use, and mapping conflict in some select areas of Himalayan countries
(Chakraborty, 2015; Kshettry et al., 2017; Naha et al., 2018, 2019), knowledge about the regional and geographical patterns
of such conflict is limited. The inadequate information and spatial data on HWC in the region, especially in the hills and
mountains, coupled with political sensitivities within, calls for efforts towards a better understanding of HWC here
(ICIMOD, WCD, GBPNIHESD, RECAST, 2017). This paper, therefore, makes an effort to (a) identify the HWC hotspots in the
Kangchenjunga Landscape in the Eastern Himalaya using the MaxEnt modelling approach; and (b) investigate the rela-
tionship between the ongoing HWC and associated drivers in the landscape. Since this study also examines conflict hotspots
according to protected areas and ecoregions, it would help in the prioritization of areas for the conservation and formu-
lation of future strategies to address the issue.
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2. Materials and methods

2.1. Study area

Situated in the Eastern Himalaya, the Kangchenjunga Landscape encompasses parts of eastern Nepal, India (North Bengal
and Sikkim), and southwestern Bhutan, and is spread over about 25,100 km2 (Fig.1). With elevations ranging from 40m above
sea level (masl) to the third-highest mountain peak in the world, Mount Kangchenjunga at 8586 masl, its pristine and varied
habitats support a wide variety of fauna and flora, including 160 species of mammals, 618 species of birds, and 600 butterfly
species, some of which are considered globally threatened (Kandel et al., 2016, 2019). The vegetation of the study area is
broadly divided into the following groups: (a) tropical, (b) subtropical, (c) warm temperate, (d) cool temperate, (e) subalpine,
and (f) alpine (ICIMOD, WCD, GBPNIHESD, RECAST, 2017).

The landscape is home to some flagship species, such as the Asian elephant (Elephas maximus), the Royal Bengal tiger
(Panthera tigris), the greater one-horned rhinoceros (Rhinoceros unicornis), and gaur (Bos gaurus) in the low-lying plains; red
panda (Ailurus fulgens), clouded leopard (Neofelis nebulosi), and takin (Budorcas taxicolor) in the hills; and the snow leopard
(Panthera uncia), musk deer (Moschus chrysogaster), the Himalayan black bear (Ursus thibetanus), and the Tibetan antelope
(Pantholops hodgsonii) in the high mountains (ICIMOD, WCD, GBPNIHESD, RECAST, 2017; Kandel et al., 2019).

With appropriately 7.2 million people living in the Kangchenjunga Landscape (Kandel et al., 2016), the high human
pressure on natural resources and various developmental activities in the region have led to the degradation and frag-
mentation of its forest ecosystems. There has been a concomitant reduction in the habitats of megafauna such as elephants,
and a loss of biodiversity, frequently leading to HWC (ICIMOD,WCD, GBPNIHESD, RECAST, 2017). The 19 protected areas in the
region, established for the conservation of natural habitats and sustaining biodiversity, are often isolated, too small for large,
home range animals, and disconnected from each other (Gurung et al., 2019). These factors have led to widespread conflict
between humans and wildlife here, in which predators such as clouded leopards, common leopards, tigers, and snow
leopards have attacked livestock and even humans. In ecoregions that provide habitats for elephants, rhinoceros, gaurs, and
other fauna, crop raiding, the destruction of houses, and attacks on humans are common. At higher elevations of the land-
scape, predators such as the Himalayan black bear, Asian golden cat (Pardofelis temminckii), leopard cat (Prionailurus ben-
galensis), and the Himalayan yellow-throated marten (Martes flavigula) predate livestock and poultry, while wild boars (Sus
Fig. 1. Study area showing Kangchenjunga Landscape along with elevation zones and protected areas.
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scrofa), primates like monkeys (Macaca mulata), barking deer (Muntiacus muntjak), rodents, including porcupines (Hystrix
sps.), and peafowls (Pavo cristatus) are involved in the depredation of crops (ICIMOD, WCD, GBPNIHESD, RECAST, 2017;
Pradhan et al., 2012).

2.2. Data collection

2.2.1. Compiling the conflict incidence data
The points of HWC incidence in the study area were compiled using secondary literature sources. We referred to over 50

news articles, journals, and reports to derive the collective locations of the incidents of HWC with all available species for the
last 19 years (2000e2019) from across the landscape. We identified a total of 250 points of HWC occurrence; 60 per cent of
these were in low elevation regions (<300 m), and the rest distributed over the landscape. The hilly and high mountain
regions of the landscape (300e8586 m) contributed a relatively smaller proportion of the literature data and news articles
relating to the incidents. Viewed by country, the maximum amount of data regarding the incidents was captured from studies
conducted in India (Bhutia, 2016; Naha et al., 2018, 2019; Rai et al., 2014; Roy, 2017; Sunar et al., 2012), followed by Nepal
(Neupane et al., 2018; Sherchan and Bhandari, 2017; Shrestha and Koirala, 2015) and Bhutan (Dorji, 2017; Penjor et al., 2014;
Sangay and Vernes, 2008; Wangchuk, 2018; Wangchuk et al., 2018). A list of studies, news sources, and blogs referred to are
provided (Supplementary data S1).

2.2.2. Acquiring environmental/predictor variables
Twelve environmental variables considered important for predicting HWC were selected for the current period (Table 1).

The major factors considered were climate, topography, anthropogenic pressure, land cover, and availability of livestock
(Mateo-Tomas et al., 2012; Naha et al., 2019). For climatic indicators, total annual precipitation and average annual tem-
perature data was downloaded from the WorldClim data hub (Fick et al., 2017). Because the topography or terrain of any
region influences the spatial and altitudinal distribution of wildlife, data was derived based on the Shuttle Radar Topographic
Mission (SRTM) at 90 m resolution (Jarvis et al., 2008). To include the influence of human interaction on HWC, (a) the
Euclidean distance from the road; (b) the Euclidean distance from railways; and (c) the Euclidean distance from settlements
were extracted using Open Street Map (Haklay and Weber, 2008). We also accessed the globally available human footprint
index dataset for 2009, which represents the relative human influence in each terrestrial biome, expressed as a percentage at
a 1 km � 1 km grid level (Venter et al., 2016). The global dataset on livestock density (Robinson et al., 2014) was also
considered to include the effects of livestock depredation by wild animals. A land cover classification was carried out at 30 m
using Landsat 5, for the median year 2010 to obtain (a) area under forest cover; (b) area under agriculture; (c) area under tea
plantations; and (d) area under shrub land and grassland. Finally, all these variables were resampled at the same spatial
resolution of 1 km � 1 km to match the resolution.

2.2.3. Land use, land cover mapping
The study used Landsat’s 30 m spatial resolution (170 � 185 km swath) on-demand, atmospherically -corrected Level-2

thematic mapper (TM) images for land cover mapping. Two scenes of Landsat images covered the Kangchenjunga Land-
scape. The images required to cover the study area were downloaded from the Earth Explorer USGS image database (https://
earthexplorer.usgs.gov/) for 2010 (Table 2).

A harmonized and hierarchical land cover classification system (LCCS) with 11 classes was developed following Di
Gregorio (2005). We used eCognition Developer software for object-based image analysis (OBIA) to derive similar image
Table 1
List of predictor variables.

Factors Predictor variable Expected relationship with
HWC

Original spatial
resolution

Source

Topography Elevation e 90 m � 90 m www.usgs.gov/
Climate Total annual precipitation þ/� 1 km � 1 km www.worldclim.com

Mean annual temperature þ/� 1 km � 1 km www.worldclim.com
Anthropogenic Distance from road þ 1 km � 1 km https://www.openstreetmap.org

Distance to railway þ 1 km � 1 km https://www.openstreetmap.org
Distance to settlement þ 1 km � 1 km https://www.openstreetmap.org
Global human footprint index þ 1 km � 1 km sedac.ciesin.columbia.edu/

Land cover Area under agriculture þ 30 m � 30 m Land cover mapping
Area under tea plantations þ 30 m � 30 m Land cover mapping
Area under forest cover þ/� 30 m � 30 m Land cover mapping
Area under shrub land and
grassland

þ/� 30 m � 30 m Land cover mapping

Availability of
livestock

Livestock density þ 1 km � 1 km https://livestock.geo-wiki.org/
home-2/

Note: ‘þ’ indicates positive, ‘‒’ indicates negative.
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Table 2
Satellite imagery used.

Satellite/sensor Date Path Row

Landsat 5/TM November 5, 2010 138 41
Landsat 5/TM December 14, 2010 139 41
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objects through segmentation. OBIA provides a methodological framework for machine-based interpretation of complex
classes, using both spectral and spatial information, and generates better classification results with a higher degree of ac-
curacy than pixel-based methods (Chettri et al., 2013; Lang., 2008; Uddin et al., 2015). The algorithm helps to merge pixels
with their neighbours having relative homogeneity criteria based on defined minimummapping threshold units (Baatz et al.,
2006). Information about the spectral values of image layers, slope, and texture was used in land cover mapping. Additional
data relating to vegetation indices, for example, the normalized difference vegetation index (NDVI), the normalized difference
snow and ice index (NDSII), and a land‒water mask was also used for the mapping procedure. This approach to land cover
mapping has been widely used and tested by researchers in the region (Chettri et al., 2013; Uddin et al., 2015, 2019), and the
dataset is freely accessible and can be downloaded.

2.2.4. Conflict risk mapping
MaxEnt software (version 3.4.1) was downloaded and used for the modelling of HWC risk mapping (Phillips et al., 2017).

Data points regarding the incidence of conflict were extracted for their coordinates (latitude and longitude) and saved in the
csv format. All the 12 environmental variables listed abovewere clipped to the study area and converted into an ASCII format.
The MaxEnt model was run for the 1000 iteration, setting aside a random 30 per cent of the incidence data for testing the
model. A default setting of 10,000 maximum background points was accepted for the model run. In addition, the built-in
jackknife test in the model was also selected, which allows users to estimate the importance of individual variables in any
distributional modelling (Phillips et al., 2006; Phillips and Dudík, 2008).

The model’s output was generated using the default format of Cloglog. This format provides an estimate of the probability
of presence between 0 and 1, that is from the lowest to the highest probability of distribution (Phillips et al., 2006). The
predictive accuracy of themodel was accessed on the basis of the areawith the Receiver Operating Characteristics (ROC) curve
under the Area Under The Curve (AUC) for both training and testing of data, plotted against sensitivity (correctly classified
presences in the y-axis) and specificity (correctly classified absences in the x-axis) for all possible thresholds. The AUC value
ranks between 0 and 1, in which <0.5 means no discrimination, 0.5e0.69 poor, 0.7e0.79 reasonable, 0.8e0.89 excellent, and
>0.9 exceptional (Vilar et al., 2016). Jackknife tests of a variable’s importance were conducted to determine the most
important variable of the 12 chosen (Phillips et al., 2006). HWC hotspots were extracted from the probability ranges and
analysed with respect to 19 protected areas, 3 km radius around each of the protected areas and 10 ecoregions of the
landscape. For this, we calculated the proportion of the hotspot area as a percentage of the total size of each protected area, its
buffer radius and ecoregion.

2.2.5. Forest fragmentation statistics
In this regard, the study also conducted an analysis of forest fragmentation in the Kangchenjunga Landscape by using

effectivemesh size (MESH) statistics. MESH (McGarigal et al., 2002) is a landscapemetric, a fragmentation index that serves to
measure landscape connectivity and gives an account of the degree towhich two points are separate from each other because
of various fragmentation agents such as transport routes, cropland, or built-up areas. MESH gives the area-weighted mean
patch size of patches of the corresponding patch size (in hectares). The proportional area of each patch is based on the total
landscape area. The lower limit of MESH is constrained by the ratio of cell size to landscape area and is achieved when the
corresponding patch type consists of a single, one-pixel patch. MESH is maximum when the landscape consists of a single
patch (McGarigal, 2015), where aij ¼ area (m2) of patch ij, and A ¼ total landscape area (m2).

WemeasuredMESH, using class-level metric patterns in FRAGSTATS (McGarigal et al., 2002), the most widely-used spatial
analysis programme for calculating pattern metrics (Wang et al., 2014). For this, we first reclassified the land cover map into a
binary of 1 (forest, that is, needle-leaved forests, broadleaved forests, and mixed forests) and 2 (non-forest areas, including
built-up areas, croplands, and grasslands). An aggregation of classes also reduces the chances of misclassification of pixels (for
example, shrub land and grassland can be cultivated land) (Acharya et al., 2017). Thus, the land cover map with two classes,
forest and non-forest, was then used as the input in calculating fragmentation metrics. Since the landscape has a vast alti-
tudinal range, the characteristics of fragmentation and its underlying mechanism in each of the elevation zones would differ.
Therefore, it is important to divide the region into elevation zones to better understand the relationship between HWC and
fragmentation.

Three major elevation zones were considered: (a) Low-lying plains and the Duars (�300 masl); (b) Hills and mountains
(300e4000masl); and (c) Highmountains (4000e8586masl). A binary land cover mapwas extracted for each elevation zone
and theMESH calculated for each of them using amovingwindow sampling strategy.We used amovingwindowof 5 km2 as a
landscape unit to measure MESH statistics in FRAGSTATS (Fig. 2).
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Fig. 2. Schematic flowchart showing the methodological approach used in hotspot mapping.
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3. Results

3.1. Model’s accuracy in HWC prediction

We received an AUC value of 0.86 for training and 0.84 for the testing of data, representing the high accuracy of the model.
The AUC value for the data testing, 0.84, indicates the real test of the model’s predictive power and is very close to the AUC
value of the training data (0.86). Also, a value of 0.8 for the AUC means that, for 80% of the time, a random selection from the
positive group (sensitivity) will have a score greater than a random selection from the negative class (specificity) (DeLeo,
1993). Hence, the results from this model can accurately predict the probability of the incidence of HWC in the study area.
3.2. HWC hotspot areas

We generated an HWC probability map with a spatial resolution of 1 km � 1 km, with values ranging from 0 (low
probability) to 1 (high probability) (Fig. 3a). The map shows that HWC is well-distributed in the landscape, with the southern
and central regions of the study area showing higher probability values for HWC compared to the northern highlands. The
output was imported to ArcGIS 10.6.1 in a .tiff format, where the probability values were classified into ten classes based on
percentiles. The combined values of the top 20th percentile class were considered as a ‘conflict hotspot zone’ (Allen and
Bradley, 2016; Shrestha and Shrestha, 2019) (Fig. 3b). A total of 4710 km2 of the landscape (~19 per cent of its area) was
estimated to be in the high HWC zone. This zone was then analysed with respect to physiographic and administrative units
such as ecoregions and protected areas of the landscape.

HWC is found to be highly prevalent in and around the region’s isolated and disconnected protected areas. Our identi-
fication of conflict hotspots showed the highest risk of HWC within the protected areas of Chapramari Wildlife Sanctuary
(~58%), followed by the Fambonglho Wildlife Sanctuary (~52%), and Senchal Wildlife Sanctuary (~49%) (Fig. 4a). Large pro-
portions of the protected areas in Mahananda Wildlife Sanctuary (~39%) and Barsay Rhododendron Sanctuary (~33%) as well
showed a high risk of HWC. On the other hand, the Kyongnosla Alpine Sanctuary, Kitam Bird Sanctuary, and Jigme Khesar
Strict Nature Reserve showed the least risk of HWC within their protected areas.

An analysis of HWC hotspots in buffer zones within a 3-km radius of protected areas showed an intensification of the risk
of conflict there. This increase was the highest for the Kitam Bird Sanctuary, where ~53% of the area in the buffer zone was a
HWC hotspot area. About 37% of the buffer area around Gorumara National Park also experienced a high level of HWC
compared to amuch lower 6% in its core area. Little over half the buffer zone of Barsay Rhododendron Sanctuarywas a hotspot
area for HWC, higher by 19% than its core area (~33%) (Fig. 4a).

Going by ecoregion, the highest proportion of area under conflict was observed in the Himalayan subtropical pine forest
ecoregion, with ~63% of its area comprising a high HWC zone (Fig. 4b). This was followed by the Terai‒Duars savannah and
grasslands ecoregion (~43%) and the Eastern Himalayan broadleaf forest (~18%). The high-altitude, Eastern Himalayan sub-
alpine conifer forests showed a small percentage of its area under HWC (~7%), whereas Rock and ice and Eastern Himalayan
alpine shrub and meadows were estimated to have the least area under conflict hotspots and negligible conflict calculated
from Yarlung Tsangpo arid steppe (Fig. 4b).
6



Fig. 3. Maps showing (a) HWC probability, and (b) HWC hotspot zones.

Fig. 4. (a) HWC hotspots in and around protected areas, and (b) HWC hotspots in the ecoregions of the Kangchenjunga Landscape.
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3.3. Major factors affecting HWC

The fourmost important variables estimated by jackknife test to have the highest contribution to AUCwere: (a) Distance to
a road; (b) Elevation; (c) livestock density; and (d) Mean annual temperature. It is noteworthy that the variable connected to
anthropogenic factors ‒ distance to a road ‒ had the highest contribution, with a variable importance of 0.76. This variable
produces the highest gain when used in isolation and therefore appears to have the most useful information by itself. It was
followed by elevation and livestock density (Table 3). Climate also tends to influence the probability of conflict as indicated by
the fact that the contribution of mean annual temperature to AUC has a value of 0.73 for the modelling. Other factors relating
to land cover such as area under agriculture, climatic factors such as total annual precipitation, and anthropogenic factors
7



Table 3
Top four factors contributing to HWC in the study area.

Factors Predictor variable Contribution to AUC (jackknife test)

Anthropogenic Distance to a road 0.76
Topography Elevation 0.75
Availability of livestock Livestock density 0.75
Climate Mean annual temperature 0.73

Fig. 5. Response curves showing probability of HWC for four key variables: (a) Distance to road, (b) Elevation, (c) Temperature, and (d) Livestock density.
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such as distance to railway tracks showed lower contributions in modelling HWC. Fig. 5 further depicts the response curves of
the four important contributors to HWC.
3.4. Relationship between HWC and forest fragmentation

High values of MESH represent grids with a single forest patch (low patchiness), middle values represent grids with both
forest and non-forest patches (high patchiness), and low values represent grids with mostly non-forest patches (low
patchiness). The values extracted from MESH of each grid, when correlated with the mean HWC probability of that grid,
showed different correlation scenarios for the three elevation zones (Fig. 6).

At elevations below 300 m, mostly representing the TeraieDuars savannah ecoregion, the correlation between the
probability of HWC and MESH was significantly negative (r ¼ ‒ 0.6, p < 0.05). This means that HWC is higher in areas with a
lowerMESH size, which represents greater patchiness or fragmentation (Fig. 6a). However, this correlation is lower compared
to regions at elevations between 300 and 4000 m, comprising hills and mountains of the landscape. They have a negative
correlation of r¼ ‒ 0.8 at a p < 0.05 significance level. The probability of HWC at this elevation is highest withmiddle values of
MESH size, representing high patchiness or fragmentation, which then decreases progressively with increasing MESH size
(Fig. 6b).
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Fig. 6. Relationship between MESH and HWC at different altitudes: (a) < 300 m, (b) 300e4000 m, and (c) 4000e8586 m.
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In regions at high elevations of 4000e8586 m, there is a positive correlation between MESH and HWC probability, with
r¼ 0.03, non significant at p¼ 0.05 (Fig. 6c). This is because of the negligible forest cover and human interaction in the region.
The area mainly consists of shrub land, barren land, and snow/glaciers, and falls under the category ‘non-forest’, therefore
accounting for its low patchiness. Though predators such as snow leopards show their presence, HWC in the high mountains
is constrained to only certain regions in the study area. Therefore there is a need to better understand HWC in the high
mountains and its relationship with other factors such as livestock availability, including with the use of niche-based
modelling.
4. Discussion and conclusions

Our study shows variations in hotspot areas across the Kangchenjunga Landscape. The analysis revealed that ~19 per cent
of the area falls under the high HWC risk zone, and that most of the conflict areas are at lower elevations and relate to large
mammals. This is similar to the global trend, one in which large mammals are reported as the most damaging, both for crops
and for human lives (Holland et al., 2018). The conflict areas, at least in northern Bengal and eastern Nepal, were once an
extended habitat for big mammals, including the tiger and gaur, and on the migratory route of elephants (Choudhury, 1999,
2002; Joshi et al., 2016). However, extreme land use changes due to developmental works, including the establishment of tea
gardens, villages, railway lines, and roads, has limited the original habitats of species, extirpating some or confining them to
patches of protected areas (Mallick, 2019). The major conflict areas from our results coincide with those of previous studies
indicating human-inhabited areas, highways, and railways as hotspots (Dasgupta and Ghosh, 2015; Naha et al., 2018, 2019;
Roy and Sukumar, 2017).

Analysing the top four factors revealed that there is a combination of both environmental and anthropogenic variables
responsible for HWC conflict, with distance to roads contributing highly to the modelling results. Roads, highways, and even
small footpaths open up areas for human intervention and increase the proximity of human beings and wildlife (Dasgupta
and Ghosh, 2015; Mann et al., 2019; Roy and Sukumar, 2017). The response curve for distance to roads generated by the
model shows a higher probability of HWC at distances less than 5 km from a road than distances further away. Such trends are
apparent as forest degradation through developmental activities affects the size of habitat of many megafauna, including
elephants (Padalia et al., 2019), making the Terai and lowland areas more prone to HWC (Naha et al., 2018, 2019).

In addition, physical factors such as a location’s altitude are also crucial in determining the severity of the risk of conflict
and the associated species. High-altitude regions in the Kangchenjunga Landscape, mostly under rock and ice, showed a low
to very low hotspot percentage, most of which was restricted to livestock predation by snow leopards and wild dogs
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(Sathyakumar et al., 2011; Sherchan and Bhandari, 2017). This is mainly due to low levels of inhabitation and low density of
wildlife populations, as has been reported elsewhere (Bhatia et al., 2019; Rovero et al., 2020). On the other hand, regions in the
landscape at elevations of 300e4000 m are characterized by various types of HWC, ranging from crop foraging by monkeys
and wild boar to human and livestock depredation by black bears and common leopards. However, the intensity differs,
depending on the terrain, land use types, and species involved. A similar, distinct pattern of conflict differing in intensity,
depending on altitude, was also reported by Anand and Radhakrishna (2017). According to a study by Rai et al. (2014), villages
around the Barsey Rhododendron Sanctuary in this elevation zone experienced a crop loss of up to 64% due to foraging by
wild boars, porcupines, and barking deer.

Low-altitude areas below 300m, comprising the Terai‒Duars savannah and grasslands ecoregion of the landscape, provide
an ideal habitat for megafauna such as elephants, gaur, leopards, and tigers, which are frequently involved in conflict with
humans. The recent, increasing urbanization, due to population growth and migration into cities (such as Jalpaiguri and
Siliguri), has added pressure on the region’s natural resources, mostly its forests (Sarkar and Chouhan, 2019).

The third important factor contributing to HWC in the landscape is the availability of livestock. Carnivores such as common
leopards, tigers, yellow-throatedmartens, wild dogs, and snow leopards are known to prey on livestock like goats, sheep, pigs,
poultry, and even yaks, in addition to wild prey. Bhutan reported a loss of 1375 livestock between 2003 and 2005 due to
predation by large carnivores (Wangchuk et al., 2018). The probability of HWC was found to be highest in areas with
moderately dense concentrations of livestock, about 200e400 livestock/sq km. This is possible as communities living in the
fringe areas of forests mostly practice livestock rearing in low to moderate numbers, mainly for subsistence (Bargali and
Ahmad, 2018).

Climate too plays an important role in guiding vegetation characteristics and suitable habitats for wildlife (Gupta et al.,
2017). This was indicated by the fact that the mean annual temperature in our study showed a high significance value of
0.73 in the landscape. The response curve for temperature shows a high probability of HWC in regions with a mean annual
temperature around 24 �C (Fig. 5c). Recent research suggests that climatic factors and associated changes play a fundamental
role in the distribution and movement of Himalayan black bear, bringing them in proximity to village communities and
increasing the risk of conflict (Bashir et al., 2018). In the context of prevailing climate change and warming at higher ele-
vations, there is likely to be an increase in conflicts as shifts in species’ range are reported (Singh et al., 2020). Many lowland
megafauna are likely to use higher elevations as climate refugia, as tigers are already reported to be doing at altitudes of
4000 m (Vernes, 2008) and elephant habitats are predicted to shift to higher elevations (Kanagaraj et al., 2019).

The results of this study suggest that the Chapramari Wildlife Sanctuary, Fambonglho Wildlife Sanctuary, and Senchal
Wildlife Sanctuary should be prioritized for human‒wildlife conflict management due to the higher risk of conflicts that
prevails. Also, the buffer area within Gorumara National Park and Kitam Wildlife Sanctuary should be aided through better
strategies and building the capacities of local communities to address HWC (Kshettry et al., 2017). HWC is prominent here
since these protected areas account for some amount of human activities such as agriculture and livestock rearing by village
communities within and along their peripheries. Villageswithin and along the fringes of protected areas, especially in Senchal
Wildlife Sanctuary, Fambonglho Wildlife Sanctuary, and Kitam Bird Sanctuary, experience the raiding of crops by wild boars,
Asiatic bears, barking deer, and porcupines (Rai et al., 2012; Sunar et al., 2012). Villagers here also depend on natural resources
such as fuelwood, medicinal plants, and food from nearby forests, and are frequently attacked by wild animals while col-
lecting these. The fragmentation of habitats due to the construction of railway lines and roads through protected areas of
Chapramari, Jaldapara, and Buxa in northern West Bengal contributes to frequent conflict between humans and large
mammals such as elephants (Roy et al., 2009). Areas outside the protected area boundary, such as tea gardens and fringe
villages, provide suitable habitat and food during the shortage of forage in thewild and should therefore also be prioritized for
minimizing conflict (Kshettry et al., 2020).

Of the ten ecoregions surveyed, the onewith the highest proportion (~63%) of hotspot areawas the Himalayan sub-tropical
pine forests. Being the largest in the Indo-Malayan realm, this ecoregion is characterized by conifer forests, home to several
mammalian and bird species (Dinerstein et al., 2017). In recent years, more than half the forest in this densely populated
ecoregion has been cleared due to overgrazing and overexploitation for fuelwood and fodder (Shrestha et al., 2018). Most of
the region’s forests, especially between 1000e2,000m, have been replaced by terraced agriculture (Theobald et al., 2020).
Such severe human intervention in a substantially fragile ecosystem can lead to drastic changes in wildlife and their inter-
action with humans. It is followed by the Terai‒Duars savannah and grasslands ecoregion (~43%). A narrow stretch in this
ecoregion, between India and Nepal, forms an important ecological corridor for wildlife, especially elephants (Roy and
Sukumar, 2017). Elephants are known to migrate from the Koshi Tappu Wildlife Reserve in eastern Nepal through Darjee-
ling and Jalpaiguri inWest Bengal, India, and Bhutan to Assam in Northeast India (Choudhury,1999). Thus, this region that is a
significant elephant habitat has undergone alteration through the conversion of land into settlements, agricultural lands, tea
gardens, and teak plantations, in turn affecting the foraging behaviour and migratory routes of elephants (Singh et al., 2019).

This study also points out that areas at an elevation range of 300e4000 mwithin the landscape are witnessing high levels
of HWC where there are high rates of forest fragmentation, as is suggested by a significant negative correlation of r ¼ ‒ 0.8
between effective mesh size and the probability of HWC. The patchy agricultural lands within themosaic of forested areas are
infested by small mammals, including macaques and wild boars (Pandey et al., 2016), and the pathways around forested
regions used for collecting fuelwood frequently witness bear and leopard attacks (Naha et al., 2018). With success in con-
servation and the increasing number of large mammals such as rhinos and elephants, there is a need for extended habitats
beyond protected areas (Mukherjee et al., 2020). A similar trend was also observed in Nepal, where human deaths were
10



P. Sharma, N. Chettri, K. Uddin et al. Global Ecology and Conservation 24 (2020) e01284
higher in fragmented areas (Acharya et al., 2017). In developmental activities such as the construction of dams, highways, and
railways, the protection of ecologically sensitive areas, their species, and habitats should be made a major priority for all
countries of the landscape.

It is also noted that with conservation interventions, wildlife populations have increased even as their habitats have been
degraded, resulting in small, patchy protected areas disconnected from each other, and which are not big enough for large
mammals such as elephants and tigers (Gurung et al., 2019; Talukdar et al., 2019). This trend is likely to increase HWC in the
near future. Hence, a holistic approach at the landscape level for tackling HWC, by connecting the forests of the Darjeeling and
Jhapa forest divisions and identifying corridors, could be useful in tackling this issue, as also suggested by Mallick (2012) and
Dhakal and Thapa (2019). The need for landscape planning in this region, providing a minimum of 1000 km2 of good habitat
by restoring fragmented inter- and intra-country forest patches would be an effective measure to mitigate HWC (Roy, 2015).

In summary, it is obvious that Eastern Himalaya and Kanchenjunga Landscape are part of the global HWC hotspot areas,
and that there is an increasing trend of incidents of HWC in the region. Some of the areas within are more prone to HWC than
others. The major drivers are human-induced fragmentation of habitats and shrinking historical ranges, especially for large
mammals. The issue of HWC is complex and directly related to the local economy, land use patterns, success of conservation,
and one that goes beyond political borders. In addition, the emerging challenges of climate change and shifts in habitat across
the region, and losing the battle of conservation add more challenges at the regional level. Therefore, HWC is no more a
single-country issue, and goes well beyond international borders. It is a fundamental cross-border issue, as has also been
indicated by other studies. Our analysis rationalizes the need for regional cooperation and common strategies to address
HWC. Various international conventions, such as the Convention on Biological Diversity (CBD) and the United Nations
Framework Convention on Climate Change (UNFCCC), have strongly advocated the landscape approach and regional coop-
eration to address problems related to drivers of change. Hence, a transboundary cooperation programme like Kangchen-
junga Landscape could bring synergies between countries to develop better strategies and capitalize on opportunities to
tackle HWC. It could pave the way for human‒wildlife co-existence by urging countries to adopt better legislative provisions
and build awareness among community groups for informed decision-making. Since the present analysis constitutes a unique
study in mapping HWC at the landscape level based on an intensive literature survey and existing data, it could also be
replicated in other landscapes of the region.
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