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About This Volume 

Forest biomass monitoring is becoming increasingly relevant in the context of sustainable 
livelihoods and REDD+ monitoring, verification, and reporting (MRV), and there is a 
growing need to develop more standardized methodologies. The governments of the Hindu 
Kush Himalayan region have been active in this area through various initiatives and projects 
for the past decade. 

In December 2013, the International Centre for Integrated Mountain Development 
(ICIMOD), in collaboration with the International Society for Photogrammetry and Remote 
Sensing (ISPRS), held an international expert meeting on ‘Geospatial Information Systems 
for Multi-scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan 
Region’ in Kathmandu, Nepal. Papers were presented on various aspects of forest biomass 
monitoring in the different countries of the region, as well as the international state-of-the-
art. The participants appreciated the opportunity for exchange and mutual learning with 
others from the region and expressed a strong interest in continuing collaborative research 
in this area. The scientific contributions were distributed during the meeting in the form of a 
’Draft Proceedings’. As interest in this topic is growing worldwide, and with encouraging 
advances in this field in the Hindu Kush Himalayan region, ICIMOD decided to publish the 
papers in the form of this Special Publication to disseminate the findings to a wider 
audience. The book provides a comprehensive overview of forest biomass monitoring 
activities in the Hindu Kush Himalayan region and highlights the different capacities that 
exist. The papers have undergone external review by international experts in the field of 
remote sensing and forest biomass monitoring, as well as editing and professional layout.
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Foreword

Forest covers a large part of the Hindu Kush Himalayan (HKH) region and plays a vital  
role in confronting the challenges of climate change and improving livelihoods for the 
growing population. The HKH region has seen very high levels of deforestation and forest 
degradation over recent decades. Conversion from forest to other land uses often results  
in a substantial loss of carbon from the biomass pool, and changes in forest cover due to 
deforestation, growth dynamics, and natural disturbance may affect the role and function  
of the forest ecosystems.  

Reducing Emissions from Deforestation and Forest Degradation (REDD), and the expanded 
form REDD+, are global policies under the United Nations Framework Convention on 
Climate Change (UNFCCC). These policies reward the forestry and land-use sector through 
an incentive mechanism with the aim of reducing the concentration of carbon dioxide in the 
atmosphere. Payments are made for conserving forest carbon stocks, and maintaining and 
increasing forest cover. Monitoring systems that allow for credible measurement, reporting, 
and verification (MRV) of activities are among the most critical elements for the successful 
implementation of REDD+. Monitoring of forest carbon emissions is essential in order for 
compensation to be paid for emissions avoidance or reduction through conservation, and 
requires both remote sensing and ground-based data.

Monitoring of forest carbon and assessment of biomass has become very important in the 
Hindu Kush Himalayan region, where it is hoped that the REDD+ mechanism will prove useful 
in addressing the ongoing problems of deforestation and degradation. It is especially 
important in this very large and poorly accessible region to explore the use, and evaluate the 
effectiveness, accuracy, and cost, of different remote sensing techniques at different scales. I 
am pleased to present this Special Publication, which provides an excellent overview of the 
status of forest biomass monitoring systems in the countries of the HKH region, and highlights 
results, challenges, and opportunities in the application of active and optical sensors for 
biomass assessment. The regional country contributions are complemented by papers from 
international experts that describe the technological potential of cutting-edge remote sensing 
techniques. The overview of the current status of biomass estimation and applicability of 
certain techniques and methods also enables us to reflect on a way forward towards more 
standardized biomass monitoring and REDD+ MRV systems at different scales in the region.

ICIMOD has developed periodic forest cover mapping initiatives and identified forest change 
prone areas that are in critical need of forest management. Pilot studies have also been 
conducted in Nepal on the estimation of biomass using satellite techniques. Exciting scientific 
advances are to be expected in the future, with satellite techniques becoming more 
mainstream and affordable, while newly available sensors will increase the potential for 
effective and consistent forest biomass monitoring.
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ICIMOD is pleased to play a key role in convening stakeholders of its member countries and 
facilitating discussions regarding standard methods for forest biomass assessment. ICIMOD is 
well positioned to coordinate capacity building efforts due to its regional focus and broad 
expertise in forestry and geospatial applications in the context of REDD+. I would like to thank 
USAID and NASA for their support under the SERVIR-Himalaya initiative, which has made this 
Special Publication possible.

							       David Molden, PhD
							       Director General, ICIMOD
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Foreword

The Hindu Kush Himalayan (HKH) region is characterized by enormous diversity in its forests 
and other flora, its fauna, and its indigenous peoples. There is also a great diversity in the 
infrastructure available to measure the status and changes in forests in the different countries. 
Much of this diversity comes from the topographic complexity of the region. The topography 
creates an enormous challenge, but a challenge that countries must meet if they are to have a 
proper understanding of what is happening in their forests and if they are to benefit from the 
opportunities arising from REDD+ and related initiatives. Measuring biomass and its changes 
is fundamental to meeting this challenge. 

The meeting at ICIMOD on 9–10 December 2013 from which this publication springs 
represented both a desire to share experience and knowledge on biomass measurement 
among the HKH countries and a look forward at how new (and old) technologies can help  
to address the issue. These are exciting times for using space-based technology to measure 
biomass, as a suite of new missions will come on stream over the next few years: the ESA 
BIOMASS P-band radar mission; the recently approved NASA Global Ecosystem Dynamic 
Investigation (GEDI), which will be a vegetation Lidar deployed on the International Space 
Station; the NASA L-band NISAR mission to measure forest disturbance and recovery; and 
systematic L-band SAR measurements of the world’s forests by JAXA’s ALOS-2 mission and  
the Argentinean SAOCOM pair of satellites. 

However, although these missions offer great opportunities, their contributions need to be 
understood within the context of the needs, knowledge, and developing infrastructure of  
the HKH countries. Furthermore, extracting information from these missions reliably requires  
close working relationships with organizations that can help to train and validate their 
measurements. This is particularly true in the HKH region, where steep terrain and the 
resultant significant variations in forest properties will create problems for accurate inversion 
of the satellite data. 

The HKH community can contribute greatly to this joint effort in many ways: by providing a 
focus for efforts to understand and correct terrain effects; by obliging satellite mission  
scientists to understand the value of their data within the context of HKH national needs,  
and the implications for data quality and access; by making in situ and airborne data 
available for training and calibration; by evaluating the quality of the satellite data products; 
and by investigating whether these data significantly improve their monitoring, reporting, and 
verification systems. Thus, the papers presented here provide not end-points but signposts 
aiding the development of the international collaboration needed to make the most of the 
opportunities of the coming decade.

					     Prof. Shaun Quegan
					     Centre for Terrestrial Carbon Dynamics (CTCD)
					     University of Sheffield
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Executive Summary

There is a growing need for consistent forest biomass monitoring in the context of sustainable 
livelihoods, ecosystem services, and REDD+ monitoring, reporting, and verification (MRV). 
Reliable baseline data on forest biomass need to be developed for proper reference. It is 
imperative to establish standardized methods at multiple scales which can be easily replicated. 
This publication presents a review of current biomass assessment and monitoring systems and 
the application of geospatial data and tools in the Hindu Kush Himalayan (HKH) region, and 
the scope for strengthening such systems. Section 1, with seven papers, gives an overview of 
the geospatial datasets, models, and methodological frameworks being adopted in different 
countries in the region, and indicates the different capabilities related to biomass assessment 
and geospatial analysis and the different levels of preparedness and implementing capacity 
for REDD+ MRV. 

The papers in Sections 2 and 3 (five in each section) describe a number of examples of 
applications of active and optical sensors using a range of models, methods, specific data, 
and techniques. 

Among the active sensors described in Section 2, synthetic aperture radar (SAR) systems show 
particular promise as a result of their cloud penetrating qualities and applicability to forest/
non-forest mapping, monitoring of deforestation, and forest biomass mapping. Laser imaging 
detection and ranging (Lidar) is also a promising active sensor. Encouraging results are 
reported for applications of Lidar data in combination with very high resolution (VHR) optical 
satellite data, and for applications of the Lidar Assisted Multi-source Program (LAMP) – a 
forest inventory methodology that integrates Lidar data, field data, and moderate resolution 
satellite data to estimate forest biomass over large areas. Studies in Bangladesh and Pakistan 
elaborate on the opportunities and limitations of using active sensors. 

The studies on optical sensors in Section 3 also present a number of interesting results. There 
is general agreement that integration of (optical) remote sensing data with field inventory data 
can form part of a useful approach to obtaining improved forest above ground biomass 
(AGB) estimates. The ‘FOTO’ method (Fourier-based textural ordination) applied in one of the 
studies focuses on texture analysis of (very) high resolution imagery, and provides meaningful 
information on vegetation properties and biomass. Promising results are also reported in a 
study using very high and medium resolution satellite optical datasets; a crown projected area 
(CPA) vs. basal area (BA) model was developed and validated at the watershed level using 
only limited field data.
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Key Messages

�� Forest biomass baseline assessment and monitoring at multiple scales is needed for 
management of sustainable forests to support livelihoods and to gain carbon mitigation 
benefits through mechanisms like Reducing Emissions from Deforestation and Forest 
Degradation (REDD+).

�� The main challenges in current forest carbon estimation are related to the prohibitive costs 
of extensive field measurements, limited use of optimal field sampling designs, 
development of spatially consistent estimations, and controlling uncertainty due to errors 
from allometry and sampling design. 

�� Open source remote sensing data and tools related to forest biomass assessment hold 
part of the key to addressing these challenges at different scales.

�� There is a critical need to formulate and implement a consistent and standardized 
methodological framework for forest biomass baseline assessment and monitoring at 
multiple scales using ground- and space-based protocols.

�� A proper inventory of existing expertise related to remote sensing based forest biomass 
monitoring in the countries of the Hindu Kush Himalayan region will help in outlining an 
effective capacity building strategy to ensure that adequate capacity is in place.

�� Cross learning opportunities will facilitate the implementation of standardized approaches 
and techniques.

�� International collaboration could foster further standardization of methods and bring in 
new satellite missions on biomass assessment and monitoring.

�� ICIMOD, with its regional focus, could play a key role in convening stakeholders in its 
member countries to facilitate agreements related to standard methods for forest biomass 
assessment and coordinate capacity building efforts. 
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Multi-Scale Forest Biomass Assessment  
of the Hindu Kush Himalayan Region
Scope and Challenges of Geospatial Applications 

MSR Murthy*, R Kotru, B Karky, H Gilani, and K Uddin 
International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu, Nepal 

*Corresponding author: MSR Murthy, manchiraju.murthy@icimod.org

F orest resource conservation through community-based programmes has become an 
integral part of forest management in the Hindu Kush Himalayan (HKH) region. Reliable 
baseline assessment and monitoring strategies at multiple scales are needed to generate 

optimal supply–demand resource scenarios for effective use of forest resources and to leverage 
carbon mitigation benefits through mechanisms like the Clean Development Mechanism (CDM) 
and Reducing Emissions from Deforestation and Forest Degradation (REDD). There is a critical 
need for forest biomass assessment and monitoring at multiple scales using ground and 
space-based protocols. However, the use of geospatial information systems is still at an early 
stage due to the lack of a uniform and consistent methodological framework and varying 
capacity of countries in the HKH region. This paper describes the available geospatial datasets 
and models relevant for the region; the current status of assessment levels and needs at HKH 
regional, national, and local levels; and areas of research to strengthen geospatial 
applications for multi-scale biomass assessment.

Keywords: Hindu Kush Himalayas (HKH), REDD+, multiple scales, and geospatial 
applications

Introduction
In the debate on greenhouse gas (GHG) emissions as the prime cause for the perceptible 
global warming, forest carbon flux assessment has gained the attention of researchers and 
practitioners alike. The roles played by terrestrial ecosystems in the global carbon (C) cycle, 
and especially the role of intact forests as a carbon sink, and of deforestation and forest 
degradation as a GHG source, have been widely recognized as crucial since the 13th session 
of the Conference of the Parties (COP 13) to the United Nations Framework Convention on 
Climate Change (UNFCCC) in Bali in 2007, and publication of the Fourth Assessment Report 
of the Intergovernmental Panel on Climate Change (IPCC) in the same year (IPCC 2007). This 
is mainly due to the early estimations that deforestation and degradation of forest ecosystems 
contributes up to one-fifth of the world’s total anthropogenic GHG emissions. Carbon 
sequestration was also reported to be a potentially effective mitigation method to counter 
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global warming at a lower cost than that of the massive energy conservation and innovation 
adjustments needed to reduce the use of fuel in high-energy world economies.

Forests play an important role in the global carbon cycle, and both influence and are 
influenced by climate change. Forest ecosystems contain more than half of all terrestrial 
carbon and account for about 80% of the exchange of carbon between terrestrial ecosystems 
and the atmosphere (FAO 2010). At the same time, 14 million hectares of global forest cover 
is lost annually (FAO 2010). The future global trend of pressure on the remnant forest cover 
can be gauged from the fact that five billion new middle class consumers are expected by 
2030 (Cotula 2011). This will mean a marked increase in the demand for energy, food, 
material, and consumables that is driving forest conversion, and especially in the five 
commodities considered to be closely linked with widespread deforestation: palm oil, soy, 
beef, leather, timber, and biofuels.

In the Hindu Kush Himalayan (HKH) region, the system of agriculture, forest, and other land 
use (AFOLU) constitutes an important component of livelihoods and means of support for 
creating and safeguarding more climate-resilient livelihoods. AFOLU-based systems support 
around 70% of fuel and fodder demand in the region, and their CO2 mitigation potential is 
also thought to be significantly high. However the current low investment and lack of 
innovation to improve the productive interface between forest-dependent people and 
sustainable forest ecosystem services do not augur well for addressing climate change. There 
are currently four key opportunities for renewing the role of forests as an effective and efficient 
carbon sink: 

�� Putting a price on ecosystem services. Economic valuation of all forest products and 
services

�� Incentivizing for carbon sink services. Creating innovative financing mechanisms and 
markets for carbon sink services

�� Encouraging investment in sustainable forest management. Proactive management to 
sustain forest ecosystem goods and services. 

�� Strengthening governance. Improving forest governance

Validated research on carbon flux potential and measurement is needed as a basis for 
achieving these opportunities for forest carbon management; tracking and monetizing carbon 
sinks using simple carbon flux monitoring methodologies is essential. The extent of 
deforestation and degradation is considered to be a primary measure for carbon mitigation 
strategies and there is a critical need for assessment and monitoring of forest extent and 
biomass at multiple scales using ground and space-based protocols. Satellite-based 
monitoring of deforestation is largely proven technically, but the establishment and application 
of operational forest cover monitoring systems has a long way to go in most of the HKH 
countries. The use of geospatial information systems remains at an early stage due to the lack 
of a uniform and consistent methodological framework and varying capacity within different 
countries. At present, degradation assessments and monitoring focusing on forest biomass are 
generally performed through community- and state-owned ground-level monitoring systems. 



5

1 – Multi-Scale Forest Biomass Assessment of the HKH Region – Scope and Challenges of Geospatial Applications

The diverse forestry initiatives in the region require methodologies and approaches to bring 
value addition to geospatial systems (remote sensing and in-situ measurements) in order to 
meet biomass assessment and mitigation compliance procedures, and to support uncertainty 
control and seamless scaling up and integration into sub-national and national frameworks. 
This paper describes the available geospatial datasets and models relevant for the region; the 
current status of assessment levels and needs at HKH regional, national, and local levels; and 
areas of research to strengthen geospatial applications for multi-scale biomass assessment.

Forest Sampling and Biomass Estimation: Data Requirements 
and Models
The precise estimation of forest biomass depends on efficiency at three stages of the 
quantification process: design, estimation, and inference. The design stage means selecting 
the design for data gathering; the estimation stage involves selecting and using estimators for 
the parameters of interest, i.e., population means and totals; and the inference stage analyses 
the accuracy of these estimators, i.e., calculation of standard errors and confidence levels. In 
natural forested ecosystems, selected features are typically identified by their location. Thus 
forest biomass sampling needs a spatial perspective: sampling in space. There are two 
scientifically based approaches for sampling and extrapolating from a sample to an entire 
population: design methods and model-based methods. The principle difference between 
them lies in the source they use for randomness. 

Design-based estimation: Geospatial data and methods

In classical design-based sampling theory, the source of randomness is the probability 
introduced by the sampling design to the various subsets of a population. Inference rests on 
the stochastic structure introduced by the sample selection. Hence one of the important ways 
of enhancing the efficiency of design is to develop a reliable stratification of a complex 
population and optimally sample subpopulations. Satellite remote sensing provides precise 
stratification in terms of forest crown density, forest types, communities, and species formations 
which can form the basis for reducing the strata variance and making precise estimates. This 
becomes more relevant in the context of the high degree of variability in spatial distribution of 
vegetation types across the HKH region. Spatial explicitness in the estimates can be brought 
out at the desired scale and accuracy using a geographical information system (GIS) by 
accounting for the strata proportions and value of the category of interest per unit area for a 
given strata. However, the resolution of spatial explicitness depends on the details of 
stratification and intensity of ground sampling. 

Different forest types vary significantly in terms of the ratio of below and above ground 
biomass, annual increment, and biomass density, which determine the standing biomass levels. 
Kaul et al. (2010) have described how forest type information was used in different studies 
related to the assessment of forest carbon pools in India. Precise delineation of the boundaries 
of the groups of different types, single species formations, and mixed species formations, offer 
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a unique opportunity for developing spatially balanced sampling designs, improving the 
precision of the field sampling, and attributing appropriate biomass expansion factors (BEF) at 
the national, state, or bioclimatic zone level to improve the precision of the estimates.

Spatially explicit forest type products suitable for use at HKH regional level are available as 
open-source databases from global land cover and vegetation products (Annex, Table A1), 
and spatially explicit forest type databases using satellite and ground-based information 
suitable for use in national and sub-national level biomass estimations exist for China and 
India (Annex). While significant information on forest composition exists from ground surveys 
in the other countries in the HKH region, there is a lack of spatially explicit forest type 
databases that can be used for forest biomass estimation and management.

The relationship between forest crown cover and biomass is strongly established and has been 
widely used at different scales. The forest crown density (percentage) is delineated using widely 
available medium resolution satellite data and used as a stratification input for ground 
inventory in estimations at national and sub-national levels. The different forest cover 
parameters available as open-source products and relevant for biomass estimation at different 
scales are presented in the Annex (Table A1). The crown projected area (CPA) delineated 
using very high resolution satellite data has been found to provide reliable information on 
forest basal area and the number of trees at forest stand level. Several studies have been 
published using this technique across different parts of the HKH region at the research level; 
the approach needs to be integrated in regular operational sub-national and local level 
assessments. Several national and sub-national biomass inventories over different parts of the 
HKH region have been developed using design-based models with remote sensing data.

Model-based estimations: Geospatial data and methods

Forest structure and biomass often exhibit nonlinear variations across space and variable 
interactions across temporal and spatial scales. Hence, the traditional methods of uniform 
extrapolation of field-based sample biomass estimates over larger areas suffer from a large 
uncertainty. In addition, spatially explicit estimates can potentially provide good insights for 
carbon monitoring, leakage, additionality, and prediction of biomass over time, as a function 
of change due to land cover and land use. With the advent of availability of multi-resolution 
satellite data, powerful data mining, and self-learning algorithms, there has been a paradigm 
shift from simple area-based extrapolation methods to model-based extrapolation. 

In the model-based approach, the inference rests entirely upon the validity of the model 
describing the real world. All the randomness in this inference is due to the population and not 
the sampling method, as in the design-based approach. Where the design-based approach 
requires independent selection of units, the model-based approach considers the 
independence of the sampling units, and thus spatial correlations between the sampling units 
need to be taken into account. Even when models are used in the design-based approach, the 
validity of inference is ensured by the sampling design and not by the validity of the model.
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In this context, remote sensing based spatial information, geostatistical tools, and non-
parametric tools provide an effective means to develop robust models. Remotely sensed 
reflectance data based on the physiognomy, composition, and phenology of vegetation are 
used as a proxy to estimate the biomass. The reflectance regulated by physiognomy and 
composition is understood using high resolution satellite data, and the phenology is quantified 
using high temporal resolution and medium spatial resolution satellite data. The model- 
based approaches relate the spatial variability of forest spectral reflectance across each unit 
(pixel) of the remotely sensed image with field-based biomass, and develop a model that 
associates the biomass value for each pixel. This results in development of spatially explicit 
biomass as a function of the resolution of the satellite data used, hence the model can be 
developed from local to regional and national scales. As a result of these advantages, 
estimation of forest volume and biomass using satellite reflectance-based models has recently 
been drawing attention. 

Qingxi and Feng (2003) used a multi-regression equation and neural network model to 
estimate the forest biomass on the southern side of the Xiaoxing’an Mountains. The model 
was established using TM imagery, together with 232 plots of forest inventory data, including 
environmental and biological factors, to develop the regression equation. Using forest 
inventory data for three inventory periods (1984–1988, 1989–1993, and 1994–1998) and 
synchronous NDVI (Normalized Difference Vegetation Index) data, Piao et al. (2005) 
developed a satellite-based approach for estimating China’s total forest biomass carbon 
stocks. Karna et al. (2015) developed a high resolution, species-specific crown projected area 
and diameter model to estimate forest carbon over mid-Himalayan tracts of Nepal. Several 
such models have also been presented in different articles in this publication. These 
techniques have an enormous potential to use multi-resolution data and develop multiphase 
sampling approaches to integrate local measurements at national scales.

Forest allometry

Information is needed on volume equations, biomass expansion factors, and specific gravity 
of wood for estimation of above and below ground biomass, assessing the commercial and 
non-commercial parts of biomass, and other calculations. Biomass expansion factors are 
used to convert stand volume to above ground biomass and account for non-commercial 
components such as branches, twigs, bark, stumps, and foliage. The IPCC, FAO, Forest 
Survey of India (FSI), and Forest Research Institute of India have been publishing extensive 
information on these parameters in the form of reports. As part of the National Carbon 
Project of India under the ISRO-GBP programme, an effort was made to develop a database 
with specific volume equations and general equations for 753 regional species based on 
Forest Research Institute and FSI publications. Specific gravity data have been collected for 
16,400 species in Asia. The specific gravity of 86 fuelwood trees and shrubs growing on 
wasteland and degraded sites has been added. In Nepal, allometric equations are mainly 
available for community forests with low diameter at breast height (DBH); these equations can 
produce errors in biomass and carbon estimation for bigger trees. 
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Multi-scale Assessment Systems
HKH regional level assessment

One of the critical challenges in the transboundary HKH mountain system is managing 
carbon sequestration and biodiversity within and among geographic regions, and estimating 
the effects of ’natural‘ disturbances on carbon storage and flux. Scaling of biogeochemical 
processes to regions, continents, and the world is also critical for understanding feedback 
between the biosphere and atmosphere in the analysis of global change. It is necessary to 
have this type of understanding on the interplay between forest ecosystem structure and 
function at the HKH regional scale, considering the high degree of latitudinal and altitudinal 
control of climate over the region. Studies along these lines could provide scientific evidence 
on the patterns of biomass change and associated drivers to support transboundary 
management.

Some of the diverse geospatial datasets available on forest distribution and biomass levels 
developed using multi-sensor remote sensing data are listed in the Annex (Table A1). These 
datasets contribute to understanding of patterns and drivers of change at a regional scale. 
The spatial distribution patterns of forest carbon at different latitude and altitude and under 
different disturbance regimes over the HKH region are shown in Figures 1 and 2. The forest 
patches (high disturbance regime) were identified using landscape metrics at half degree 
resolution grid level. The carbon estimates were generated for the HKH region using the 
global carbon datasets from Kindermann et al. (2008) at 20 x 20 km resolution. 

Figures 1 and 2 show that the variation in forest carbon is greater along the latitudinal 
gradient than along the elevation gradient. This indicates a possible role of forests in land 
surface climatology along the latitudinal gradient. The high variability of patch forest carbon 
(disturbed regime) at different elevations may be due to anthropogenic and environmental 
heterogeneity, the total carbon in patch forest is also very small compared to forest overall. 
Understanding of the role of disturbance regimes on carbon sequestration in relation to 
landscape gradients could provide useful information for transboundary management at the 
landscape level.

Figure 3 shows the relationship between species diversity and level of basal area in deciduous 
forests in India in 25 bioclimatic zones. The graph shows three distinct groupings: in Group A, 
basal area increases with species diversity; in Groups B and C, basal area also increases with 
species diversity but at different threshold levels. These distribution patterns indicate how 
dominant species, bioclimatic and local topographic factors, and disturbance regimes control 
growth and species diversity. Sal mixed ecosystems in the lower elevation regions of the 
Himalayas have a high basal area but low diversity, whereas the mixed forest deciduous 
systems have a low basal area but high diversity. The spatial delineation of such zones using 
remote sensing and ground based data would help in demarcating zones that are more or 
less resilient to disturbance and climate change impacts.
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Figure 1:  Forest and patch forest area and carbon stocks at different  
latitudes in the HKH region

Figure 2:  Forest and patch forest area and carbon stocks at different  
elevations in the HKH region
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National and sub-national level biomass assessments

Currently, assessment of forest growing stock is done at national and sub-national levels. 
National growing stock estimates are developed using national-level multi-source forest 
inventories. In order to address sustainable forest management, the national forest inventories 
are made exhaustive in terms of parameters and data collected across the entire country. Most 
of the national inventories follow systematic sampling with fixed grids and proportional 
temporary and permanent sample points chosen for data collection. 

In view of this complexity, national inventories involve intensive field sampling and are thus 
time and cost intensive. The estimates are generally planned over a five-year time interval. 
However due to time and cost constraints, biomass assessments in most HKH countries, apart 
from China and India, have not been carried out at regular intervals. Equally, national-level 
growing stock estimates over a large country do not provide realistic sub-national scenarios, 
while the next lower level assessments done at the district level are designed with district-
specific requirements in terms of sampling design and time.

Low cost and rapid national and sub-national forest monitoring systems which can address 
deforestation and biomass changes are increasingly being developed. Such monitoring 
systems could provide consistent temporal databases that would enable estimation of 
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historical forest cover change, as well as an operational mechanism for monitoring forest at 
specified intervals on a regular basis. Such a coherent operational system would go a long 
way towards measuring and reporting changes in deforestation and/or forest degradation 
(biomass changes), in forest carbon conservation, and on carbon stock enhancement or 
reduction activities for GHG inventories and forest reference emission level estimates.

The contribution of geospatial approaches in developing low cost and rapid forest monitoring 
systems in the HKH region is immense. Forest cover monitoring is carried out operationally at 
regular intervals in China and India using remotely sensed satellite data. The International 
Centre for Integrated Mountain Development (ICIMOD) is developing harmonized time series 
forest cover databases and establishing operational systems for forest cover monitoring in 
association with the remaining countries under the NASA supported SERVIR-Himalaya 
initiative. However, efforts to develop monitoring systems for low forest biomass as a proxy for 
forest degradation still have a long way to go.

The studies carried out over China and India to develop satellite reflectance-based biomass 
models are also worth mentioning. Piao et al. (2005) developed a satellite-based approach 
for estimating China’s forest total biomass carbon stocks using forest inventory data for three 
inventory periods, 1984–1988, 1989–1993, and 1994–1998, together with synchronous 
satellite based NDVI (Normalized Difference Vegetation Index) data. Region-specific spectral 
models are being developed across India as part of the ISRO National Carbon Project. The 
remote sensing models initially depend on more intensive ground data for model calibration 
and validation. The standardized models then provide spatially explicit biomass estimates 
based on reflectance data perceived as a function of change in land cover class and physical 
growth of forests. 

These kinds of models have greater relevance where forest undergoes dynamic changes due 
to deforestation, reforestation, and afforestation under different anthropogenic interventions. 
Intensive ground data and high resolution satellite-based quantification of sites of dynamic 
change, followed by synoptic coarse scale assessment at a landscape scale and integration of 
the two scales of information to develop a national level framework for biomass assessment, 
could be explored as the basis for a cost and time effective national level monitoring system. 
Figure 4 shows a conceptual framework of this type which is being tested in Nepal.

Local scale assessments

Community forest management has been increasing in the HKH region as a process for 
sustainable management of forest resources. The success of community forest management 
lies in the fact that the local people receive tangible benefits from the conservation efforts they 
make. Tangible benefits are particularly clear from programmes like those under the Clean 
Development Mechanism and Reducing Emissions from Deforestation and Forest Degradation 
(REDD+). Effective monitoring of conservation efforts and their results has become a mainstay 
for payment mechanisms, and evolving REDD+ monitoring, reporting, and verification (MRV) 
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as a cost and time effective, locally implementable mechanism has become a challenge. The 
synergistic use of local ground measurements and adoption of low cost geospatial systems to 
develop synoptic scale of understanding offers a potentially viable system to be tested. In the 
following, we describe our experience of local scale monitoring of pilot REDD+ sites in Nepal.

Ground based participatory monitoring of REDD+ project sites

Since 2009, ICIMOD and partners Federation of Community Forestry Users Nepal 
(FECOFUN) and Asia Network for Sustainable Agriculture and Bioresources (ANSAB) have 
been implementing a pilot REDD+ project in collaboration with local communities in three 

Figure 4:  Multi-scale national assessment framework
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watersheds in Nepal covering more than 10,000 ha of forested area under community 
management. This pilot project, funded by the Norwegian Agency for Development 
Cooperation (Norad), looked at why and how a community can be involved in MRV. 

The pilot project facilitated a sub-national level MRV system in which monitoring 
responsibilities were devolved to local communities through a participatory method with an 
opportunity to seek guidance and supervision from the district forest office (DFO). MRV is the 
single most important activity for performance-based forest management and determines the 
scale of payment and incentives. Community-based monitoring is a data source for MRV 
(Danielsen et al. 2011). The involvement of local communities in forest monitoring promotes 
a feeling of ownership, and motivates people to take on REDD+ responsibilities with 
performance-based forest management. 

The project developed forest carbon stock measurement guidelines following IPCC 2006 
Good Practice standards, and trained and supported community forest user groups to carry 
out forest measurements. Other authors have noted that local MRV may be cheaper than, and 
as accurate as, national-level alternatives (Puliti 2012) and that collecting data on their own 
forests engages local communities and reduces the costs of technology and experts (Dangi 
2012). The communities in the project proved able to measure stock using standard forest 
inventory methods; mapping this methodology was tried, and shown to work, in several 
countries including India, Tanzania, Senegal, and Papua New Guinea. The communities 
carried out diameter measurement, boundary delineation, and species identification in 
permanent monitoring plots laid down at the project sites more effectively than outside 
professionals, and their involvement in monitoring activities also enhanced transparency  
(IGES 2012). 

Low cost scientific tools: The potential of geospatial systems

The requirements in the REDD+ MRV process such as completeness, consistency, and 
correctness depend on spatial explicitness of the given observation or estimate from which 
they are developed. Plot-based low intensity ground monitoring has a limited scope to address 
certain critical components of community forest programmes such as additionality, leakage, 
and persistence, as such changes need to be evaluated at the landscape scale. Thus it is 
helpful to complement the limited permanent field plot-based carbon monitoring with more 
spatially explicit forest structure and biomass based monitoring using multi-resolution remotely 
sensing data.

Time series satellite data at 1 m resolution can provide information on detailed changes in 
crown size, number of crowns, crown overlap function, crown shadow, and crown gaps, and 
such satellite images are freely available through Google Earth and very low cost Indian 
satellite systems. Figure 5 shows some typical results for change in crown number over time. 
The monitoring of forest canopy morphology using such data could provide meaningful 
information on degradation or improvement of forest. CPA–basal area models using very high 
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resolution data are also very useful for predicting basal area and biomass over an entire 
project site to quantify the dynamics of change even outside the permanent monitoring plots. 

Pilot studies over selected sites have proven the usefulness and scientific feasibility of using 
geospatial data to provide a low cost monitoring system. The results are presented in another 
paper in this volume (Gilani et al. 2015). Efforts are being made to develop easily readable 
and understandable value-added geospatial products, and to carry out capacity building of 
local users in the use of such products in participatory forest monitoring.

Emerging Research Areas and Challenges
Enhanced forest biophysical data generation

The key challenges in regional and national level forest carbon estimation include optimizing 
field sampling, developing spatially consistent estimations, controlling uncertainty due to 
errors from allometry, sampling design, ensuring the quality of predictor and response 
variables, and using robust models for extrapolation. Remote sensing of forest biomass, which 
is directly correlated with carbon stored in forests, holds one of the keys to addressing these 
challenges at different scales. Since biomass is a three-dimensional metric, precise estimation 
requires biophysical measures addressing horizontal (e.g., canopy density/cover) and vertical 
(e.g., canopy height) structural characteristics of the vegetation. The availability of high 

Figure 5:  Change in tree crown size over time
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temporal large swath optical sensors like MODIS, SPOT, and AWiFS have enabled 
understanding of horizontal vegetation structure and the relationship with above ground 
biomass using parametric and non-parametric models. However, these models are 
constrained by the large volume of field inventory data required for training the model, and 
the availability of repeat measurements for time domain biomass assessments. 

During the last decade, the scope for generating more biophysical information in the 
horizontal and vertical domains and estimating biomass has improved enormously due to the 
launch of very high resolution optical sensors, and airborne and space-borne microwave and 
Lidar systems. Very high spatial resolution optical systems have the potential to provide details 
on canopy morphology which can be related to biomass. Airborne microwave and Lidar 
systems have been used across the world to retrieve stand height and estimate biomass. 
Saatchi et al. (2011) prepared biomass carbon estimates over three tropical continents using 
tree height information based on GLASNOST and optical temporal metric information based 
on MODIS using data mining models. It is generally expected that measurement of above 
ground biomass (AGB) will become dominated over the next five years by methods that 
combine radar, Lidar, and optical data, which can provide spatial consistency in the estimates 
and optimize field inventories. The open-source satellite data currently available, their use, 
and comparative assessment in terms of cost, are summarized in the Annex (Tables A2, A3). 

Uncertainty assessment and control

The uncertainties in assessing biomass and change can be grouped into three classes: spatial 
characterization, temporal characterization of forest cover and standing biomass, and use of 
precise ground-based forest allometric databases. Because of the high degree of spatial and 
temporal variability in rainfall, topography, and biotic disturbances, both forest type and 
standing biomass differ appreciably across space. Any national level estimate suffers at times 
from inaccuracy because of the inadequacy in accounting for spatial heterogeneity in terms of 
forest condition (crown density), forest type, and standing biomass. Uncertainty in important 
variables in the ground-based data such as biomass expansion factors, specific gravity of 
wood, annual increment, and wood extraction (fuelwood, thinning, logging, and others) also 
induce a large uncertainty in forest carbon stock assessment. 

The challenges in carbon pools and flux estimates lie in the extent to which the degree of 
uncertainty can be reduced. The errors that can accumulate include: measurement errors at 
plot level; errors due to allometric relationships; sampling errors; and model prediction errors. 
Currently, carbon pool estimates rely on field measurements and are subject to measurement 
uncertainties. A shift towards multi-sensor remote sensing based biomass estimations with 
optimal field sampling is urgently needed. Remote sensing and ground-based Lidar systems 
help in intensive site characterization to develop models for biomass estimation and validation. 
These approaches would facilitate production of periodic biomass assessments using satellite 
data and limited ground information and reduce uncertainty. With the advent of the availability 
of geospatial tools and digital databases, spatially balanced field sampling designs could be 
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evolved using multiple layers of information to reduce errors in sampling. Currently, design-
based models are used to develop regional and national estimates. Spatially disaggregated 
model-based estimation methods would help in optimizing errors during scaling up. 

Conclusion
The use of diverse open-source data and tools in the HKH region for multi-scale biomass 
monitoring needs to be strengthened both in scientific terms and in improved capacity 
building. Development of scientific understanding on the relationship of forest biomass to 
different ecosystem processes at a regional level using consistent geospatial datasets will help 
support transboundary management. The increasing integration of community-based field 
biomass monitoring systems into national monitoring systems through a geospatial framework 
for scaling up will facilitate the optimization of national level reference emission level 
inventories. Value-added remote sensing products that can be understood by local level 
stakeholders will help to reduce the transaction costs involved in the REDD+ MRV mechanism. 
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Table A1: Useful open-source geospatial products for biomass estimation

Geospatial Product Satellite Scale Resolution 
(m)

Use

Land cover MERIS Regional 250
Vegetation stratification-forest type, 
forest crown cover

Land cover MODIS Regional 1,000
Vegetation stratification-forest type, 
forest crown cover

VCF Fields MODIS Regional 500
Works as proxy of biomass 
stratification

Ecoregion map MODIS Regional 10,000  

Deforestation MODIS Regional 500
Useful in estimation of temporal 
biomass changes

Phenology MODIS Regional 1,000 Useful in biomass estimation models

LAI MODIS Regional 500 Useful in biomass estimation models

Stand height GLASNOST Regional 500 Useful in biomass estimation models

Biomass MODIS,GLASNOST Regional 0.5x0.5 Useful in regional scale analysis

Deforestation Landsat TM National 30
Useful in estimation of temporal 
biomass changes

Land cover Landsat TM National 30
Forest stratification and field design 
development

Land cover change Landsat TM National 30
Useful in estimation of temporal 
biomass changes

Annex
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Table A3:  Cost comparison – satellite data

  Satellite/Sensor Resolution (m) Swath  
(km)

Price per sq.km  
(USD)

Method 1
 
 

LISS-IV 5 70 (192 USD) 0.15*

CARTOSAT -1 2.5 27 (129 USD) 1.02*

CARTOSAT -2 1 9.6 (104 USD)  <1*

Method 2
 
 
 
 

RapidEye 5 77 1.28*

IKONIOS 1   15

GeoEye-1 0.5 15.2 40

WorldView-2 0.5 16.4 32

QuickBird 0.5 16.5 40

* Archive data price, may increase for new acquisitions 

Table A2:  Geospatial open-source datasets for biomass estimation

Open Data Satellite Sensor Resolution 
(m)

Interval Scale Output

Multispectral reflectance 
data
 
 

MODIS 500 Fortnight Regional Forest cover, gap fraction,

MERIS 500   Regional Broad types

MISR 500   Regional  

Vegetation index
 
 

MODIS 500 Fortnight Regional Seasonality, annual growth

MERIS 250   Regional  

MISR 500   Regional  

Multispectral reflectance 
data

Landsat TM 30 Month National Forest crown density, type, 
seasonality

Multispectral reflectance 
data

IRS AWiFS 56 5 days National  

Very high resolution 
satellite data
 

Google Earth 1 > 1 year Local Crown projected area, age 
class

Bhuvan 2.5 > 1 year Local Stand height

Allometric data
 
 

IPCC       Volume/biomass 
equations, BEFs

FAO        

Geowiicki        

Terrain data
 
 

SRTM 90     Elevation, slope, and 
aspect information

ASTER 30      

CARTODEM 10      
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Forests play an important role in the global carbon cycle as carbon sinks in the terrestrial 
ecosystem. The carbon sequestered or stored in forest trees is mostly referred to in terms 
of the biomass. Estimating the amount of forest biomass is crucial for monitoring the 

amount of carbon that is lost or emitted during deforestation, and also provides an idea of a 
forest’s potential to sequester and store carbon. The above ground biomass of the forest 
ecosystem at the national level is mainly estimated using allometric equations. Biomass 
equations for this have been developed for important species in all the physiographic zones in 
India. This article aims to summarize the methods used for estimating above ground biomass 
and soil organic carbon stocks in the Indian forest ecosystem. Total soil organic carbon stocks 
of 4,327.36 million tonnes and 4,680.25 million tonnes were estimated for 1995 and 2007, 
respectively. The estimate shows that due to the increase in forest cover, soil in Indian forests 
acted as a net sink for 352.89 million tonnes of carbon over the assessment period.

Keywords: above ground biomass, biomass estimation, biomass equation, soil organic 
carbon, forests

Introduction
India has stabilized its forest and tree cover, which covers about 24% of the total geographical 
area of the country. Forests play a vital role in the social, cultural, economic, and industrial 
development of the country as well as in maintaining its ecological security. They also provide 
great opportunities for adapting to climate change by increasing the resilience of people and 
ecosystems. Forests store a significant amount of carbon in the vegetation biomass, litter, 
dead wood, and soil, and this has a major role to play in climate change adaptation and 
mitigation. Soil carbon is the largest terrestrial carbon pool and plays a very important role in 
the carbon cycle. Biomass assessment is important for national development planning, as well 
as for scientific studies of ecosystem productivity and carbon budgets (Pandey et al. 2010; 
Parresol 1999; Zheng et al. 2004; Zianis and Mencuccini 2004). The importance of 
terrestrial vegetation and soil as significant sinks of atmospheric CO2 and its other derivatives 
is highlighted under the Kyoto Protocol (Wani et al. 2010). Estimation of the accumulated 
biomass in the forest ecosystem is important for assessing the productivity and sustainability of 
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forest and enables us to estimate the amount of carbon dioxide that can be sequestered by 
forest from the atmosphere. Accurate forest biomass estimates are important for many 
applications such as timber extraction, and tracking changes in forest carbon stocks and the 
global carbon cycle. Forest biomass can be estimated through field measurements and 
remote sensing and GIS methods. Reliable estimation of total biomass for standing trees and 
forests and for components such as stem wood, stem bark, living and dead branches, foliage, 
stumps, and roots are all important for forest carbon assessment. Destructive harvesting of 
forest trees to obtain biomass estimates is not always possible because it is time-consuming 
and there is high risk of uncertainty. The most common approach is to obtain biomass 
estimates at standing level. Biomass is a function of diameter at breast height, tree height, 
and wood density at a given location. However, the contribution of these variables to the 
above ground biomass differs from site to site and for succession stages, disturbance levels, 
species composition, and others. Several attempts have been made to estimate biomass 
involving parameters such as DBH, tree height, and wood density or specific gravity with 
different regression equations; a strong relationship has been identified between biomass and 
these parameters (Rai and Proctor 1986).

Tiwari and Singh (1984) described a method for mapping biomass using black-and-white 
aerial photographs and ground survey data in a case study in the Kumaun Himalaya. 
Although, biomass inventories could be made using aerial photographs with minimum 
non-destructive sampling, it was impossible to identify individual subordinate species from the 
aerial photographs. Aerial coverage also doesn’t provide sufficient data for generalizing the 
highly heterogeneous forest ecosystem across the country (Haripriya 2000). Rai and Proctor 
(1986) carried out a study in the Western Ghats to estimate the above ground tree biomass 
using harvesting and derived a regression equation relating the biomass fraction with the log 
transformation of DBH. Lodhiyal and Lodhiyal (2003) also carried out a study in the Bhabar 
forest in the central Himalayas to estimate biomass in 5-, 10- and 15-year old Dalbergia 
sissoo plantations using a selective harvesting technique. Twelve trees in each forest were 
harvested, and regression equations for each component were developed for biomass 
estimation. Mani and Parthasarathy (2007) developed an allometric equation to estimate the 
above ground biomass in the tropical dry evergreen forest of peninsular India. Mohanraj et al. 
(2011) used this equation to estimate the biomass and carbon stocks of different forest types 
in the Kolli hills in Tamil Nadu. 

Many studies are also being carried out in India to estimate forest biomass and forest carbon 
stocks using remotely sensed data and GIS techniques. Aspect (direction of slope with respect 
to the sun), and slope (angle of geographical terrain) were observed to affect the biomass 
estimation of dry tropical forest (Bijalwan et al. 2010). Ramachandran et al. (2007) conducted 
a pilot study to estimate the carbon stocks in the natural forests of the Eastern Ghats of Tamil 
Nadu using GIS techniques and satellite data from IRS LISS III. In another study by Kale et al. 
(2009), the potential of the forests in the Western Ghats to sequester carbon dioxide was 
estimated using ground-based observation in combination with satellite remote sensing data 
from Landsat TM and IRS LISS III. Thakur and Swamy (2010) also estimated the forest biomass 
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of Barnawpara Sanctuary, Chattisgarh using remote sensing and ground data. They found a 
strong correlation between the C and N densities of the forest and NDVI and biomass. 

The first estimates of the woody growing stock in India’s forest were made by the Forest Survey 
of India (FSI) in 1995 using forest inventory data (1965–1990), thematic maps, and forest 
cover data. Sheikh et al. (2011) further estimated the carbon storage in India’s forest biomass 
in 2003, 2005, and 2007 using secondary data on growing stock (ISFR 2003, 2005, 2009) 
combined with satellite data. 

The values reported for total forest soil organic carbon stocks in India range from 23.4 to 
47.5 Pg C (Dadhwal and Nayak 1993; Ravindranath et al. 1997; Dadhwal et al. 1998; 
Velayutham et al. 2000). Jha et al. (2003) reported that the Northeast states of India have a 
forest soil organic carbon store of 218 t carbon per hectare; a total of 3.73 million tonnes of 
soil organic carbon was estimated to be stored in the soil of rubber plantations in the 
northeastern region (Dey 2005). Chhabra and Dadhwal (2005) estimated the total soil 
organic carbon pool in Indian forests at 4.1 Pg C in the top 50 cm layer and 6.8 Pg C at one 
metre soil depth. As per FAO estimates (FAO 2005), the total forest carbon stocks in India 
increased over the 20 years from 1986 to 2005, and amount to 10.01 Gt carbon. IISc 
(2006) projected that carbon stocks would increase from 8.79 Gt carbon in 2006 to 9.75 Gt 
carbon in 2030 (IISc 2006), with forest cover becoming more or less stable, and new forest 
carbon accretions coming from the current afforestation and reforestation programme 
(Ravindranath et al. 2008). In India, CO2 emissions from forest diversion or loss are largely 
offset by carbon uptake due to forest increment and afforestation. Many authors have 
concluded that in recent times, Indian forests overall have been a small source of carbon, with 
some regions acting as small sinks (Ravindranath et al.1997; Haripriya 2003; Chhabra and 
Dadhwal 2005; Ravindranath et al. 2008). 

This article summarizes the methods used in the national forest inventory for estimating above 
ground biomass and soil organic carbon stocks in the forest ecosystem in India, and presents 
some recent results.

Methodology
Forest inventory 

The national forest inventory uses a two stage sampling design. In the first stage, the country is 
divided into 14 physiographic zones based on physiography, climate, and vegetation: the 
Western Himalayas, Eastern Himalayas, North-Eastern Ranges, Northern Plains, Eastern 
Plains, Western Plains, Central Highlands, North Deccan, East Deccan, South Deccan, 
Western Ghats, Eastern Ghats, West Coast, and East Coast. Then 10% of all districts are 
selected for a detailed forest inventory, with the number in each zone determined in 
proportion to the size of the zone, and then districts selected at random within each zone. In 
the second stage, the selected districts are divided by latitude and longitude to form the 
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second stage sampling unit, and plots are laid out systemically in forest areas as follows. For 
each selected district, the Survey of India 1:50,000 topographic sheet is divided into 36 grids 
of 2.5’ x 2.5’ (minutes); each of these is further divided into four sub-grids of 1.25’ x 1.25’ to 
form the basic sampling units, and two of these are selected at random in each grid. The 
selected sub-grids form the sample. The intersection of the diagonals in the sub-grid is taken 
as the position for the centre of the sampling plot. A plot of 0.1 ha area is laid out on the 
ground for each plot falling in a forest area; all trees of DBH 10 cm and above within the plot 
are measured. Soil and forest floor data are collected from sub plots of 1 x 1 m laid out at 
each corner of the 0.1 ha plot. Data on herbs are collected from four square plots of 1 x 1 m, 
and shrubs (including regeneration) from four square plots of 3 x 3 m. These plots are laid out 
50 m from the centre of the 0.1 ha plot in all four directions along diagonals in non-hilly 
areas and along trails in hill areas. In hill areas, plots are selected at random 2–10 m away 
from the trail on either side. 

Above ground biomass 

FSI has developed biomass equations for the important tree species in all the physiographic 
zones for estimating above ground biomass of small wood from trees with DBH 10 cm or 
more, biomass of foliage of trees with DBH 10 cm or more, biomass of small wood from trees 
with DBH less than 10 cm, and foliage of trees with DBH less than 10 cm. The biomass 
equations developed by FSI can be used to estimate the above ground biomass of the 
important tree species.

Soil organic carbon 

Soil samples are collected from all the major forest types of India, classified as described by 
Champion and Seth (1968). Sub-Alpine, Moist Alpine Scrub, and Dry Alpine Scrub have been 
grouped into Sub-Alpine and Alpine Forest as no area statistics are available for these forest 
types. Thus soil organic carbon (SOC) data are collected for 14 major forest types. Soil 
samples have now been collected from almost every eco-region in the country that has forest 
cover, as well as from different density classes. Soil samples have also been collected from 
non-forest areas close to forest to enable estimation of the loss of SOC due to land 
conversion. A total of 657 soil samples have been collected and analysed; 556 from forest 
areas and the remainder from non-forest areas. The methodology includes reworking of 
NATCOM-I (First National Communication) forest soil carbon estimates by including more 
national datasets for soil carbon, including location and associated forest types, so as to get a 
reliable figure based on sources in the literature. These datasets have been harmonized and 
modified into a spatially distributed format according to the forest types of Champion and 
Seth (1968) so that they can be compared with current estimates. 

Three sampling points were selected as replicates in each sampling unit. At each point, one 
soil sample was collected at a depth of 0–30 cm and one sample was collected from a 
non-forested area (agricultural) close to the major forest types. Forest floor litter was removed 
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from an area of 0.5 x 0.5 m at the sampling point and a 30 cm deep pit was dug out with 
area 30 x 50 cm. Soil was scraped from three sides of the pit over the whole depth from 
0 to 30 cm, bulked, mixed thoroughly, and any gravel removed. A quarter of the bulked soil 
sample (approximately 500 g) was removed and placed in a polythene bag which was tightly 
closed with thread, and a second quarter was taken from the other side of the sample and 
stored in the same way. The soil samples were dried at room temperature in the laboratory. 
After drying, the samples were ground and sieved through a 100 mesh (2 mm) sieve. Soil 
organic carbon was estimated in the sieved samples using the standard method given by 
Walkley and Black (1934). The bulk density of the soil sample was determined using a core 
sampler method. The soil organic carbon stock was calculated from the formula given by 
Batjes (1996).

Results and Discussion

Estimation of the accumulated biomass in a forest ecosystem is important for assessing the 
productivity and sustainability of the forest. It gives an idea of the potential amount of carbon 
that could be emitted in the form of carbon dioxide when forests are cleared or burned, and 
helps in estimating the amount of carbon dioxide that could be sequestered from the 
atmosphere by a forest. Accurate assessments of forest biomass are needed in many 
applications. Forest biomass can be estimated through field measurement and remote sensing 
and GIS methods. There are two main methods of field measurement: destructive and 
non-destructive.

The destructive or harvest method is the most direct method of estimating the above ground 
biomass and carbon stock in a forest ecosystem. It involves harvesting all the trees in a known 
area and measuring the weight of the different components of each tree, like the tree trunk, 
leaves, and branches, and weights of samples of each after they are oven dried. This method 
of biomass estimation is limited to a small area or to small tree samples. The method enables 
accurate determination of the biomass for a particular area, but it is time and resource 
consuming, strenuous, destructive, and expensive, and is not feasible for large scale analysis. 

The non-destructive method estimates the tree biomass without felling. The DBH of all trees is 
measured together with tree height. Standard values from published sources were used for the 
wood density. The woody volume per plot is estimated using volume equations and the 
biomass calculated using allometric equations. Since these methods do not involve felling, it is 
not easy to validate the reliability of the results. The allometric equations are developed and 
applied to forest inventory data to assess the biomass and carbon stocks of forests. 

The Forest Survey of India (FSI) recently developed equations for estimating the biomass of the 
important species in the different physiographic zones in India, with separate biomass 
equations for the main stem, small wood, and foliage of trees with DBH 10 cm or more, and 
DBH less than 10 cm. The important species in the different zones are listed below.
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Western Himalayas: Pinus roxburghii, Quercus leucotrichophora, Rhododendron arboreum, 
Quercus semicarpifolia, Lyonia ovalifolia, Cedrus deodara, Abies pindrow, Shorea robusta, 
Mallotus philippensis, Tectona grandis, Acacia catechu, Machilus spp., Myrica esculenta 

Eastern Himalayas: Quercus spp., Rhododendron spp., Macaranga spp., Alnus nepalensis, 
Rhododendron arboreum, Michelia spp., Ficus spp., Terminalia spp., Machilus spp., Eurya 
japonica 

North-Eastern Ranges: Schima wallichii , Macaranga spp., Shorea robusta, Syzygium cumini, 
Careya arborea, Tectona grandis, Bauhinia spp., Toona ciliata, Ficus spp., Holarrhena 
antidysenterica 

Northern Plains: Shorea robusta, Mallotus philippensis, Tectona grandis, Acacia catechu, 
Eucalyptus spp., Syzygium cumini, Dalbergia sissoo, Trewia nudiflora, Holarrhena 
antidysenterica, Diospyros melanoxylon, Bombax ceiba, Butea monosperma 

Eastern Plains: Shorea robusta, Lagerstroemia speciosa, Amoora wallichii, Schima wallichii, 
Careya arborea 

Western Plains: Anogeissus pendula, Wrightia tinctora, Boswellia serrata, Lannea 
coromandelica, Butea monosperma, Acacia lenticularis, Prosopis juliflora, Anogeissus latifolia, 
Prosopis cineraria, Acacia spp., Diospyros melanoxylon, Bauhinia spp., Holoptelea integrifolia, 
Salvadora oleoides, Acacia catechu, Holarrhena antidysenterica

Central Highlands: Acacia catechu, Anogeissus pendula, Boswellia serrata, Lannea 
coromandelica, Butea monosperma, Diospyros melanoxylon, Anogeissus latifolia, Terminalia 
crenulata, Mitragyna parviflora, Wrightia tinctoria, Zizyphus xylopyrus, Aegle marmelos, Acacia 
lenticularis, Madhuca latifolia, Miliusa tomentosa, Flacourtia indica

North Deccan: Tectona grandis, Terminalia tomentosa, Chloroxylon swietenia, Anogeissus 
pendula, Butea monosperma, Lannea coromandelica, Diospyros spp., Lagerstroemia 
parviflora, Buchanania lanzan, Madhuca longifolia, Acacia catechu, Gardenia resinifera, 
Wrightia tinctoria, Cleistanthus collinus, Syzygium cumini, Zizyphus xylopyrus, Aegle marmelos, 
Bauhinia variegate

East Deccan: Shorea robusta, Terminalia tomentosa, Buchanania lanzan, Lagerstroemia 
parviflora, Diospyros melanoxylon, Lannea coromandelica, Anogeissus latifolia, Madhuca 
indica, Chloroxylon swietenia, Tectona grandis, Butea monosperma.

South Deccan: Tectona grandis, Anogeissus latifolia, Terminalia tomentosa, Albizia amara, 
Chloroxylon swietenia, Dalbergia paniculata, Eucalyptus spp., Butea monosperma, 
Lagerstroemia lanceolata, Hardwickia binata, Wrightia tinctoria, Syzygium cumini.
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Western Ghats: Tectona grandis, Anoegeissus latifolia, Terminalia tomentosa, Holarrhena 
antidysenterica, Terminalia paniculata, Macaranga peltata, Syzygium cumini, Schleichera 
oleosa, Myristica malabarica, Artocarpus heterophyllus, Pinus petula, Lagerstroemia 
lanceolata, Olea dioca, Aporosa lindleyana, Palaquium ellipticum, Xylia xylocarpus, 
Acrocarpus fraxinifolius.

Eastern Ghats: Anogeissus latifolia, Pterocarpus marsupium, Xylia xylocarpus, Lannea 
coromandelica, Albizia amara, Terminalia tomentosa, Syzygium cumini, Protium caudatum, 
Tectona grandia, Buchanania lanzan, Semecarpus anacardium, Memecylon angustifolium, 
Eucalyptus globulus, Grewia, tiliaefolia, Albizia spp., Chloroxylon swietenia, Diospyros 
melanoxylon.

West Coast: Terminalia tomentosa, Tectona grandia, Terminalia paniculata, Anogeissus 
latifolia, Lannea coromandelica, Wrightia tinctoria, Bombax ceiba, Terminalia belerica, Xylia 
xylocarpus, Careya arborea, Bridelia retusa, Boswellia serrata, Acacia catechu.

East Coast: Anogeissus latifolia, Chloroxylon swietenia, Hardwickia binata, Lannea 
coromandelica, Terminalia crenulata, Albizia amara, Boswellia serrata, Pterocarpus 
marsupium, Zizyphus xylopyrus, Dalbergia paniculata, Grewia spp., Dolichandrone falcata, 
Grewia tiliaefolia, Tectona grandis, Sterculia urens, Diospyros spp., Wrightia tinctoria, Acacia 
sundra. 

Forest soil organic carbon stocks (SOC) were estimated for different forest types from the soil 
organic carbon density for that forest type and total area of forest type in 1995 and 2007. The 
results are shown in Table 1.The soil organic carbon stocks for 2007 were estimated by 
summing the stocks estimated for different forest types; the soil organic carbon stocks for land 
converted to forest were estimated using the value for soil organic carbon density of non-forest 
areas. Tropical Moist Deciduous Forest had the largest stores of carbon in soil (1,666 million 
tonnes), and Himalayan Dry Temperate Forest the least (3.85 million tonnes). The total soil 
organic carbon stock was 4,328 million tonnes in 1995 and 4,680 million tonnes in 2007. 
The results indicate that as a result of the increase in forest cover, the soil in Indian forests 
acted as a net sink for 353 million tonnes of carbon during the assessment period. 

The findings are consistent with the total soil organic carbon pools estimated in Indian forests 
by Chhabra and Dadhwal (2005). The estimation of soil organic carbon stock has 
considerable uncertainty due to various factors. An uncertainty of 8.6% is attributed to the 
number of soil samples taken for the different forest types, of 15.0% to the organic carbon 
estimation method used (Walkley and Black 1934), and 5.5% to the estimation in bulk density 
of soils. 

The carbon stocks in different forest carbon pools in India’s Himalayan states are shown in 
Table 2. 
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Table 1:  Estimated forest soil organic carbon stocks for 1995 and 2007

Forest type Soil organic carbon stock
(million tonnes)

Changes in soil organic 
carbon stock
(million tonnes)1995 2007

Himalayan Dry Temperate Forest 3.63 3.85 0.23

Himalayan Moist Temperate Forest 132.26 143.13 10.87

Littoral and Swamp Forest 28.03 30.02 1.99

Montane Wet Temperate Forest 121.23 130.92 9.69

Sub-Alpine and Alpine Forest 243.49 263.49 20.01

Sub-Tropical Broad Leaved Hill Forest 12.20 13.07 0.87

Sub-Tropical Dry Evergreen Forest 12.05 13.10 1.05

Sub-Tropical Pine Forest 130.83 141.55 10.72

Tropical Dry Deciduous Forest 1,453.64 1,572.38 118.74

Tropical Dry Evergreen Forest 12.09 13.06 0.96

Tropical Moist Deciduous Forest 1,539.73 1,665.65 125.91

Tropical Semi-Evergreen Forest 153.18 165.35 12.17

Tropical Thorn Forest 282.72 305.73 23.02

Tropical Wet Evergreen Forest 202.28 218.95 16.67

Total 4,327.36 4,680.25 352.89

Source: ICFRE 2013

Table 2:  Carbon stocks in different forest carbon pools in India’s Himalayan states

State Carbon stock in different carbon pools (‘000 tonnes) C stock 
(tonnes/ 
ha)Above 

ground 
biomass

Below 
ground 
biomass

Dead 
wood

Litter Soil Total

Arunachal Pradesh 234,110 52,489 3,753 16,080 656,444 962,876 142.07

Assam 44,543 10,240 1,050 5,411 107,680 168,924 61.10

Himachal Pradesh 63,436 16,718 525 2,367 78,178 161,224 112.20

Jammu & Kashmir 96,096 26,259 745 3,106 115,505 241,711 113.62

Manipur 26,125 8,545 503 3,828 99,152 138,153 80.86

Meghalaya 23,191 6,333 789 4,924 113,861 149,098 87.77

Mizoram 15,851 3,273 656 2,743 75,405 97,928 52.41

Nagaland 16,578 4,273 586 2,547 105,894 129,878 94.67

Sikkim 10,512 3,013 156 456 25,595 39,732 121.8

Tripura 14,142 2,909 515 1,595 39,756 58,917 72.25

Uttarakhand 106,354 27,499 1,255 5,655 144,927 285,690 116.88

Source: FSI n.d.
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Conclusion
Forests contain the largest carbon pool on earth. They act as a major natural source and sink 
of carbon and thus have the potential to be a major component in the mitigation of global 
warming and to play a major role in adaptation to climate change. Estimation of forest 
biomass and carbon stocks will enable us to assess potential carbon loss during deforestation 
as well as the amount of carbon that a forest can store when conserved. Although numerous 
studies have been carried out to estimate forest biomass and forest carbon stocks, there is still 
a need to develop robust GIS based methods to quantify the estimates for the forest 
ecosystem more accurately.
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T his paper provides an overview of the rapidly advancing geospatial technology now 
used for forest biomass assessment in Bhutan within the broader framework of national 
strategies and programmes. The forest biomass assessment uses data from the national 

land use land cover mapping activity as baseline information. The National Forest Inventory is 
also expected to provide data needed for estimation of forest biomass and carbon stocks. The 
paper describes the current practices and the proposed scope of the geospatial information 
system to be used for forest biomass based on the Readiness Preparation Proposal (R-PP) for 
Bhutan from 2013. Developing appropriate geospatial technology remains a challenge for the 
assessment of forest biomass in Bhutan.

Keywords: forest biomass assessment, Bhutan geospatial information system, national 
forest monitoring 

Introduction
Bhutan is a landlocked country in the eastern Himalayas lying between 88°45’ and 92°10’ E 
and 26°40’ and 28°15’ N and with a total geographic area of 38,394 km2. The elevation 
ranges from 200 masl in the south to more than 7,000 masl in the north, and the climate 
varies with altitude. The country is divided into 20 districts (dzongkhags, local government 
level), and 205 sub-districts (gewogs, grassroots level). The population in 2005 was 634,982, 
giving an overall population density of 16 persons per square kilometre; 69% live in rural 
areas and 31% in urban areas (NSB 2005). According to the Department of Forests and Parks 
Services, Ministry of Forest and Agriculture, 19,677 km2 of land (51% of the total area) has 
protected status, with 16,396 km2 within nine protected areas and 3,307 km2 in 12 biological 
corridors (areas set aside to connect one or more protected areas and conserved and 
managed for the safe movement of wildlife). Bhutan has four major river systems: the 
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Drangme Chhu; the Puna Tsang Chhu, also called the Sankosh; the Wang Chhu; and the 
Amo Chhu. The country is rich in natural resources. 

The Forest Department was one of the first government agencies in Bhutan to use a system for 
recording geospatial information. This paper provides an overview of the rapidly advancing 
geospatial technology now used for forest biomass assessment in Bhutan within the broader 
framework of national strategies and programmes. The paper also looks at the proposed 
REDD+ (Reducing Emissions from Deforestation and Forest Degradation) programme in 
Bhutan as a future opportunity, and describes the current practices and proposed scope of the 
geospatial information system to be used for forest biomass based on the Readiness 
Preparation Proposal (R-PP) for Bhutan from 2013. 

Current Basis for the Geospatial Information System for Forest 
Biomass Assessment in Bhutan
Land use land cover mapping 

Bhutan’s national land use land cover mapping exercises provide baseline information for the 
forest biomass assessment. 

In the 1960s and 1970s, Bhutan developed the first national forest classification map using 
analogue aerial photo interpretation and cartographic drawings. 

In 1993/94, the Land Use Planning Project (LUPP) mapped national land use and land cover 
using a digital remote sensing methodology based on panchromatic SPOT imagery from 
1989 with field verification (LUPP 1997). The land use polygons were digitized through visual 
interpretation of the SPOT satellite images and the results were recorded using GIS 
(geographic information system). Figure 6 shows the LUPP land use land cover map of Bhutan 
published in 1995. The LUPP classification described forest cover according to forest type and 
density class and was available in digital format. 

The LUPP was further refined in the Land Cover Mapping Project (LCMP) implemented from 
2008 to 2010 (NSSC 2010); the land classification system was revised in 2002 and 2009. 
LCMP used digital image processing of multispectral ALOS (Advanced Land Observation 
System) images (AVNIR-2) with 10 m resolution. The minimum accuracy was set at 85%. 
Figure 7 shows the LCMP 2010 land use land cover map of Bhutan. THE LCMP provided 
up-to-date and reliable spatial base data for forests and other land use.

Forest inventory

The land use land cover mapping exercises provide spatial information on forest cover 
according to forest type and are used as a base for estimation of forest statistics, including 
carbon stocks. Further initiatives by the Forest Department provide the detailed information 
needed for these estimations. The area data are complemented by ground assessments 

Figure 5:  Change in tree crown size over time
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Figure 6:  The LUPP 1995 land use land cover map of Bhutan

Figure 7:  The LCMP 2010 land use land cover map of Bhutan
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carried out through the Bhutan National Forest Inventory, which is designed to assess forest 
growing stock as a basis for planning for sustainable management of the forest resources. The 
National Forest Inventory is also being designed to provide estimates of forest biomass and 
carbon stocks. Under the National Forest Inventory , field measurements of tree data are 
carried out in 0.05 ha nested circular sample plots (12.62 m radius). Small trees and saplings 
(regeneration) are recorded in a sub-plot of 3.57 m radius; and data on other vegetation in a 
plot of 0.57 m radius. The variables required to determine forest understory carbon stock are 
measured in 5 m2 sample plots laid out 20 m southwest of the centre of the main plots. In the 
future, tree carbon stocks will be estimated using species-specific volume and mass equations 
determined using randomized branch sampling (RBS).

The Forest Department is also implementing a Tree Crown Cover (TCC) 2012 programme in 
partnership with the US Forest Service to map forest cover in Bhutan through identification of 
crown cover in satellite images. Figure 8 shows an initial output from the initiative.

Future Development of the Geospatial Information System for 
Forest Biomass Assessment in Bhutan
In 2011, Bhutan joined the UN-REDD Programme. The Watershed Management Division, 
under the Department of Forests and Park Services, Ministry of Agriculture and Forest, was 

Figure 8:  The 2012 tree crown cover map of Bhutan
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designated as the focal point for REDD+. A Readiness Preparation Proposal (R-PP) for Bhutan 
has been submitted but not yet approved (DOFPS 2013). Once the R-PP programme is 
accepted it will be necessary to implement a holistic forest information system for the country. 
The R-PP proposes that the Forest Department establishes a REDD+ Information System and 
Activity Registry. The information system will function as the national centre for REDD+ 
knowledge management for both local and international stakeholders. 

Bhutan plans to follow the UN-REDD National Forest Monitoring System (NFMS) strategy 
within the R-PP framework. This includes a satellite land monitoring system (SLMS) for 
a) monitoring of REDD+ activities, and b) generating activity data to feed into the national 
GHG inventory, which requires national analysis of land use change based on the IPCC 
categories and methodologies. 

In addition to the non-spatial information system, the Bhutan R-PP proposes a web-GIS portal 
for sharing of forest monitoring data and information at national and international levels. Any 
internet user will be able to view forest information through a GIS mapping interface, 
including forest area and types, statistics on deforestation, and forest governance structures.

Gaps in the geospatial information system 

There are a number of implementation gaps in the geospatial information system for forest 
biomass assessment in Bhutan. The overall methodology for the national forest monitoring 
system and satellite land monitoring system has yet to be developed. In addition, factors such 
as the density of major forest types, root to shoot ratios, and conversion factors for biomass to 
forest carbon, which are required for estimating forest biomass, still need to be determined. 

There are a number of ongoing activities that are potentially relevant for forest biomass 
assessment and forest monitoring, such as tree canopy mapping, National Forest Inventory , 
Forest Resources Potential Assessment, and randomized branch sampling, but linkages still 
need to be made between these initiatives and the geospatial forest information system. 

International linkages 

Bhutan, in collaboration with the International Centre for Integrated Mountain Development 
(ICIMOD), has developed a harmonized land cover classification system for Bhutan.  
This dataset could also provide a source for forest biomass assessment. In the Bhutan-
ICIMOD study, a change matrix was used to identify changes in terms of deforestation and 
reforestation or regeneration. There was a small change in ’forest to non-forest‘ from 1990 to 
2000, zero change between 2000 and 2010, and close to zero (-2 km2) over the whole 
period. The change in ’non-forest to forest‘ was more marked, with a net increase of 
1,174 km2 between 1990 and 2010, equivalent to an average annual increase of 59 km2  
or 0.2% (Gilani et al. 2015).
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The Forest and Agriculture Organization (FAO) Forest Resource Assessment (FRA) reported a 
constant annual 0.34% increase in Bhutan’s forest from 1990–2000, 2000–2005, and 
2005–2010, with no deforestation (FAO 2010). A forest resource assessment report was 
submitted as required by FAO as a part of the Global Forest Resources Assessment 2015 
(MOAF 2013). However, there was a major constraint to the reporting of biomass and the 
carbon estimation for Bhutan resulting from the outdated values for growing stock and lack of 
specific wood density and biomass expansion factors. 

Conclusion
Developing appropriate geospatial technology remains a challenge for the assessment of 
forest biomass in Bhutan. The adaptations to geospatial techniques proposed within the 
framework of the Bhutan R-PP proposal in line with IPCC guidelines need to be implemented. 
A part of the data gap could be filled by linking to the randomized branch sampling initiative 
and developing biomass equations. Further gaps in the geospatial system for assessment of 
forest biomass could be filled by designing linkages to integrate the ongoing collection of field 
data. There is also a need to develop protocols for Bhutan’s geospatial information system in 
line with overall strategies and international standards. 
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Data from the national forest inventory conducted between 2002 and 2008 were 
analysed to assess the carbon in India’s forests. The survey was conducted in selected 
districts at randomly selected points after ascertaining the optimum number of plots 

required for each combination of forest type and forest density. The exact geographical 
locations of the optimum number of randomly selected sample plots were visited, dead wood 
above 5 cm in diameter, all woody litter, and all shrubs and climbers were uprooted, weighed, 
and recorded. Dry biomass was converted to carbon stock. A GIS technique was used to 
intersect the forest type map (2004) and forest cover maps (1994 and 2004) to give two maps 
each with 45 strata, one for each year. The map for 1994 was overlaid on the map of 2004 
to estimate the area of remaining forest and non-forest land converted to forest for each forest 
type and canopy density category. By multiplying the activity data with these factors, 
parameter-wise total carbon values were calculated for all 45 strata; these were combined into 
five carbon pools. National carbon estimates for 1994 and 2004 were obtained by adding 
the pool-wise carbon content for the individual years. The Forest Survey of India (FSI) plans to 
introduce a five-year cycle for forest inventory and to replace the single square plots used up to 
now for field measurements with a cluster of circular plots. Inclusion of new variables is also 
contemplated so that newer parameters can be estimated.

Keywords: forest cover mapping, forest type mapping, national forest inventory,  
biomass study

Introduction
Understanding of the present situation and future requirements provides the basis for any 
planning related to renewable and non-renewable natural resources and drives the 
information needs for planning. Often surveys are used to generate the desired information 
with the desired level of accuracy and precision.

After Indian independence in 1947, huge areas of forest came under the control of the 
government. Thus the National Forest Policy of 1952 emphasized forest survey and 
demarcation, together with other aspects of forest management and development. As this  
was an era of industrial development, the forestry sector of the Government of India also 
attempted to augment wood-based industries. With this in view, a ’Pre-Investment  
Survey of Forest Resources’ project was undertaken in 1965 by Government of India in 
collaboration with UNDP and FAO. Three regions were selected that contained forests with 
tree species of industrial importance.
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The late 1970s and early 1980s were very important globally in terms of the forest scenario, 
and a paradigm shift became visible in attitudes towards the role of forest resources. The 
forests, which had seemed to be an inexhaustible resource, were rapidly depleting under the 
pressure of growing populations of humans and cattle. As a result, strategies were developed 
to focus attention more on conservation forestry than on production forestry. 

During the 1990s, understanding of the role played by forests increased and additional 
parameters like carbon sequestration in vegetation and forest soil, biological diversity, 
regeneration status of plant species, non-wood forest products, and others became central in 
all deliberations related to forest resources. Taking this as an opportunity, the Forest Survey of 
India (FSI) initiated a National Forest Inventory (NFI) programme in 2002/03 with the aim of 
capturing such parameters in a two-year cycle. This approach is still being followed and the 
estimates are being improved cycle by cycle. According to the ‘Good Practice Guidance for 
Land Use, Land-Use Change and Forestry’ of the Intergovernmental Panel on Climate 
Change (IPCC 2003), estimation of biomass, and thus carbon, requires activity data on the 
extent of forest and emission factors. This paper discusses the collection of activity data and 
estimates of carbon stock in India, and especially in the states that mainly lie within the 
Himalayan region.

Methodology 
Estimating activity data

Three different methods for estimating activity data are advocated in GOFC-GOLD (2010) 
and are being used by different countries to assess the area under ‘forest land remaining 



38

Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective

forest’ and ‘non-forest land converted to forest.’ The methodologies are wall-to-wall mapping 
using remote sensing data, mapping of sampled areas using remote sensing data, and field 
survey methods.

FSI has been assessing the forest cover of India using remote sensing data on a biennial  
basis since 1987 (FSI 2012a); a hybrid approach is used that combines an automated  
digital classification technique with visual interpretation. This technique is simple, robust,  
and cost-effective.

Stratification of the forest area 

To increase the precision of estimates for a heterogeneous population, stratification is carried 
out using selected stratification variables to divide it into relatively homogeneous sub-
populations. In the case of forest biomass assessment, the principal variable, the carbon 
stored in the vegetation, depends largely upon canopy density and forest type, thus these two 
parameters were considered for use as stratification variables.

Forest type mapping

Information on the extent of forest cover by type provides the basis for characterizing the 
forests in terms of floristic composition and ecological value. FSI has recently completed 
mapping of the forest types of India according to the Champion & Seth Classification (GOI 
1968) at a scale of 1:50,000. The forest type maps were used to determine the distribution of 
cover of different forest types in India. In the project described here, 14 forest type groups 
covering 174 forest types and one plantation group were used for carbon stock estimation. 
Using this classification, area statistics (activity data) were generated using a GIS technique for 
the two categories: forest land in 1994 that remained forest land in 2004, and non-forest 
land in 1994 that had become forest land by 2004.

Estimating emission factors 

The FSI used a stock-difference method (inventory based approach or periodic accounting) to 
estimate various emission factors as recommended by the good practice guidance of the 
IPCC. This enables estimation of the change in carbon stocks over time and thus the 
exchange of greenhouse gases between the forest ecosystem and the atmosphere. 

FSI has been using a multistage sampling approach to carry out the national forest inventory 
under the NFI programme. Data were collected from about 21,000 sample plots between 
2002 and 2008. The sample size for forest biomass assessment was chosen following an 
National Forest Inventory pilot survey conducted in 1995/96. The plot sizes used (0.1 ha for 
wood volume, 3 x 3 m for shrubs, and 1 x 1 m for herb biomass) are well established in India. 
Twenty important tree species were identified for the 14 strata (forest type groups) in the NFI 
and evaluated separately in the biomass calculations. 
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The method is described below.

Above ground biomass of trees with DBH ≥10 cm and bamboo 

All trees of diameter 10 cm and above were measured in each sample plot. The above 
ground woody volume was calculated per plot using volume equations developed by FSI for 
the different species with the volume of the main stem measured above 10 cm diameter and 
volume of all branches with a diameter of 5 cm or more. Data for the specific gravity and 
percentage carbon content of most of the tree species were obtained from the published 
literature. For a few species, the percentage carbon content was ascertained by experiment; 
the average of the known species was used for those remaining. Standard formulae were used 
to calculate the biomass and carbon content of each tree.

The volume of bark was estimated from the double bark thickness of trees measured in the 
forest inventory and the tree volume equations. Bark volume equations were developed using 
species-wise diameter at breast height (DBH, height taken as 1.37 m) and bark thickness, 
adjusted for ‘bark void factor’, and used to estimate the bark volume. The carbon stored in 
the bark was estimated using the carbon content percentage of wood.
Biomass equations were developed for small wood and foliage for each of the species except 
for palm-like trees. Three normal trees in each 10 cm diameter-class interval were selected 
and measurements of the diameter, height, crown length, crown width in two directions, 
blanks in canopy, and shape of the crown were recorded for each tree. One normal tree was 
selected in each diameter class of each species and a partially destructive method was used 
to compute the biomass of woody branches up to 5 cm diameter, of twigs, and of leaves, 
separately. (A partial method was used as there were restrictions on whole tree felling or 
lopping.) The volumes were converted into biomass using the specific gravity. Biomass 
equations were developed for each species taking the dry biomass of small wood and foliage 
as the dependent variable and DBH as the independent variable. Bamboo biomass and 
carbon stock were also calculated from the NFI data. The total above ground biomass (AGB) 
and carbon content of trees with DBH ≥10 cm were calculated at the plot level using the plot 
level data from the NFI and species-wise carbon content. 

AGB of trees with DBH <10 cm

Three trees of DBH 1 to 9 cm were felled for each of the 20 species and the biomass values 
of wood, twigs, and leaves calculated and recorded in the prescribed format. Biomass 
equations were developed for each species taking the dry biomass of wood and foliage as the 
dependent variable and DBH as the independent variable. The total biomass and carbon 
content of trees with DBH <10 cm were calculated at plot level using the regeneration data 
from the NFI, i.e., recruits, unestablished, and established regeneration for all trees with a 
DBH between 5 and 10 cm.
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AGB of shrubs, herbs, and climbers, and biomass of dead organic matter

The data from the forest inventory conducted from 2002 to 2008 were first analysed to 
ascertain the optimum number of plots required for each combination of forest type and 
canopy density. The results showed that 15 clusters of two sample plots for each combination 
would be sufficient for estimating the biomass and carbon factors for shrubs, herbs, and 
climbers, and dead organic matter, with a 30% permissible error. (These components 
contribute very little to total carbon pools; moreover, since 2010 this has become part of the 
regular inventory and the estimates will be improved continuously.) The survey was conducted 
at randomly selected points in the districts that had been inventoried between 2002 and 2008 
and for which forest type and canopy density were known.

The exact geographical locations (latitude and longitude) of the optimum number of randomly 
selected sample plots for the desired combinations of forest type and canopy density were 
visited. Taking latitude and longitude as the centre of the sample point, three concentric plots 
of size 5 x 5 m, 3 x 3 m, and 1 x 1 m were laid out at a distance of 30 m from the centre of 
the sample point in north and south directions. In the 5 x 5 m plot, all dead wood ≥5 cm 
diameter was collected, weighed, and recorded. In the 3 x 3 m plot, all woody litter (branches 
<5 cm diameter) was collected, weighed, and recorded, and all shrubs and climbers were 
uprooted, weighed, and recorded. In the 1 x 1 m plot, all herbs were uprooted, weighed, and 
recorded. The dry biomass was converted to carbon stock.

Organic matter in soil and forest floor

Data on the forest floor (non-woody litter and humus) and soil carbon are also collected from 
each sample plot during the forest inventory. For humus and soil carbon, two sub-plots of 
1 x 1 m are laid out within the main plot. The forest floor from both plots is first swept and 
weighed and a portion of the same kept for carbon analysis. A pit of 30 x 30 x 30 cm is dug 
at the centre of each sub-plot and a 200 g composite sample of soil kept for organic carbon 
analysis. Samples of soil and humus analysed at standard soil laboratories were used in the 
calculations.

Below ground biomass

Below ground biomass (roots) is one of the most difficult components to measure. It is not 
generally measured in the forest inventory but is included through a relationship to AGB 
(usually a root-to-shoot ratio) established by various researchers. The IPCC good practice 
guidance also provides default ratios for six major global forest types. The FSI selectively used 
these defaults to assess the carbon content of below ground biomass.

Quality assurance and quality control

Quality assurance is a process which a surveying and assessing institution puts in place to 
assure the quality of a product prior to implementation of the work. It includes defining the 
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objective(s) and all the terms and concepts, designing the work plan, preparation of working 
manuals, capacity building of the officials involved, testing of the procedures developed 
before finalization, preparation of the regression equations and indices using validation, and 
use of suitable factors (e.g., carbon content, wood density). The forest carbon stock estimation 
carried out by FSI uses four products: forest cover maps, forest type maps, NFI datasets, and 
results of biomass study (for developing biomass expansion factors). All these products have 
been generated following strict quality assurance processes specifically developed for the 
assured performance of each.

Quality control is the process put in place to control the errors which may arise during the 
implementation of the work, i.e., during the acquisition, collection, and recording of data; 
coding; data entry; data processing; interpretation of results; and others. Separate quality 
control processes are developed and put in place for each programme and each of the errors 
mentioned above for an assured quality product.
The second level of a quality assurance process is an independent verification procedure 
carried out by a third party arranged by the implementing agency before reporting to the UN 
Framework Convention on Climate Change (UNFCCC) or other approving agency. This 
process ensures the transparency and suitability of the procedures adopted for the whole 
process, i.e., from designing to the final estimation protocols. The forest carbon stock report 
in this project was sent to 15 experts of known reputation; their suggestions were incorporated 
as appropriate.

Synthesis

A GIS technique was used to intersect the forest type map (2004) with the forest cover maps 
(1994 and 2004) to give two maps each with 45 strata (forest type and canopy density 
intersections), one for each year. The map for 1994 was overlaid on the map of 2004 to 
estimate the area of remaining forest and non-forest land converted to forest for each forest 
type and canopy density category. The areal extent of individual strata was estimated using a 
GIS technique. The geographical location of each NFI sample plot was recorded by GPS 
during field visits. These locations helped in creating a GIS compatible point layer of the forest 
inventory plots. This NFI point layer map was overlaid on the maps with the 45 forest type and 
canopy density strata. The NFI points falling in each stratum were identified (FSI 2011a). For 
each stratum, the plot wise information on all the parameters for each carbon pool was 
aggregated to give a generalized factor for that stratum. Some biomass and carbon factors 
like shrubs, herbs, climbers, dead wood, and woody litter were specifically developed for each 
stratum. By multiplying the activity data with these factors, parameter-wise total carbon values 
were calculated for all 45 strata, these were combined into five carbon pools.

National carbon estimates for 1994 and 2004 were obtained by adding the pool-wise carbon 
content for the individual years. The difference gave the net removal of carbon as shown in 
Table 3 (FSI 2012b).
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Results
Himalayan states 

Carbon estimates were not worked out specifically for India’s Himalayan region. However, 
pool-wise carbon estimates were made for 2004 for the forest areas of the five states that 
mainly lie within the Himalayan region. The results are shown in Table 4 (FSI 2012b).

Soil organic matter has the largest stock of carbon in all five states, with 48 to 68% of the 
total (cf. national average of 56%), followed by AGB, ranging from 24 to 40% (national 
average 32%), and below ground biomass, ranging from 6% to 11% (national average 10%). 

The detailed estimates of carbon stored in vegetation in terms of the two stratification 
variables (canopy density and forest type) in the five Himalayan states are summarized in the 
following. The overall national average of carbon stock per hectare was 169.0 t, 121.8 t, and 

Table 4: Pool-wise carbon estimates for 2004 in India’s major Himalayan states

Component
Major Himalayan states

Total
Unit Arunachal 

Pradesh
Himachal 
Pradesh

Jammu & 
Kashmir Sikkim Uttarakhand

Area km2 67,777 14,369 21,273 3,262 24,442 131,123

Above ground biomass ’000 t 234,110 63,436 96,096 10,512 106,354 510,508

Below ground biomass ’000 t 52,489 16,718 26,259 3,012 27,499 125,977

Dead wood ’000 t 3,753 525 745 156 1,255 6,434

Litter ’000 t 16,080 2,367 3,106 456 5,655 27,664

Soil organic matter ’000 t 656,444 78,178 115,505 25,595 144,927 1,020,649

Total carbon stock ’000 t 962,876 161,224 241,711 39,731 285,689 1,691,231

Carbon stock t/ ha 142.07 112.20 113.62 121.80 116.88 128.98

Table 3:  Change in carbon stock of forest land between 1994 and 2004

Component Carbon stock of forest 
land in 1994

Carbon stock of forest 
land in 2004

Net change in carbon 
stock 

(million tonnes) (million tonnes) (million tonnes)

Above ground biomass 1,784 2,101 317

Below ground biomass 563 663 100

Dead wood 19 25 6

Litter 104 121 17

Soil organic matter 3,601 3,753 152

Total 6,071 6,663 592
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58.3 t for very dense forest (canopy density above 70%), moderately dense forest (canopy 
density between 40 and 70%) and open forest (canopy density between 10 and 40%), 
respectively.

Arunachal Pradesh

Arunachal Pradesh lies between the outer Himalayas and Patkoi ranges and is mostly hilly; the 
elevation ranges from 100 to 7,300 masl (FSI 2011b). With respect to canopy density, the 
carbon stock per hectare was 204.8 t, 136.0 t, and 98.3 t for very dense forest, moderately 
dense forest, and open forest, respectively. Tropical Semi-Evergreen Forests constitute the 
highest percentage of forest cover in the state (68.8%) and have a carbon stock of 154.1 t/ha; 
Tropical Wet Evergreen Forests constitute 1.5% of the state’s forest cover and have a carbon 
stock of 176.4 t/ha. The national average for Tropical Semi-Evergreen Forests – North East is 
110.1 t/ha and for Tropical Wet Evergreen Forests – North East 117.7 t/ha (FSI 2012b). 

Himachal Pradesh

Himachal Pradesh is largely hilly and divided into the outer Himalayas or Siwaliks, the lesser 
Himalayas or Central Zone, and the great Himalayan and Zanskar or Northern Zone. About 
33% of the total geographical area of the state has permanent snow cover (FSI 2011b). With 
respect to canopy density, the carbon stock per hectare was 184.9 t, 130.6 t, and 71.0 t for 
very dense forest, moderately dense forest, and open forest, respectively. Himalayan Moist 
Temperate Forests (part of the re-grouped ‘Montane Moist Temperate Forest’ in this study) 
constitute the highest percentage of forest cover in the state (44.2%) and have a carbon stock 
of 139.5 t/ha; Himalayan Dry Temperate Forests and Sub-Alpine Forests (re-grouped as 
‘Sub-Alpine and Dry Temperate Forests’ in this study) constitute 12.2% of the state’s forest 
cover and have a carbon stock of 141.2 t/ha. The national average for these two forest types 
(re-grouped) is 127.2 and 119.2 t/ha, respectively (FSI 2012b).

Jammu and Kashmir

Jammu and Kashmir lies mainly in the Himalayan Mountains and is comprised of sub-
mountain and semi-mountain plains (kandi or dry belt), the Siwaliks, the high mountain zone 
(Kashmir Valley, Pir Panjal range and its offshoots), and the middle run of the Indus River (Leh 
and Kargil); the elevation ranges from 227 to 7,586 masl (FSI 2011b). With respect to 
canopy density, the carbon stock per hectare was 202.9 t, 132.9 t, and 80.8 t for very dense 
forest, moderately dense forest, and open forest, respectively. Himalayan Moist Temperate 
Forests (part of the re-grouped ‘Montane Moist Temperate Forests’ in this study) constitute the 
highest percentage of forest cover in the state (34.4%) and have a carbon stock of 111.9 t/
ha; Moist Alpine Scrub and Dry Alpine Scrub (re-grouped as ‘Alpine Scrub’ in this study) 
constitute 11.6% of the state’s forest cover and have a carbon stock of 155.3 t/ha. The 
national average for these two forest types (re-grouped) is 127.2 and 133.2 t/ha, respectively 
(FSI 2012b). 
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Sikkim

Sikkim mainly comprises a young mountain system encompassing the Lesser Himalayas, 
Central Himalayas, and Tethys Himalayas. The elevation ranges from 300 to 8,500 masl, and 
this together with high rainfall results in a varied climate from tropical to tundra (FSI 2011b). 
With respect to canopy density, the carbon stock per hectare was 239.4 t, 119.9 t, and 57.4 t 
for very dense forest, moderately dense forest, and open forest, respectively. Montane Wet 
Temperate Forests and Himalayan Moist Temperate Forests (re-grouped as ‘Montane Moist 
Temperate Forests’ in this study) constitute the highest percentage of forest cover in the state 
(31.2%) and have a carbon stock of 135.9 t/ha; Himalayan Dry Temperate Forests and 
Sub-Alpine Forests (re-grouped as ‘Sub-Alpine and Dry Temperate Forests’ in this study) 
constitute 27.0% of the state’s forest cover and have a carbon stock of 145.2 t/ha. The 
national average for these two forest types (re-grouped) is 127.2 t/ha and 119.2 t/ha 
respectively (FSI 2012b). 

Uttarakhand

Uttarakhand is largely hilly (about 90%) with a temperate climate and is divided into three 
physiographic zones – the Himalayas, the Siwaliks, and the Terai. The elevation ranges from 
below 300 m in the Terai region to above 4,500 m; around 19% of the total geographical 
area of the state has permanent snow cover (FSI 2011b). With respect to canopy density, the 
carbon stock per hectare was 149.7 t, 121.8 t, and 83.5 t for very dense forest, moderately 
dense forest, and open forest, respectively. Himalayan Moist Temperate Forests (part of the 
re-grouped ‘Montane Moist Temperate Forest’ in this study) constitute the highest percentage 
of forest cover in the state (36.7%) and have a carbon stock of 132.6 t/ha; the Himalayan 
Dry Temperate Forests and Sub-Alpine Forests (re-grouped as ‘Sub-Alpine and Dry Temperate 
Forests’ in this study) constitute 6.0% of the state’s forest cover and have a carbon stock of 
153.3 t/ha. The national average for these two forest types (re-grouped) is 127.2 t/ha and 
119.2 t/ha, respectively (FSI 2012b). 

Overall

Although the national average for forest carbon stock was 98.4 t/ha, it was 128.98 t/ha for 
the five states that mainly lie within the Himalayan region, and higher than the national 
average in almost all the canopy density strata, except in the moderately dense forest and 
open forest in Sikkim, where per hectare carbon stock was slightly less than the national 
average, and in the very dense forest in Uttarakhand, where per hectare carbon stock was 
about 11% less than the national average.

Conclusion and Future Plans
There are many forest initiatives at different stages from planning to implementation. All these 
initiatives have the objective of improving forest health for ecosystem services, biodiversity, 
climate change mitigation, and other reasons. The outcomes of these initiatives need to be 
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monitored quite regularly. Although the present methodology is statistically very sound as it is 
based on two-stage sampling, the first stage sampling units, i.e., the districts, are only covered 
in a cycle of 20 years, which is quite long. For national objectives, and the requirement of 
REDD+ and other international commitments, the country needs to refine its methodology, 
and at the same time capture regional variations more precisely, and to intensify the efforts. 

At present, FSI is conducting a pilot survey to improve the NFI and is planning to switch from 
two-stage stratified sampling to completely systematic sampling by creating square grids of 
5 x 5 km over the entire country. A cycle of five years is envisaged for forest inventory, and ten 
years for the ‘trees outside forest’ inventory. The new approach will certainly capture regional 
variations more precisely. The present methodology uses green wash as shown in the 
topographic sheets as a sampling frame, whereas the new methodology is envisaged to use 
the latest forest cover maps prepared by FSI so that the remote sensing data have a direct 
correspondence with the inventory field data. FSI has been using single square plots for field 
measurements for a long time; the new methodology envisages a cluster of circular plots. 
Inclusion of new variables is also contemplated so that newer parameters can be estimated 
more appropriately, e.g., standing dead wood, effect of insects and pests, water sources, 
important non-wood forest products, and damaging invasive species, among others. 
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T here is a serious threat of accelerated deforestation and forest degradation in many 
parts of Pakistan in light of the rising population and associated demand for wood, 
weak governance of tenure, encroachment, and land cover change, compounded by the 

adverse impacts of climate change. The Government of Pakistan is promoting a REDD+ 
(Reduction of Emissions from Deforestation and Degradation) programme for preservation of 
forests through private sector led carbon sequestration and carbon credit generation. Pakistan 
started REDD+ initiatives in 2010 in an effort to create a financial value for the carbon stored 
in forests and offer incentives for forest dependent communities to reduce emissions from forest 
land. This paper provides an overview of the implementation status of national REDD+ 
initiatives in Pakistan, with a focus on the institutional setup, policies, and relevant challenges 
for implementation of the REDD+ programme. It is based on the outcomes of a consultation 
process for the development of a REDD+ road map for Pakistan, and a review of the available 
literature in books, reports, and research articles. Institutional and policy initiatives have been 
taken to encourage the private sector to allocate resources for REDD+ development in the 
country. However, a clear regulatory process still needs to be developed – urgently – to 
oversee REDD+ activities in the country, especially to ensure the rights of forestry stakeholders 
and indigenous people. 

Keywords: Pakistan’s REDD+, institutional setup, policies, drivers of deforestation, land 
tenure, capacity challenges

Introduction
Pakistan is comparatively poor in vegetation growth, and the forests are mostly limited to its 
northern areas in the administrative units of Khyber Pakhtunkhwa (KP), Gilgit-Baltistan (GB), 
and Azad Jammu & Kashmir (AJK). These mountain regions have natural limitations to the 
spread of forest cover due to the high elevation, large areas under snow cover, steep peaks, 
glaciers, low rainfall, extreme climate, and precipitous slopes. Most of these areas are limited 
in fulfilling the requirements for timber and fuelwood, and the local communities have a 
centuries old tradition of planting forest trees on farmland to supplement their timber, 
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fuelwood, and forage needs. Plantations on farm and barren land have increased many times 
over the last three decades. The natural forests are generally found on hill slopes at elevations 
from 1,500 m (5,000 feet) to 4,000 m (13,000 feet) (Rao and Marwat 2003). In some areas 
of Gilgit-Baltistan (Diamer District), local communities own almost all the forests, which are 
officially designated as ’private forest’ (Private Forest Regulation 1975). Pakistan joined the 
UN REDD programme in 2010 to support the global effort to protect and enhance forestry 
resources for a better and low carbon future, and to ensure the social, economic, and 
ecological wellbeing of its people. Pakistan has since initiated REDD+ activities, however, the 
success of REDD+ implementation in Pakistan will depend on sound and effective policies 
and consistency with the relevant international agreements and guidelines. 

This review paper aims to give an overview of the national implementation status of REDD+ 
initiatives in Pakistan. The focus is on the institutional setup and policies and relevant 
challenges for implementation of the REDD+ programme. The paper is based on the 
outcomes of a consultation process for the development of a REDD+ road map for Pakistan 
and a review of the available literature in books, reports, and research articles.

Forests and Forest Change in Pakistan 
Pakistan is progressing towards protection and conservation of its limited and diminishing 
forests, which cover only 5.1% of the country’s land area (4.34 million hectares) (FAO 2006). 
The target is to increase the area to 6% and bring an additional 1 million hectares of land 
under forest by 2015 (both natural forests and plantations spread throughout the country) in 
order to meet the Millennium Development Goals (FAO 2009). 

Despite the limited area, the forests of Pakistan represent a range of different types based on 
the climatic variations within the country. These climatic variations divide Pakistan into nine 
distinct ecological zones and support the growth of different tree species in different climatic 
regions with forest types including Littoral and Swamp Forests (mangroves), Arid Sub-Tropical 
Forests, Dry Sclerophylous and Dry Deciduous Forests, Tropical Thorn Forests, Sub-Tropical 
Pine Forests, Moist Temperate Forests, Dry Temperate Forests, and Steppe Forests, and related 
areas including Alpine Dry Steppe, Sub-Alpine Scrub, and Alpine Meadows (Khan and Akbar 
2005). Most of these forests are naturally regenerated; almost 80% are located in the 
northern highland watersheds of Khyber Pakhtunkhwa, Gilgit-Baltistan, and Azad Jammu & 
Kashmir, while the remaining 20% are mostly plantation forests including irrigated plantation, 
farm plantation, linear plantation, and roadside and railway plantation, as well as mangrove 
forests in the coastal areas of Karachi and Balochistan. The growing stock of wood in these 
forests is 160 million cubic metres per year (coniferous 138 million cubic metres and 
broadleaved 22 million cubic metres), with an average growing stock of 95 million cubic 
metres per hectrare per year (FAO 2010).Unfortunately, the socio-ecological status of 
Pakistan’s forests is declining because of massive forest degradation and deforestation over 
the past few decades. The forests were destroyed at an alarming rate of 42,000 ha per year 
from 1990 to 2010, the second highest deforestation rate in the world (FAO 2010). The 
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alarming trends in the extent of Pakistan’s forests over the last two decades can be seen from 
the figures given in Table 5. According to a recent study (Qamer et al. 2010), an overall 
decrease has been noticed in almost all the forest cover and vegetation classes in selected 
Hindu Kush Himalayan (HKH) regions in Pakistan. Over one decade, dense coniferous, sparse 
coniferous, and mixed coniferous broadleaf forests were degraded by 16,000 ha (1.75%), 
175 ha (0.02%), and 56,950 ha (7.68%), respectively. However, there was an increase of 
1.09% in the mixed class of broadleaf, scrub, and shrubs.

CO2 emissions due to land use change and other woody biomass

According to the Global Forest Resources Assessment of the FAO (FAO 2010), Pakistan’s 
forests contain 213 million tonnes of carbon in their living biomass. CO2 emissions in the 
country due to land use change and other woody biomass stock in 1989/90 were given as 
9,830 Gigagram (Gg) of CO2 equivalent, while the cumulative CO2 that could be reduced by 
mitigation options such as forest plantation on agricultural lands, agroforestry, and forest 
protection in coniferous forests could be as high as 877, 1,153, and 1,226 million tonnes of 
CO2, respectively (REDD+ RPP 2013). The potential for enhancing carbon stock through 
afforestation and reforestation on degraded lands and sustainable forest management is high. 
The estimated total emissions in Pakistan from all five categories of emissions under REDD+ 
(deforestation and forest degradation, conservation, sustainable forest management, and 
enhancement of forest carbon stocks), and thus the potential for reducing emissions, ranges 
from 300 to 400 million tonnes CO2 equivalent from 2012–2022 (OIGF 2011). All these 
figures need to be verified by more detailed analysis, which will require good coordination 
between the departments holding the relevant data.

The drivers of deforestation and forest degradation

The causes of deforestation and forest degradation in Pakistan include illegal logging, mostly 
for fuelwood, fodder, and timber; population pressure; and lack of land use planning; 
combined with intensification of agriculture, extension of housing colonies, settlements, and 
industry, landslides and erosion, salinity and waterlogging, droughts and floods, pests and 
disease, overgrazing and livestock pressure, migration, construction of roads and other 
physical infrastructure, mining, forest fires, poverty and lack of livelihood activities, lack of 
proper harvesting and transportation techniques in mountainous areas, and invasive species 
in dry areas like eucalyptus, mesquite, paper mulberry, and lantana. There are three 
categories of direct drivers: demand and consumption of products, land use change, and 

Table 5:  Changes in extent of forest cover in Pakistan, 1990–2010 (FAO 2010)

Annual change rate (area in ‘000 ha)

1990–2000 2000–2005 2005–2010

ha/year % ha/year % ha/year %

- 41,000 ha -1.76 - 43,000 ha - 2.11 - 43,000 ha - 2.37
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natural or manmade hazards. Demand 
and consumption of forest products 
seems to be the most severe and 
critical, followed by land use change, 
and natural and manmade hazards. 
Among the most prominent drivers of 
deforestation and forest degradation 
are the low supply and high demand 
for fuelwood and timber (Figure 9) due 
to the increase in population (Table 6). 
The annual wood consumption in 
2003 was 43.76 million cubic metres, 
while annual forest growth was 
14.4 million cubic metres, a supply 
gap of 29.34 million cubic metres 
(FAO 2006) resulting in high pressure 
and overexploitation of the limited forest resources. Currently, the availability of forest in 
Pakistan is an average of 0.3 ha per capita, only half the 0.6 ha per capita available at 
global level (FAO 2010). 

Agricultural expansion is also a severe problem in all forest types except mangroves, where 
agriculture is not possible. Climate change is a potential future driver; it is the main cause of 
changes in the occurrence and severity of floods, drought, disease, and forest fire, while 
mangrove forests may be affected by sea level rise. The indirect drivers of deforestation and 
forest degradation can be broadly divided into four categories: social, political, legal, and 
economic and resource management. Lack of alternatives, poverty, lack of awareness, 
shortage of energy, and political influence are the most critical indirect drivers of deforestation 
and forest degradation. Lack of resources, unemployment, weak governance and policies, 
urbanization, and unwise use of timber and fuelwood have been identified as the second most 
critical drivers. The majority of households continue to use fuelwood for cooking and heating. 
More than 50% of domestic energy needs are met through fuelwood. Fuelwood consumption 
in 1990 was estimated at 25.95 million cubic metres, rising to 31.52 million cubic metres in 
2000, of which 90% came from farmland and the rest from state forests (REDD+ RPP 2013). 
However, deforestation is not only the result of commercial logging and wood harvesting by 
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Table 6:  Population statistics for Pakistan, 2008

Pakistan population 2008

Country area
(‘000 ha)

Total
(‘000)

Density
pop/ km²

Annual growth rate 
(%)

Rural population
(% of total)

7,708 176,952 230 2.2 64

Source: FAO 2010
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the poor. Indeed, poor communities 
have become increasingly 
disempowered in managing forest 
resources as their rights to forests have 
weakened due to economic pressure 
from commercial loggers. Illegal and 
excessive tree cutting has resulted in 
severe soil erosion, flood damage, 
desertification, and land degradation 
in many areas. Removal of trees leaves 
the soil exposed and less able to 
absorb rainfall. Excess water runs off 
and causes soil erosion, speeding-up 
the process of denudation and 
eventually leading to desertification. 

The removal of top soil is also resulting in low production of forage, fodder, fuelwood, timber, 
cereal crops, and grain, which is exacerbating poverty in rural areas. Removal of vegetative 
cover from steep slopes also contributes to flash floods and increases the sedimentation load 
in rivers. About 11 million hectares of the northern mountain regions are affected by water 
erosion, bringing about 40 million tonnes of sediment into the Indus water basin every year. 
This reduces land productivity, shortens the lifespan of major upstream reservoirs like the 
Tarbela and Mangla, and reduces the efficiency of hydropower generation and irrigation 
systems downstream. The projected change in forest cover in Pakistan due to the above 
drivers is shown in Figure 10. 

Land tenure and rights 

According to data from 2005, 66% of the ownership and management rights of forest rests 
with the public, while 34% is under private ownership and management (FAO 2010). From 
the tenure point of view, there are two main categories of forest: state owned and private. 
State owned forest land is legally classified into five classes: state, reserved, protected, 
un-classed, and resumed lands. Private forest land is classified into Guzara forest, communal 
forest, Section 38 areas, and Chos Act areas. In addition to forest, there are vast areas of 
range and pasture lands from the coastal zone to alpine areas with seven major range types: 
grassland, grass-woodland, grass-shrubland, grass-forb land, woodland, shrubland, and forb 
land. Legal protection of forests is provided under the Forest Act (1927), and associated rules 
and regulations, amended from time to time as necessary. The common land tenure system 
prevailing in Pakistan is of private landlordism. Here individuals are the owners of the land. 
They pay revenue under periodical settlements. The holdings under this system vary 
considerably in size, ranging from 0.5 ha of land to hundreds or thousands of hectares. The 
big landlords retain some land for their own cultivation, while the major share is parcelled out 
in small lots to tenants. There are two types of tenants: occupancy tenants, i.e. tenants who 
enjoy considerable security of tenure because they have been cultivating the land since the 

Figure 10: Projected changes in forest cover  
in Pakistan 1992–2020 (million ha)

Source: FAO 2009
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time of their forefathers; and tenants-at-will, i.e. tenants who can be ejected at any time by the 
landlord and have no security of tenure. Landless rural labour is composed of persons living 
mainly from the land, but with no direct tenure of land. Their relation to land is indirect: they 
provide their labour to landowners and cultivators against a share of the produce. Absentee 
landlords and their tenants do not consider afforestation or sustainable use of land resources. 
Therefore, a comprehensive study on land tenure and natural resource rights is required to be 
conducted to support the effectiveness of policy decisions.

REDD+ Trajectory in Pakistan 
REDD+ and the 18th amendment in the Constitution of Pakistan 

Following the18th amendment to the constitution of Pakistan, some 44 topics, including 
pollution, ecology, and the environment, became the sole legislative domain of the provincial 
assemblies. All institutions, regulatory bodies, resources, staff, and liabilities related to the 
environment have been transferred to the administrative units (provinces and others), except 
for those having jurisdiction in the Federal Capital Territory. Under the Constitution of 
Pakistan, forestry is a provincial matter and provincial governments formulate their own 
strategies and action plans to achieve the goals and objectives of the policy on forests. The 
federal government under its mandated functions coordinates and facilitates the provinces 
through national policy, programmes, and projects. International agreements, including the 
UNFCCC and its REDD+ mechanism, fall in the domain of federal functions, therefore, the 
Office of the Inspector General of Forests (IGF) was designated as the National REDD+ Focal 
Point for Pakistan in 2010. However, the potential challenge that may emerge as Pakistan 
moves ahead with REDD+ is that under the 18th constitutional amendment, environment has 
been removed from the concurrent list. Some provinces have shown a trend of entering into 
direct agreements with private companies for pilot REDD+ projects. The Office of the 
Inspector General of Forests (OIGF) has been building inter-provincial coordination and 
inter-institutional linkages on REDD+ implementation, and has taken the initiative to discuss 
initiation of the process of REDD+ in Pakistan with the provincial forest departments. 
Devolution of the Environment Ministry leads to greater challenges, especially in its role and 
distribution. Devolution is a constitutional requirement, but international conventions require 
national entities to take ownership and distribute these functions rationally and responsibly. 
Equally, the national obligations taken up by countries, including Pakistan, require oversight, 
monitoring, and reporting at the national level and not just provincial or local. The text of the 
Cancun and Durban Agreements on REDD+ is clear about national forest carbon accounting 
and national emissions; however, these matters have already been conveyed to the provinces. 
The consultations held in the past three years with the provinces have created high hopes that 
the challenge to taking up REDD+ at the national level created by the 18th constitutional 
amendment will be resolved with the provinces in accordance with the UNFCCC REDD+ 
related agreements. The administrative units have recently started acting on the advice of the 
national focal point for REDD+ and there is a trend towards all REDD+ related initiatives in 
the provinces being shared with the national focal point. 
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Institutional setup for REDD+ implementation 

Despite the fact that Pakistan is a member of the Coalition of Rain Forest Nations, the group 
that started the REDD+ debate, and was a signatory to the initial REDD+ proposal submitted 
by 23 countries from the Rain Forest Coalition through the Ad Hoc Working Group on Long 
Term Cooperative Actions (AWG-LCA) (2008), the country has unfortunately been a little late 
in joining the global efforts under REDD+. Pakistan started REDD+ initiatives in 2010. A 
National REDD+ Steering Committee was also established in 2010, and provincial REDD+ 
focal points were designated from the respective forest departments. Pakistan also developed 
a voluntary REDD+ database (VRD) and joined the REDD+ Partnership that was formed in 
Oslo in May 2010 that serves as an interim platform for partner countries to scale up actions 
and finance for REDD+ initiatives. Pakistan joined UN-REDD as a partner in 2011 and is set 
to operationalize and mainstream REDD+ in its forest management practices. In July 2013, 
Pakistan also became a member of the Forest Carbon Partnership Facility (FCPF) and 
submitted a REDD+ Readiness Preparation Proposal (RPP) to the FCPF. This was approved, 
and Pakistan secured USD 3.4 million for the next five years. Pakistan also succeeded in 
securing funds through a Global Environment Facility (GEF) allocation of USD 10 million 
under the Clean Development Mechanism and Climate Change, which also addresses 
REDD+ (Khan and Nasir 2011). 

A project for the REDD+ preparedness phase in Pakistan has been initiated by the Ministry of 
Climate Change of the Government of Pakistan with financial assistance from the United 
Nations Development Programme (UNDP) through One UN Joint Program on Environment 
(JPE), which allocated USD 0.2 million. The project proposal was developed by the 
International Centre for Integrated Mountain Development (ICIMOD); ICIMOD and the World 
Wide Fund for Nature Pakistan (WWF-P) are the implementing partners. The project had three 
main aims: 1) capacity building, 2) development of a road map for preparing a national 
REDD+ strategy, and 3) developing a national REDD+ project proposal to enable the 
Ministry of Climate Change to seek additional funding for the REDD+ process. ICIMOD 
provided technical assistance to the Government of Pakistan in implementing the project. A 
series of consultative workshops were organized in 2013 under the project jointly by the 
implementing partners in all provinces. The workshops were organized for communities and 
other stakeholders (local forest community members, forest contractors, local NGOs, 
academia, media personnel, and officials from various government departments) to identify 
the drivers of deforestation and forest degradation in their respective areas through their 
valuable feedback. During the third week of November 2012, the UN-REDD mission for Asia 
and Pacific also visited Pakistan for the first time on the invitation of the national REDD+ focal 
point at the Ministry of Climate Change and held several meetings with REDD+ implementing 
partners in the country. The output of these meetings was a proposal that was developed to 
extend UN-REDD technical and financial support to the current REDD+ project initiatives in 
Pakistan. The REDD+ initiatives are currently at preparedness phase, in a joint initiative by the 
Ministry of Climate Change, FAO, ICIMOD, One UN Joint Program on Environment, and 
WWF-Pakistan. In 2013, Provincial REDD+ Management Committees were formed in Punjab, 
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Sindh, Khyber Pakhtunkhwa, Gilgit-Baltistan, and Azad Jammu & Kashmir (AJK), and four 
working groups were formed on governance and management of REDD+; stakeholder 
engagement and safeguards; national forest monitoring system and MRV; and drivers of 
deforestation and forest degradation. The national institutional setup proposed in the REDD+ 
Readiness Preparation Proposal submitted to FCPF is shown in Figure 11. 

Key policies, laws, strategies, and programmes relevant to REDD+

The REDD+ initiatives were started with the inclusion of REDD+ in the National Climate 
Change Policy of Pakistan (NCCP), which has now been approved, followed by the 
development of a Project Investment Fund (PIF) by the then Ministry of Natural Disaster 
Management (now Ministry of Climate Change) for tapping a GEF grant under REDD+ or 
sustainable forest management (SFM). REDD+ forms an important component of the NCCP 
as a mitigation measure; under the policy measures the NCCP clearly spells out ‘secure 
financial assistance’ from the World Bank’s FCPF and UN-REDD Programme, as well as from 
other international sources, to formulate a national programme for avoiding deforestation 
and forest degradation. The National Forest Policy has a similar provision for mainstreaming 
REDD+ as a tool to curb deforestation and enhance forest cover and forest carbon stocks. All 
provinces have prepared drafts for provincial forest policies. The provincial forest policies of 
Punjab and Khyber Pakhtunkhwa have been approved by their respective provincial cabinets. 
However, none of the policy initiatives, or the policy itself, can be successful or effective 
without a legal basis with supporting laws. The Khyber Pakhtunkhwa Forest Ordinance, which 
was promulgated in 2002, defines the institutional details for forestry in the province, 
following the guidelines given by the Provincial Forest Policy 2001. The public forests in 
Gilgit-Baltistan, Punjab, Sindh, and ICT are managed under the Forest Act 1927; in 
Balochistan under the Balochistan Forest Regulations 1890 (amended 1974) as well as the 
Forest Act 1927; while in AJK they are managed under the Jammu & Kashmir Forest 
Regulations 2 of 1930. Other laws relevant to REDD+ include the Provincial Wildlife Acts and 
Ordinances like Balochistan Wildlife Protection Act 1974, and Pakistan Environmental 
Protection Act 1997. Issues like forestry, REDD+, and climate change are not detailed in the 
provincial local government acts. Only the protection of trees and wildlife is mentioned in a 
very broad manner. REDD+, carbon trade, or the resulting access and benefit sharing 
mechanism, are not mentioned at all under the existing laws. However, such issues are being 
included in the revised acts. As in other provinces the Forest and Wildlife Department of the 
Government of Balochistan is in the process of revising various Acts. The Balochistan Forest 
Act 2013 and Balochistan Wildlife, Biodiversity and Protected Areas Act 2013 are being 
revised and are in the process of being submitted to the cabinet, after which they will be 
submitted to the provincial assembly. The Gilgit-Baltistan Forest Department has developed its 
first draft Forest Policy (2015) and is also revising all other relevant policies, laws, regulations 
and acts to include REDD+ and other important provisions under global scenarios. 

The main strategies and action plans relevant to REDD+ include the National Conservation 
Strategy, National Sustainable Development Strategy (draft), Biodiversity Action Plan, and 
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Forestry Sector Master Plan (MOE 1992). Programmes and projects like the Sustainable Land 
Management Programme and Mountain and Market: Biodiversity and Business in Northern 
Pakistan are relevant to REDD+; they will provide opportunities to reach out to grassroots 
communities to undertake afforestation and protection of forests. Resource management 
instruments and tools relevant to REDD+ include traditional forest working plans; revised and 
improved management plans; specialized forestry programmes and projects such as 
watershed management, social forestry, and farm forestry; the joint forest management 
system; community-based forest management system; and local traditional management 
systems such as the Nagha and Aman systems. 

Challenges to set institutional policies 

Provincial forest policies traditionally placed greater emphasis on maintaining government 
control and the enforcement of edicts than on the needs of the communities who lived in and 
around forests. As a result, existing community rights to forest resources became proscribed. 
The policies resulted in a small, well-preserved public forest estate, but provided nothing for 
improving and extending forests. It also lacked participation of forest communities. The top 
down, non-participatory approach drove a wedge between communities and their birthright 
by denying them a say in its management and subjecting them to legal process, which was 
often arbitrary. The unprecedented levels of degradation that the country is currently 
witnessing, partly has its roots in this. Provincial forest policies lack measures to encourage 
communities to carry out afforestation. Many critical issues in deforestation and forest 
degradation, such as illegal logging, encroachment, and conversion of forest land to non-
forest uses, are due to the absence of land use plans and a defined policy of the government 
to this affect. Moreover, despite several attempts, the draft National Forest Policy is still 
awaiting approval by the cabinet. Until recently, most forest policies have viewed people as 
the prime threat to the forests, and have attempted to exclude groups other than the 
government from decision making. This approach has not only affected the sustainability of 
the livelihood strategies of the local people, but also increased the vulnerability of the 
marginalized sections of communities, and ultimately led to the unsustainable management of 
natural resources and forest depletion. The Forest Ordinance of Khyber Pakhtunkhwa, for 
example, is punitive and tends to increase the policing role of forest departments. For 
example, the Forest Ordinance designates forest department staff to be a uniformed force 
bearing arms, and also enhances their police powers, which goes against the intent of the 
Provincial Forest Policy that enshrines the principles of participatory social forestry. Similarly, 
the discretionary powers of forest officers to revoke a community-based organization (CBO) or 
joint forest management committee (JFMC) agreement, as suggested in this ordinance, would 
result in uncertainty and insecurity among different JFMCs and CBOs.

Way forward

The most important issue is the lack of the technical capacity and skills required for successful 
implementation of REDD+ in Pakistan. Institutional capabilities do exist, but their 
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understanding and capacity regarding technical aspects of REDD+ (e.g. satellite land 
monitoring system to assess activity data on forest area and forest area changes, and national 
forest inventory to assess emission factors on carbon stocks and carbon stock changes) need 
to be enhanced and strengthened. Provincial capacity building and training units under 
provincial REDD+ cells have been proposed in the REDD+ RPP, which mostly focuses on the 
capacity issues. Khyber Pakhtunkhwa and Gilgit-Baltistan have recently trained their focal 
points in advanced terrestrial carbon accounting for REDD+. The trained focal points are 
being used as master trainers to further build the capacity in other provinces. The national 
MRV strategy and action plan is also under development, for which both international and 
national expertise will be utilized through a consultative process. Pakistan has also recently 
developed and submitted, through an intensive consultative process at both national and 
provincial level, its REDD+ Readiness Preparation Proposal for a potential financial grant from 
the Readiness Fund of the World Bank Forest Carbon Partnership Facility. The following 
REDD+ strategy and governance options have been conceived for Pakistan: 

�� A market/project based architecture including buyers and sellers of carbon stored in 
forests. Buyers are firms with emissions reduction responsibilities. Sellers are owners of 
forests or actors with use rights to forest resources. Interaction between these will take the 
form of trade.

�� A system with national REDD+ funds outside the national administration including the 
establishment of a national fund, with a non-commercial actor as an intermediary between 
forest owners/users and potential financers of REDD+ activities. The board may contain 
representatives from the private sector, civil society, and public authorities. These may have 
the capacity to support programmes in cooperation with local communities. 

�� A national REDD+ fund organized under the national administration that utilizes the 
capacities and competencies of present state administrations. However, allocation is made 
by a separate board with REDD+ responsibilities only. This is set up independent of the 
ordinary budgetary process with a specified responsibility to allocate funds to REDD+. It 
reports to the government but may also include representatives from civil society and the 
business sector. It may be institutionalized to use the capacity of the state administration to 
command, but may also be involved in direct trade with forest owners and users. 

�� Conditional budget support utilizing existing state structures. Resources flow from an 
international fund to the respective state on the condition of fulfilment of REDD+ activities. 
Resources are allocated to various activities/forest owners/users relying foremost on the 
command power of the state. 

At present, a project titled ’Preparation of action plan and capacity building for a national 
forest monitoring system (NFMS) for REDD+’ is being implemented by WWF-Pakistan under 
the overall supervision and guidance of the OIGF to take the REDD+ preparation further and 
help Pakistan develop a robust national forest monitoring system. The UN-REDD Programme 
is providing both financial and technical support under its Target Support Fund. The project 
has two outputs: 1) development of the NFMS action plan; and 2) development of the 
capacity of stakeholders for forest monitoring, greenhouse gas inventory, and overall 
implementation of the NFMS action plan. Under Output 1, the project intends to 1) conduct 
detailed mapping of existing NFMS capacity, gaps, and needs of both national and provincial 
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forest administrations and other relevant government organizations, 2) develop a standard 
methodology for spatial analysis of forest cover change, 3) assess data availability for LULUCF 
(land use, land use change, and forestry) GHG inventory, and 4) develop a draft NFMS action 
plan. In this connection, WWF-Pakistan and the OIGF, in coordination with FAO, conducted 
an inception workshop on the ‘Preparation of an Action Plan and Capacity Building for a 
National Forest Monitoring System for REDD+’ in March 2014 for orientation of key national 
and provincial stakeholders in REDD+, and development of an action plan. A formal report 
on the proceedings of the workshop was submitted to the OIGF on 27 May 2014. The 
WWF-Pakistan team, in consultation with OIGF, hired a national consultant for the project in 
May 2014 and engaged him to accomplish the outputs of the project. According to the work 
plan, the national consultant has conducted a thorough assessment of the existing NFMS and 
MRV systems in place in all provinces including Gilgit-Baltistan, AJK, and Federally 
Administered Tribal Areas, and submitted a final capacity based needs assessment (CBNA) 
report to the OIGF in December 2014. Based on the CBNA report, the NFMS action plan is 
being drafted; it is expected to be completed in May 2015. 
 

Conclusion
A REDD+ process was initiated by the Government of Pakistan in 2009 with consultative 
workshops and awareness raising. In 2012, a multi-stakeholder steering committee, provincial 
coordination, and REDD+ management committees were constituted. National and provincial 
focal points were declared. Working groups were formulated to compile and deliver 
information on the following: 1) governance and management of REDD+; 2) stakeholders’ 
engagement and safeguards; 3) national forest monitoring system and MRV; and 4) drivers of 
deforestation and forest degradation. All the relevant bodies are working together to create 
awareness and undertake the necessary preparation for the REDD+ readiness process in 
Pakistan. The inputs acquired through this process are being utilized to develop the REDD+ 
national strategy and implementation plan. The consultation activities have produced several 
important outcomes, including identification of a range of stakeholders relevant to REDD+ 
along with the outreach methods that enhanced both collaboration and capacity building 
among national, provincial, and local level line agencies and other respective organizations, 
and hence enhanced ownership of the REDD+ mechanism. During the consultation process, 
various capacity building needs were also identified. At present a project on ’preparation of 
action plan and capacity building for a national forest monitoring system for REDD+’ is being 
implemented. 
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Forests are both a carbon sink and a source of greenhouse gas emissions. Reducing 
Emissions from Deforestation and Forest Degradation (REDD+) has been introduced by 
the UNFCCC as a strategy to reduce GHG emissions and sustain forests. Pakistan is 

suffering from high deforestation rates and has joined the UN-REDD programme. Assessment 
of forest cover and change is an essential part of the REDD+ approach. This study looks at the 
status of the forest cover assessment and monitoring systems in Pakistan. The majority of studies 
are based on remote sensing, which is considered to be the most reliable method for 
monitoring under the current scenario. However, the reported values for forest cover vary 
considerably, which may be the result of both the different methodologies used and different 
classification criteria for forest. Notwithstanding these differences, the assessments indicate that 
Pakistan’s forests are undergoing extensive removal and degradation. Monitoring, reporting, 
and verification (MRV) is coupled to REDD+ in order to establish a baseline monitoring system 
and to provide a standardized approach for systematizing the assessment. The existing data 
do not yet provide a reliable baseline, and Pakistan is in the process of developing an 
appropriate system. 

Keywords: REDD+, forest cover, remote sensing, monitoring, Pakistan

Introduction
Forests are a major carbon sink and absorb one-third of anthropogenic carbon emissions.  
At the same time, deforestation and degradation contribute almost 17% to the global 
anthropogenic greenhouse gas (GHG) emissions (IPCC 2007). Reducing Emissions from 
Deforestation and Forest Degradation, Conservation of Forest Carbon Stocks, Sustainable 
Management of Forests, and Enhancement of Forest Carbon Stocks (REDD+) is a strategy to 
reduce GHG emissions and sustain forests. The UNFCCC plans to use the REDD+ 
mechanism to make economic support available not only for reducing deforestation rates, but 
also for conserving or increasing existing forest carbon stocks using sustainable forest 
management. The approach provides a basis for financial benefit by generating carbon 
credits. REDD+, with a primary focus on tropical forests, has been implemented successfully in 
various parts of world. 
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Pakistan is suffering from high deforestation rates which are estimated to have reduced forest 
cover from 5 to 2.5% (FAO 2010). The country joined the UN-REDD Programme in 2011 and 
has received Targeted Support funds to develop a REDD+ Readiness Roadmap (UN-REDD 
nd). Pakistan is also a signatory to the United Nations Framework Convention on Climate 
Change (UNFCCC) and is one of the Non-Annex 1 parties to the Convention; the Pakistan 
Government endorses the principle of “common but differentiated responsibilities” put 
forward by the convention as a basic prerequisite. Pakistan is forest-poor, mainly due to the 
arid and semi-arid climate in large parts of the country. The main types of forest in the less 
arid parts are juniper, chilghoza, scrub, riverine, and mangrove. Most of the forest area is in 
the northern part of the country in Khyber Pakhtunkhwa (KPK) and Azad Jammu & Kashmir 
(AJK) provinces and comprises coniferous and scrub forest. Irrigated plantations have been 
raised mainly in Punjab and Sindh provinces. Different types of rangeland are also distributed 
throughout the country. The present study was carried out with the objective of reviewing 
existing land cover and forest cover mapping studies for Pakistan as background information 
for developing a forest assessment process suitable for natural resources management and 
REDD+. Several studies have been conducted by different agencies and experts using 
different data and methodologies and for different periods of time. 

Forest Cover Assessment in Pakistan
Three major national studies of forest cover have been carried out in Pakistan using satellite 
images but with somewhat different methodologies: the Forestry Sector Master Plan (FSMP) 
study carried out in 1992, the National Forest and Range Resource Study (NFRRS) in 2003/4, 
and the Land Cover Atlas for Pakistan in 2012. In addition, the United Nations Food and 
Agriculture Organization (FAO) has published assessments of forest cover derived from 
national statistics, and ICIMOD has studied forest cover and changes over time in three 
northern provinces. The studies are summarized below. 

The Forestry Sector Master Plan 

The first comprehensive remote sensing based national land cover assessment was carried out 
under the Forestry Sector Master Plan (FSMP) in 1992 with the aim of estimating national 
forest cover disaggregated at province level. The forest resources assessment was based on 
manual interpretation of hard copies of Landsat TM images at 1:250,000 scale for 1989 and 
1990 obtained from SUPARCO. The images were RGB products of Landsat TM bands 2, 5, 
and 7. The forest areas were identified and marked manually on the basis of differences in 
tone and texture, and broadly categorized into coniferous and broadleaved types. Small 
stands of forest and isolated trees could not be detected at the 30 m resolution of the Landsat 
TM. An independent field survey was conducted in all the provinces in Pakistan by Asianics 
Agro-Dev International, a private sector company, to assess the area of forest on farmland 
(small patches of trees and scattered trees on private land). FSMP gave the forest area as 
3.59 million hectares – equivalent to 4.1% of the total land area of Pakistan (GOP 1992). Of 
this, 67% was in the three administrative units of Khyber Pakhtunkhwa (1.49 million hectares), 
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Gilgit-Baltistan (0.66 million hectares), and Azad Jammu & Kashmir (0.26 million hectares) in 
the Upper Indus basin. The Landsat TM based forest assessment under FSMP formed a strong 
basis for future planning and the statistics generated by the FSMP are still referred to as the 
benchmark. 

The National Forest and Range Resource Study

Twelve years later, in 2003/04, the Ministry of the Environment conducted the National Forest 
and Range Resource Study (NFRRS) through the Pakistan Forest Institute (NFRRS 2004, PFI 
2012). Landsat ETM+ images at 30 m resolution from 1997 and 2001 were digitally 
processed to provide an assessment of forest cover across the country. The PFI used 
supervised classification with a maximum likelihood classifier. A forest inventory plot system 
(FIPS) was established to facilitate statistically reliable and accurate assessment; forest and 
field investigations were carried out. The study reported a total forest area of 3.62 million 
hectares in 1997 and 3.32 million hectares in 2001.

The Land Cover Atlas for Pakistan

The relatively low resolution results of the FSMP and NFRRS provided concise baseline 
information for policy level awareness and decision making, but they did not provide the 
systematic baseline data disaggregated at the level of local administrative boundaries (e.g., 
district and tehsil) which is needed to accurately measure the current extent of forest cover and 
the deforestation rates in any particular district.

In 2012, PFI developed a land cover atlas (LCA) for Pakistan using digital processing of 
SPOT5 2.5 metre spatial resolution images acquired in 2007 under the Forestry Sector 
Research and Development Project (FSR&DP). The study aimed to 1) prepare an atlas of all 
districts in the country indicating the distribution of various natural resources; 2) to monitor 
forest change; and 3) to build the capacity of professionals in provincial forest departments in 
GIS and remote sensing techniques for natural resource management. 

According to this atlas, the total forest area in Pakistan in 2007, excluding alpine pastures, 
farmland trees, and linear plantation, was 4.34 million hectares or 5.01% of the total area. 
Forest cover in KP was 1.51 million hectares (20.3%), Punjab 0.55 million hectares (4.6%), 
Sindh 0.66 million hectares (2.7%), Balochistan 0.50 million hectares (1.4%), Gilgit-Baltistan 
0.34 million hectares (4.8%), AJK 0.44 million hectares (9%), Federally Administered Tribal 
Areas (FATA) and Frontier Regions 0.53 million hectares (19.5%), and Islamabad 0.22 million 
hectares (22.2 %) (PFI 2012). 

The FAO assessment

FAO has published values for the total forest cover in Pakistan as part of its global forest 
assessment. The values were derived from estimates made by the Forest Department based on 
the FSMP data and various field measurements extrapolated on the basis of certain 
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assumptions FAO reported the area of forest cover in 1990, 2000, and 2010 to be 2.5, 2.1, 
and 1.7 million hectares (2.9%, 2.4%, and 2.0% of the total area) (FAO 2010). Similarly, 
World Bank reports refer to Pakistan’s total forest cover as being 2.2% percent of the land 
area of the country (equivalent to 1.9 million hectares) (World Bank 2012). However, a 
different FAO assessment (FAO 2007) gave the value for the total area of forest in Pakistan as 
4.34 million hectares (5.0%), of which 3.44 million hectares were state owned, and tree cover 
on farmlands and private forests was 0.78 million hectares (0.89%), based on the early results 
of the Land Cover Atlas.

Comparison of the studies

The characteristics of the three major studies are shown in Table 7; the results obtained by the 
different studies and reported by others are shown in Table 8. 

The extent of current forest cover and deforestation rates in Pakistan remains a matter of 
discussion. The different methodologies and definitions used in the various studies make any 
comparison or assessment of deforestation rates problematic. The PFI compared the NFRRS 
results with the FSMP results and reported that 270,000 ha of natural forest had been 

Table 7:  Major national studies of forest cover in Pakistan

Study Satellite data 
used

Resolution Year of 
acquisition 

Interpretation method Executing agency 

Forestry Sector Master 
Plan (FSMP) 1992

Landsat TM 30 m 1989–1990 Visual interpretation of 
printed images at a 
scale of 1:250,000

Ministry of the 
Environment

National Forest and 
Range Resources 
Assessment Study 
(NFRRAS)

Landsat ETM 30 m 1997–2001 Supervised 
classification, forest 
inventory plots used to 
facilitate assessment

Pakistan Forest 
Institute

Land Cover Atlas of 
Pakistan

SPOT-5 2.5 m 2007 Visual interpretation Pakistan Forest 
Institute

Table 8:  Values for Pakistan forest cover from different reports

Study Reference Forest area (million ha)

1989/90 1997 1999 2000 2001 2007 2010

FSMP GOP 1992 3.59

NFRRS NFRRS 2004 3.62 3.32

LCA PFI 2012 4.34a

FAO FAO 2010b 2.5 2.1 1.7  (3.14b)

World Bank World Bank 2012 1.9c 
a Excludes alpine pastures, farmland trees, linear plantation 
b Excludes ‘other wooded land’; in 2010 forest + other wooded land amounted to 3.14 million hectares 
c Year not given



63

6 – Status of the Forest Cover Assessment and Monitoring System in Pakistan in the Context of REDD+

removed (deforestation) since 1992, equivalent to 0.7% per annum over the decade (NFRRS 
2004). However, direct comparison of the two results was not technically justifiable as the 
results were derived from widely different methodologies. The values reported in FAO’s global 
forest assessment indicate a loss of 1.6% of forest cover per annum from 1990 to 2000 and 
2.0% per annum from 2000 to 2010. But the total area of forest cover reported, although 
based on national statistics, is markedly lower than the values found by the three national 
surveys. FAO (2007) recorded that an average area of 31,658 ha (0.75%) of natural forest is 
removed annually, while the standing volume of farmland trees (plantation) was increasing at 
3.9% per annum. The net loss of woodland and forest habitat from 1990 to 2005 was 
calculated to be 14.7%, or just under 1% per annum. Equally, the most recent national survey, 
which used high resolution satellite images, reported a total forest area that was higher than 
the area reported by the previous surveys. 

The differences reported in total cover are likely to be mainly methodological, the studies that 
report change show that the extent of forest cover is being reduced, and ground observation 
also indicates that deforestation and forest degradation is proceeding at a noticeable rate. A 
similar situation has been observed in other global assessments with differing values for forest 
cover extent, which have been attributed at least in part to the lack of a clear definition of 
‘forest land’ (Mather 2007). Only a few countries have reliable data from comparable 
assessments over time (FAO 2010); the lack of such data is a challenge for developing 
efficient forest management policies. 

The ICIMOD study

Standardization in forest cover and land cover mapping is important for comparative 
assessment of the biosphere. There is a clear need for a comparative assessment of Pakistan’s 
forest area carried out over time using a standardized methodology. The International Centre 
for Integrated Mountain Development (ICIMOD) is an independent intergovernmental 
organization with a regional mandate and supports countries in carrying out land cover 
classification at national level using the Land Cover Classification System (LCCS) developed 
by FAO/UNEP to facilitate assessment and management of natural resources. The LCCS is a 
comprehensive standardized classification system based software designed to meet specific 
user requirements and created for mapping exercises independent of scale or method. Using 
the standardized land cover classification, ICIMOD conducted time series land cover mapping 
of the mountain areas of Pakistan (specifically Gilgit-Baltistan, Khyber Pakhtunkhwa, and Azad 
Jammu & Kashmir). The aim was to assess past changes and present trends in land cover 
distribution, with a special emphasis on forest cover change. The specific objectives were to 
assess the current land cover distribution and analyse change over the last two decades, 
assess the district-wise deforestation patterns, devise a mechanism for regular monitoring of 
the forest resources, with a particular focus on a monitoring and verification system to report 
on REDD+, and to make this information and methodology available for both national level 
decision making and the international reporting requirement. The study used level-one-terrain 
corrected product (L1T) temporal Landsat data from USGS EROS (http://eros.usgs.gov/) from 
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years close (±2) to 1990, 2000, and 2010. The results of the study produced time series 
forest cover change between 1990–2000–2010 disaggregated at sub-district level 
(Figure 12). 

The overall and district level decadal land and forest cover data can be visualized through a 
web portal (http://apps.geoportal.icimod.org/PKLandcover/). The time series forest cover maps 
(1990–2000–2010) revealed extensive deforestation, with a loss of 161,556 ha of forest over 
20 years, a rate of 0.36% per year (Figure 12). A further 43,922 ha had become severely 
degraded. The total forest cover for the three provinces of AJK, Gilgit-Baltistan, and KP in 
1990 was 2.26 million hectares, close to the value of 2.41 reported by the FSMP, while that in 
2010 was 2.10 million hectares, close to the value of 2.29 reported in the Land Cover Atlas. 

Forest Stock in Pakistan
It is extremely difficult to calculate the biomass of the forest stock in Pakistan accurately 
without consistent data for forest cover or detailed analysis in terms of forest types and forest 
density. However, some assessments have been made by FAO in the Global Forest Assessment 
Report based on the limited information available as described in the following (FAO 2010).

Annual
deforestation rate

for 1990-2010

Forest cover
(%) in 1990

>1.6

>0.1

5                           62

Figure 12:  Deforestation hotspots based on the ICIMOD assessment
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National biomass stock

Biomass is usually categorized into three main classes: above ground biomass, below ground 
biomass, and dead wood. Table 9 shows the biomass variables in Pakistan’s forests over time. 
The weighted biomass density was taken to be 0.7, as given in the Forest Sector Master Plan 
1992. The biomass expansion factor was calculated using the Sandra Brown formula [BEF = 
EXP (3.213-0.506*LN (biomass/ha)], which is mainly for Asian broadleaved forests (FAO 
2010). The area values are those given in the Global Forest Assessment Report.

Figure 13 shows the changes in 
different components. The total living 
biomass in Pakistan’s forests decreased 
continuously from 704 million tonnes in 
1990 to 453 million tonnes in 2010. 
The decreasing trend was observed in 
both above ground biomass and below 
ground biomass. The root-to-shoot 
ratio increased consistently but only very 
slightly from 0.347 in 1990 to 0.357 in 
2010, which may indicate an increase 
in tree health. 

Pakistan’s carbon stocks include carbon in above ground biomass, below ground biomass, 
dead wood, litter, and soil. No data on carbon were available to calculate carbon stocks 
directly, so a carbon conversion factor of 0.47 as recommended in the FRA guidelines was 
applied to the biomass; a default factor of 2.1 t/ha of carbon in forest litter was also 
assumed. Using these values, carbon in above ground carbon stock was calculated to have 
decreased from 245 to 157 million tonnes, and carbon in below ground carbon stock from 
85 to 56 million tonnes, between 1990 and 2010. This situation is very different to that in 

Table 9:  Biomass variables from 1990 to 2010

Variable Unit 1990 2000 2005 2010

Growing stock million m3 261 211 185 160

Weighted wood density 0.7 0.7 0.7 0.7

Stem biomass million t 183 147 130 112

Forest area ‘000 ha 2,527 2,116 1,902 1,687

Stem biomass/ha t/ha 72 70 68 66

Biomass expansion factor 2.85 2.90 2.94 2.98

Source: FAO (2010)

Figure 13:  Biomass trends in Pakistan’s forests 
from 1990 to 2010 
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neighbouring countries. In Bangladesh, the forest above ground biomass decreased only 
slightly over the two decades from 1990 to 2010 from 148 to 143 million tonnes; in India, 
the forest above ground biomass increased from 2,616 to 3,291 million tonnes between 
1990 and 2010; and in China, there was a significant increase in forest biomass from 1990 
to 2010 and a further increase forecast in recent surveys. Thus, the biomass stock in 
neighbouring countries, especially developing countries, is increasing.

REDD+ and Pakistan
The World Bank launched the Forest Carbon Partnership Facility (FCPF) at the 13th 
Conference of Parties of the UNFCCC in Bali in 2007 with the aim of building capacity for 
REDD in developing countries and testing a programme of performance-based incentive 
payments in some pilot countries. The FCPF consists of a readiness mechanism and a carbon 
finance mechanism. Such programmes are active in Vietnam, Indonesia, Thailand, and 
Malaysia (IGES 2010). 

The forest cover assessments described here show that there is a serious threat of accelerated 
deforestation and forest degradation in Pakistan. In order to address this issue, Pakistan has 
developed a voluntary REDD+ database (VRD) and joined the REDD+ Partnership that was 
formed in Oslo in May 2010, which serves as an interim platform for partner countries to 
scale up actions and finance REDD+ initiatives. Pakistan joined UN-REDD as a partner in 
2011 and is set to operationalize and mainstream REDD+ in its forest management practices. 
In July 2013, Pakistan became a member of the Forest Carbon Partnership Facility (FCPF) and 
submitted a REDD+ Readiness Preparation Proposal (RPP) to the FCPF, which was approved 
and received USD 3.4 million funding over five years. Pakistan succeeded in securing a 
further USD 10 million through a GEF allocation under the Clean Development Mechanism 
and Climate Change, which also addresses REDD+ (Khan and Nasir 2011). The consultation 
activities have produced several important outcomes, including identification of a range of 
stakeholders relevant to REDD+ along with the outreach methods that enhance both 
collaboration and capacity building among national, provincial, and local level line agencies, 
and other organizations, and hence enhanced ownership of the REDD+ mechanism. Various 
capacity building needs were also identified during the consultation process. At present a 
project is being implemented on ’preparation of action plan and capacity building for a 
national forest monitoring system (NFMS) for REDD+’.

Monitoring, reporting, and verification 

Monitoring, reporting, and verification (MRV) is a key element in reducing emissions under 
REDD or REDD+ in developing countries. It is a powerful method to assess and provide a true 
picture of the activities conducted, results, and improvement over time, and has become an 
integral part of any REDD+ strategy programme. In developing countries such as Pakistan, 
MRV can play a vital role in establishing guidelines, standards, and monitoring systems. 
However, certain issues need to be addressed before national emissions from deforestation 
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and forest degradation can be estimated accurately, including 1) the lack of clarity as how the 
verification of data accuracy is determined; 2) insufficient treatment of the issue of 
degradation; 3) only living biomass is covered; 4) available data is inconsistent; and 5) lack 
of harmonized definitions and classifications (MARD 2008; NDP 2009). The review of forest 
cover assessments presented here shows clearly the need for developing a consistent and 
reliable method for forest cover assessment from the national level to the local level in 
Pakistan. 

In 2013, Pakistan launched the REDD+ Roadmap process and is now one of the REDD+ 
implementing countries under the UN-REDD programme (UN-REDD nd). Worldwide, a 
number of scientists are engaged in a wide variety of activities aimed at reducing emissions 
from deforestation, ultimately contributing to the REDD+ plans at every level. Gardner et al. 
(2012) studied national REDD+ programmes using a framework especially for developing 
countries. They reported that the assessment process occurs at an operational level in areas 
that have received REDD+ investments and can be implemented through different tiers of 
data requirement and complexity. The world-famous Amazon forests in Brazil cover a large 
range of green patches. A recent study conducted by Bottazzi et al. (2013) suggested two 
main approaches or methods to assess and address REDD+ issues in the Amazon: 
compensated reduction of emissions from clearing old-growth forest for agriculture, and direct 
payments for labour input into sustainable forest management combined with a commitment 
not to clear old-growth forest. In Pakistan, an interdisciplinary approach was used in different 
mega cities to assess the carbon sinks and stocks (Ali et al. 2012; Ali and Nitivattananon 
2012). The land cover and land use changes were investigated and assessed using Landsat 
data, and changes in carbon sinks, particularly those in vegetation in urban areas, were 
investigated. The results showed that the sinks are decreasing. A similar assessment of 
mangrove was conducted by Abbas et al. (2013) in Pakistan. The learning from these 
activities will feed into the initiatives in Pakistan.

There are a number of initiatives in Pakistan that could contribute to addressing the challenges 
involved in developing an accurate assessment of national emissions from Pakistan’s forests. 
For example, strengthening monitoring, assessment, and reporting on sustainable forest 
management includes tackling obstacles to information management. Outside the REDD+ 
process, Finland and the Japan International Co-operation Agency (JICA) have been working 
towards improving the development of a forest information system. In this system, data 
collection takes place at provincial level and is then centralized. FAO is supporting this 
programme financially, and so far it seems to be successful. More details of the REDD+ 
activities in Pakistan are provided in another paper in this volume (Hussain et al. 2015).

Potential sites for REDD+

In identifying potential sites for REDD+, it is important to consider the ecosystem services they 
provide. REDD+ can be particularly useful in conserving the services that are most important 
and also most under threat. Forest ecosystem services include ensuring that a watershed 
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provides clean water for human consumption, provision of timber and subsistence needs of 
local communities, provision of habitat for wild plants and animal species, and conservation 
of biodiversity. Although the proportion of forest cover in Pakistan is relatively low, there are 
some rich forest spots in different parts of the country which provide potential sites for REDD 
activities. The major sites include areas in Azad Jammu & Kashmir, Balochistan, Gilgit-
Baltistan, Khyber Pakhtunkhwa, Punjab, and Sindh, all of which are special in terms of the 
presence of rare species and abundant forest ranges. 
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Forest inventories provide baseline information on a country’s forest resources for 
planning and decision making. Inventories are generally based on a combination of 
assessment of the total extent of particular forest types, based on interpretation of wide 

area images, and detailed assessment of composition based on analysis of field sample plots. 
In Nepal, the inventory approach has changed in response to the changing needs and 
priorities of the country from simply estimating volume of commercial timber, to estimating 
carbon stocks, biomass, biodiversity, availability of non-timber forest products (NTFPs), and 
social variables. This paper provides a brief summary of the major forest inventory activities in 
Nepal since the 1960s, with more detailed information on the most recent inventory – the 
Forest Resource Assessment (2010–2014) – and its suitability for use in REDD+ monitoring, 
reporting, and verification procedures.

Keywords: forest inventory, Forest Resource Assessment, LRMP 

Introduction
Forests play a central role in the current debate on climate change and climate change 
mitigation. They can act both as a source of greenhouse gases when they are destroyed, and 
as a sink when their area and density is increased. Forests also play an important role in the 
regulation of the hydrological cycle, in reducing soil erosion, in stabilizing sloping land, and 
in regional climate regulation, and they provide the basis for the livelihoods of people who 
live in and around forest areas. Notwithstanding their importance, forests are being degraded 
or destroyed in many parts of the world, often on a large scale. Increasingly, plans are being 
made to maintain and restore forests by compensating communities financially for their forest 
activities through such mechanisms as REDD+ (Reducing Emissions from Deforestation and 
Forest Degradation) and payment for ecosystem services (PES), both as a contribution to 
climate change mitigation and to ensure that forest ecosystem services are sustained. 

Both compensation schemes and overall national and local planning require information 
about the extent of forest resources and change over time as a basis for decision making. This 
information is generally obtained through national and local forest inventories. However, 
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assessing the extent and state of forest in a country is a complex process, especially in 
mountainous countries like Nepal where forests are diverse, and much of the forested  
land lies in poorly accessible areas and the resources available for mapping are limited. 
Notwithstanding the difficulties, Nepal has carried out a series of forest inventories over  
the years. 

Inventories are generally based on a combination of assessment of total extent of particular 
forest types, based on interpretation of wide area images (photos, satellite images, etc.), and 
detailed assessment of composition, based on analysis of the vegetation and soil in sample 
plots. Information from sample plots is used to obtain more detailed information on 
composition and specific variables and to relate these with parameters obtained from satellite 
imagery as a way both to guide and to verify the image analysis. In Nepal, the inventory 
approach has changed in response to the changing needs and priorities of the country from 
simply estimating the volume of commercial timber, to estimating carbon stocks, biomass, 
biodiversity, availability of non-timber forest products (NTFPs), and social variables. The first 
inventories used photographic images taken from aircraft and were limited to accessible 
areas. With the recent advances in remote sensing technology, and requirements for 
information on a much wider range of variables, Nepal is now moving towards the use of 
advanced approaches such as Lidar (light detection and ranging). The most recent 
approaches are suitable for preparing the detailed inventories required as a basis for financial 
compensation schemes. In this paper, we summarize the major forest inventory activities in 
Nepal since the 1960s as a basis for understanding the information that is available and the 
potential for future assessments. The most recent inventory, the Forest Resource Assessment, is 
described in some detail and the possibilities for use as baseline information in REDD+ 
activities is briefly discussed.

Historical Forest Inventory in Nepal 
Several forest inventories were carried out in Nepal between the 1960s and 1990s with 
technical support from a number of countries including the United States of America, Canada, 
Finland, and Japan. 

The first National Forest Inventory (1963–1967) 

The first national-level forest inventory was conducted between 1963 and 1967 with technical 
collaboration from USAID. It covered the Terai, Inner Terai, Churia Hills, and southern faces of 
the Mahabharat Range, but excluded most of Chitwan Division, which was inventoried 
separately, and all the mountain areas, which were considered inaccessible. The forests were 
first classified as commercial or non-commercial. The survey focused on collecting data from 
the commercial forests, primarily in terms of estimating stocks of timber and domestic 
consumption of wood products. In terms of methodology, it was based on the visual 
interpretation of aerial photographs (1953–58 and 1963–64), mapping, and field inventory. 
This inventory provided the first comprehensive assessment of commercial forests in the Terai 
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and the adjoining hill regions. Following the national level inventory, district-level forest 
inventories were conducted in most Terai districts and some hill districts between 1968 and 
1989 in order to assess growing stock and prepare district-level forest management plans. 

The Land Resources Mapping Project (1978–1986)

Forest was included as one category in the country-wide Land Resources Mapping Project 
(HMGN 1986) carried out between 1978 and 1986 by the Nepal Government with support 
from the Canadian International Development Agency (CIDA). The study used aerial 
photographs from 1978 to 1979 at a scale of 1:50,000, together with the results of a 
nation-wide land survey, topographic maps at a scale of 1:50,000, and ground verification to 
map land cover and land use. Forest was defined as areas of trees with crown cover of at 
least 10%. Both high- and low-altitude forests were assessed and mapped in terms of 
dominant species and forest type (coniferous, hardwood, or mixed), size, and crown cover 
(10–40%, 40–70%, 70–100%). Scrubland was mapped separately. Land use maps were 
produced at a scale of 1:50,000 and the final reports were published in 1986 (HMGN 
1986). The Master Plan for the Forestry Sector published in 1989 (HMGN 1989) used the 
land categories provided by the LRMP. 

The second National Forest Inventory (1990–1997)

The second national forest inventory was conducted by the Forest Survey and Statistics 
Division (now Department of Forest Research and Survey, DFRS) under the Ministry of Forest 
and Soil Conservation (MFSC) with support from FINNIDA (Government of Finland) under the 
Forest Resource and Information System Project (FRISP) from 1990 to 1998 (DFRS 1999, 
Härkönen 2002 ). In the first phase, it updated data on forest coverage and other forest 
statistics, and identified change (especially deforestation) from 1987 to 1998 for all the 
accessible forests (all 20 Terai districts and selected hill districts) but excluding protected areas 
(PAs). Forest was defined as an area of at least one hectare where trees with well-defined 
stems are growing, with crown coverage more than 10%, not used primarily for other 
purposes, and at least 100 m wide (area could include treeless patches not wider than 25 m 
and not exceeding 1 ha). Inaccessible areas were defined as those located on a slope of 
more than 100% (45°) or surrounded by steep slopes, landslides, or other physical obstacles.

The first phase from 1990 focused on the Terai; the inventory was extended to the hill areas in 
1994. The results provided realistic figures for forest and shrub areas as well as for growing 
stock categorized by tree species. More details of the inventory can be found in Härkönen 
(2002) and FAO (2007).

The Terai inventory (14 districts) was based on interpretation of Landsat TM satellite images 
(28.5 m spatial resolution) from 1990 and 1991. Normalized Difference Vegetation Index 
(NDVI) thresholding was applied to distinguish between forested and non-forested land. Forest 
and shrub could not be distinguished, but previous results indicated that the amount of shrub 
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in the Terai was insignificant. Field 
inventory was based on unsupervised 
classification of Landsat TM satellite 
imagery and field sample plots. The 
area of the sample plots varied 
according to tree diameter, ranging 
from about 80 m2 for seedlings to 
4,800 m2 for big trees. The sampling 
intensity was about 0.015%.

Seven districts were assessed under a 
’District Forest Inventory’. Forest areas 
were delineated in aerial photographs 
taken at a scale of 1:25,000 and 
1:50,000 in 1989–1992 (Figure 14). 
Stratified random sampling and field 
study were used to estimate forest types, 
stand size, and stocking classes. Three 
districts were assessed under the Churia Hills Forest Inventory in a similar way to the Hill Area 
Inventory (below).

The Hill Area Inventory (51 districts) was based on black and white stereo-pair aerial 
photographs at a scale of 1:50,000 taken under a topographic mapping project for Nepal’s 
development regions. Photos were taken in 1992 for the Eastern and Central Development 
Regions and in 1996 for the Western, Mid Western, and Far Western Development Regions. 
Topographic maps from the 1950s Indian Survey were used as topographic base maps. 
Photo-point sampling was used with a grid of 7,685 sampling points (4 × 4 km or 
3.66 × 3.66 km). The grid was drawn on the topographic maps and transferred to the aerial 
photos to estimate forest area and to identify the position of sample plots in the field. Field 
inventory was carried out in sample plots selected using the same point grid overlaid on the 
maps. Altogether 560 clusters in 156 camp units were measured in the field. The size of 
sample plots varied according to tree diameter 
ranging from 50 m2 to 3,600 m2. The sampling 
intensity for the accessible forest in the hill area 
was 0.015%. The results for mean volume in the 
regions and hills overall are shown in Table 10 
and the map of forest cover in Figure 15. 

Wide area tropical forest resources 
survey (2000)

In 2000/2001, the DFRS carried out a national 
wide-area survey of tropical forest resources in 

Figure 14:  Typical aerial photo used  
for sampling

Table 10:  Mean volume in hill 
areas in 1994

Development region Mean volume 1994 
(m3/ha)

Eastern 225.5

Central 185.0

Western 207.5

Mid-Western 171.1

Far-Western 218.1

Hill area total 200.5
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technical collaboration with the Japan Forest Technical Association (JAFTA) using satellite 
imagery (Landsat TM images from 1998/99 and Indian remote sensing from 1999/2000) 
(JAFTA 2000). The survey analysed land use, forest distribution, forest type, and conditions 
with the aim of providing the information required to prepare forest management plans. Six 
different types of forest were identified (sal, tropical mixed hardwood, upper mixed hardwood, 
chir pine, blue pine and fir/hemlock/spruce/cedar) with a total forest area of 5.51 million 
hectares, and shrub area of 1.28 million hectares. 

Forest cover change (2005)

In 2005, the Department of Forests (DOF) conducted a study of forest-cover change in the 20 
Terai districts using Landsat images from 1990/91 and 2000/01. Land was classified in six 
categories (forest, degraded forest, grassland, barren land, water bodies, and other land 
(DOF 2005; DFRS 2014b). Ground verification was carried out between September and 
November 2004. The total forest cover across the Terai districts (including the Churia Hills) 
was 37% (1.3 million hectares) with an annual rate of deforestation of 0.06% (excluding 
protected areas). 

Figure 15:  Forest cover map prepared in 1994

Forest and shrub <1,000 m
Forest and shrub 1,000 – 2,000 m
Forest and shrub 2,000 – 3,000 m
Forest and shrub >3,000 m
Others



Figure 16:  Rapid eye image used  
for mapping
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The Ongoing Forest Resource Assessment (2010–2014)
The most recent national inventory is being prepared under the Forest Resource Assessment 
(FRA) Nepal Project (2010–2014), a bilateral development cooperation project implemented 
by the governments of Nepal and Finland (www.franepal.org/). The project is specifically 
required to support the collection of the national-level baseline data required for the UN 
REDD+ programme (FRA 2013). The FRA has been designed to provide comprehensive, 
up-to-date national-level forest resource information for use in development of national forest 
policy and strategic forestry sector decision making. The assessment is intended to provide the 
distribution, extent, species composition, soils, and biodiversity characteristics of forests, 
together with data on forest change and estimates of timber volumes and carbon storage. To 
date, results have been published for two physiographic regions, the Terai (DFRS 2014b) and 
the Churia Hills (DFRS 2014a), and endorsed by the Government of Nepal. The national and 
middle mountain reports will be released soon. 

Sample design

The inventory design is based on 2-phase sampling with stratification and in some areas 
(Lidar Working Areas) 3-phase sampling with stratification. A 4 x 4 km grid was used for the 
first phase, giving a total of 9,180 clusters for the entire country; sufficient to provide accurate 
estimates for total forest area, other wooded land, other land with tree cover (trees outside of 
forests), other land without tree cover (agricultural land and built up areas), and others. Visual 
classification of high resolution and very high resolution satellite images (Figure 16) was 
carried out using six points per cluster, giving a total number of first phase sample points of 
around 55,000. Most of the points were easy to classify (clearly forest and clearly non-forest); 
some unclear points required more time and additional reference materials. 

The second phase sample selected 
every fourth cluster with five or six 
wooded points; every eighth cluster 
with three or four wooded points; 
every twelfth cluster with two wooded 
points; every fifteenth cluster with one 
wooded point; and a very small 
fraction of clusters with zero wooded 
points. These relative proportions were 
defined after checking the first phase 
sample and distribution of clusters by 
number of wooded sample points. The 
idea was to select relative proportions 
such that clusters with several points in 
forest or other land with tree cover 
were more frequent in the second 
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Figure 17:  Distribution of Forest Resource Assessment field inventory plots

phase sample than less wooded clusters. In the Terai region, most of the first phase clusters 
were either completely in forest or completely in agricultural land, thus an equal sampling 
intensity was selected for all clusters on forest plots. The distribution of field inventory plots is 
shown in Figure 17. 

The design was used flexibly together with various remote sensing techniques and materials 
depending on the information needs in each physiographic region and applicability of remote 
sensing tools. In most cases, the FRA data provides good baseline data for further, more 
intensive forest inventories for management or other special purposes. Using this design, it 
was possible to calculate results for sub-units such as development regions (5 sub-units), 
physiographic zones (5 sub-units), and potential federal states (6 to 14 sub-units) that were 
still regarded as fairly accurate. The results for individual districts (75 sub-units) were not 
statistically reliable and subject to high errors due to the low number of clusters and measured 
field sample plots per district. 

Field inventory

The field sample plots were established as permanent sample plots and positioned with a 
GPS-device. The location data were always entered when the measurement of a new sample 
plot was started. A concentric circular design was used (Figure 18). Sample plots were divided 
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Figure 18:  Sample plot design
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into two or more stands if there was a clearly visible different forest type or land use class 
within the plot. In these cases, stand delineation was required for estimating with respect to 
different forest stands (e.g., natural and planted forest) or land use classes within the plot. A 
forest stand, or forest compartment, was taken to be a forest that was homogenous with 
respect to administrative data, forest use restrictions, site factors, and characteristics of 
growing stock. Measurement started by defining and locating (delineating) the land use 
classes of the forest stands. Tree-level data collection was then divided into measurements of 
all trees and detailed measurements on a sample of trees. Sampling was done according to a 
clearly defined protocol. Data were collected on standard parameters including tree number, 
diameter at breast height (DBH), height, tree quality class, crown cover, and tree type. 
Standing dead trees were also measured. Details of fallen trees and woody debris were 
recorded in a 10 m radius plot. Shrubs and small trees (seedlings and saplings) were 
measured in four 2 m radius sub-plots located 10 m from the centre of the sample plot. Loose 
litter was measured by collecting from the soil surface of four 1 m2 square sub plots located 
5 m from the centre of the main plot. The characteristics of herbaceous plants, grasses, and 
pteridophytes were recorded in the same square vegetation plots. The percentage coverage of 
the vascular plants and ferns were determined in each vegetation plot. Soil samples were 
taken from square plots at four cardinal or sub-cardinal points. The surface was cleared and 
soil samples were taken at depths of 0–10, 10–20, and 20–30 cm.

Calculations
The tree volume was estimated using the models and equations given by Sharma and Pukkala 
(1990). Models are provided for 21 individual tree species and two additional tree species 
groups. The models were used to estimate total stem volumes over- and under-bark, and 
merchantable stem volumes up to tip diameters of 10 and 20 cm. Biomass estimates for stem, 
branches, and leaves were obtained using species-specific mean density estimates for stem 
wood and mean allocation coefficients for the ratios between 1) branch and stem biomass, 
and 2) foliage biomass and stem biomass (HMGN 1989). In order to adapt the existing 
volume and biomass predictors so that they could be applied to the FRA data for the Terai, 
decoding keys were established between the species listed in the FRA manual and the species 
modelled by Sharma and Pukkala (1990) and between the FRA species and species with 
biomass conversion factors (HMGN 1989), and were verified by local inventory experts. Stem 
volumes were converted into stem biomass by multiplying the predicted stem volume by the 
species-specific air-dried density estimate for stem wood (HMGN 1989) (Equation 1)

    ŵ
 
stem = ν̂stem x ρ̂ stem 							             (1)

where wstem is stem biomass (kg), vstem is stem volume (m3) and ρstem is the species-specific 
air-dried density estimate for stem wood (kg/m3).

The tree wise air-dried biomasses of branches and foliage can be determined using the 
equation for total stem biomass and mean ratio estimates in HMGN (1989) for the 
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relationship between branch and stem biomass, and foliage and stem biomass, respectively. A 
continuous estimator based on the species-specific ratio estimates by three tree size classes 
(small-, medium- and large-sized trees) was developed by Sharma and Pukkala (1990) 
(Equation 2): 

   

bmri = S,	 if d1.3 <10 cm
bmri = [(d1.3 – 10) x M + (40 - d1.3) x S]/30,	 if 10 ≤ d1.3 <40 cm
bmri = [(d1.3 – 40) x L + (70 - d1.3) x M]/30,	 if 40 ≤ d1.3 <70 cm
bmri = L,	 if d1.3 ≥70 cm         (2)

where bmri is the ratio estimator for the relationship between branch and stem biomasses (i = 
wbranch/wstem) or foliage and stem biomasses (i = wfoliage/wstem) of small-sized trees (S), medium-
sized trees (M), and large-sized trees (L), respectively.

The biomass for the stump (including bark) and top coarse roots is predicted by multiplying 
the estimated volume by the air-dried density estimate for stem wood (HMGN 1989)

The mean volume (or biomass or any other metric variable measured in the plots) is only 
measured in the second phase sample plots. The mean volume (m3/ha) of a category k (e.g. 
forest type) in a sampling stratum h is estimated with the ratio of the means estimator (Kleinn 
1994) (Equation 3).
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								               (3)

where yik is the volume of trees in category k, aik is the area of plot i (m2), and a constant of 
10,000 is needed to convert the figures to per hectare values.

Because concentric plots are used, each tree size class has a different plot size (a). One 
method to solve this is to use Equation 4 for each plot size and sum over size classes.  
Another computationally easier solution is to use a ratio estimator based on the number of 
plot mid points:

where Yihk is the per hectare volume (m3/ha) of a tree i in category k in stratum h (i.e., volume 
of each tree multiplied by its size dependent expansion factor), and nhk the number of field 
sample plots (mid points) in category k in stratum h.

   Y n
y

hk
hk

ihki

nhk

=
/ 									                (4)

Note: Yik is the volume of a single measured tree multiplied by its expansion factor. Even if the 
plot is not a full plot (part of it is not forest or outside the category k) the expansion factor is 
the expansion factor for a full plot, i.e. without any correction for plot size.
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The mean volume of a category k over a sampling strata is estimated as the weighted mean 
of the sampling strata means (Equation 5):
   
Y Y vk hkn

L
hk=/ 								             (5)

where v A
A

hk
hkh 1

L
hk=

=/  and Ahk is the area (estimate) of category k in stratum h. 

Some recent results

The Terai and Churia Hills 

The Department of Forest Research and Survey has published the most recent results of the 
ongoing national forest inventory for two regions: the Terai Forests (DFRS 2014b) and the 
Churia Forests (DFRS 2014a). Overall, forest cover was found to be decreasing and wood 
quality degrading. The main findings are shown in Table 11. 

The percentage forest cover in the Terai region (20%) is less than a third of the percentage 
forest cover in the Churia region (72%). The value for other wooded land is also much lower 
(0.5% and 1.2%, respectively). Although the percentage of forest cover is higher in the Churia 
region, the productivity appears to be lower. Per hectare stem volume was higher in the Terai 
than in the Churia region (167 m3 compared to 154 m3). In both regions, sal forest has the 
highest biomass density.

The air-dried, above ground biomass of the Terai forests was 202.64 t/ha and the below 
ground biomass 6.09 t/ha. Per hectare air-dried and oven-dried biomass were estimated to 
be 208.73 t/ha and 189.75 t/ha, respectively. The total air-dried biomass and oven-dried 
biomass in the Terai forests were estimated to be 85.9 and 78.1 million tonnes, respectively. 
The largest stocks of soil organic carbon (SOC) were found in sal and tropical mixed 
hardwood forests; together, they contained 97% of the soil carbon stocks; the total carbon 
stock was 50.7 Tg (123 C t/ha). The Terai forests were highly disturbed by livestock grazing, 
tree cutting, sapling and pole cutting, tree lopping, and other human induced damage, and 
forest fires. 

Table 11:  Values of main forest parameters in the Terai and Churia Hills

Parameter Terai region Churia region
Forest area 20% (411,580 ha) 72.37% (1,373,743 ha)
Other wooded land (OWL) 0.47% (9,502 ha) 1.19% (22,672 ha)
Annual rate of change -0.44% -0.2%
Mean volume 167.42 m3/ha 153.99 m3/ha
Carbon density 123.14 tonnes/ha 116.96 tonnes/ha
Regeneration (seedling) 30,000/ha 19,805/ha
Biomass density 189.75 t/ha 175.28 tonnes/ha
Total carbon stock 50.68 Tg 160.65 Tg
Number of stem/ha>5cm 583 /ha 731 /h
Basal area 18.38 m2./ha 18.77 m2/ha
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In the Churia Region, stem volumes were 154 m3/ha on forest land and 17.1 and 9.3 m3/ha, 
on other land, and other wooded land, respectively. Sal forest had the highest stem volume 
(192.3 m3/ha), pine the second highest (170.7 m3/ha) and khair/sissoo the least (12.8 m3/ha). 
The above ground air-dried biomass of live trees was 179 t/ha and below-ground biomass, 
6.12 t/ha. The total (live trees, dead trees, dead wood) air-dried above ground biomass 
was 186.5 t/ha and the total below-ground biomass was 6.3 t/ha. The potential sustainable 
production forest was about 54% (744,000 ha). The total carbon stock in the Churia forest 
was estimated to be 160.7 Tg, with an average of 116.9 t/ha. Tree, litter/debris, and soil 
components contribute 84.7, 0.3, and 31.9 t/ha of carbon respectively. 

Lidar scanning results

The Forest Resource Assessment Nepal, WWF, and the Arbonaut company collaborated to 
collect Lidar data for 5% of the Terai Arc Landscape (TAL) area in 2011. Twenty blocks of 
20 x 5 km were scanned as a sample; 738 field plots with a radius of 12.6 m were 
inventoried in 2011, and 46 plots with a radius of 30 m were inventoried in 2013. The 
allometric equations developed by Sharma and Pukala (1990) were used to estimate the 
biomass. The correlation between Lidar data and field samples was estimated and wall-to-
wall biomass estimates derived using the LAMP model and surrogate plots developed in the 
Landsat image in order to predict biomass and carbon. 

The Government of Nepal has submitted a sub-national level Emission Reduction Project Idea 
Note to the World Bank based on the Lidar estimates in the TAL area; however, some issues 
related to ground verification and validation with inventory estimates and LAMP estimates 
remain to be resolved. 

Conclusion
The current national forest inventory (2010–2014) in Nepal has created good baseline data 
at the national level that can be used both for future forest monitoring and for REDD+ 
monitoring, reporting, and verification (MRV) (activity data and emission factor data). 
However, some methodological issues remain in terms of how to integrate the national level 
inventory data with sub-national REDD projects that use advanced technology like Lidar for 
estimation. How to institutionalize procedures to ensure continuous future MRV based on 
principles of consistency, transparency, and reliability is also considered to be a key challenge 
for Nepal. 
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I n this article, JAXA’s MRV system is summarized. A spatial simulation model was 
developed based on time series synthetic aperture radar (SAR) data, an algorithm for 
forest/non-forest mapping, deforestation monitoring, and forest biomass mapping to fit the 

existing deforestation experience and project future forest patterns. Each step is introduced.

Keywords: forest/non-forest map, deforestation, biomass map, simulation

Introduction
Accurate mapping of forest cover is crucial for many applications, such as monitoring of forest 
processes, reducing uncertainties in global carbon modelling, and development of an MRV 
system (monitoring, reporting, and verification), and ultimately contributes to the effective 
implementation of reducing emissions from deforestation and forest degradation (REDD+) in 
developing countries. However, precise mapping of forest cover in wide areas of the tropics 
remains challenging (Hoekman et al. 2010). This is mainly due to the persistent cloud cover 
in tropical regions which has been a major barrier to creating spatiotemporally consistent 
forest land cover maps using the most popular optical sensing technique. In recent years, 
synthetic aperture radar (SAR) systems have altered this barrier significantly. SAR systems are 
active and stand alone in data acquisition. Space-borne SAR sensors available for civilian use 
operate in different bands of the microwave region (X, C, and L), which have the ability to 
penetrate atmospheric particles such as haze, smoke, and clouds without the limits of solar 
illumination (Achard et al. 2010; Shimada and Otaki 2010). The L-band is the lowest of the 
three frequencies but has a superior performance in signal penetration through the vegetation 
of the forest canopy, where radar backscattering, interferometric coherence, and phase 
information can be significantly linked with forest events.

JAXA’s MRV system is summarized in Figure 19. The system is based on time series SAR data; 
the development is in progress. The current status for each category is presented in the 
following sections.

Forest/Non-Forest Mapping
At the global level, mosaics of ALOS PALSAR data were generated for 2007, 2008, 2009, 
and 2010 at 25 m spatial resolution. Maps of forest and non-forest were generated using 
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thresholds for HV polarization data that varied regionally. The accuracy of the mapping was 
assessed against Degree Confluence Project data, Forest Resource Assessment data, and 
Google Earth images; the overall agreement was 85%, 91%, and 95%, respectively (Shimada 
et al. 2014). Continuation of this work based on PALSAR-2 will be conducted after the launch 
of ALOS-2. 

Annual Deforestation Monitoring in Indonesia Using ALOS 
PALSAR Mosaics
Time series γ0 characteristics of natural forests and deforested areas were investigated using 
ALOS PALSAR gamma naught (γ0) mosaics (Shimada and Otaki 2010), and the accuracy of 
automatic deforestation detection using a threshold was evaluated. The study area was Riau 
Province in Indonesia which has various forest types such as peat swamp forests, forests on 
mineral soil, mangroves, and plantations (oil palm, acacia, rubber, coconuts). Six ortho-
rectified and slope-corrected γ0

HH and γ0
HV images from 2007–2010 were generated from fine 

beam dual (FBD) mode data using the SIGMA-SAR software (Shimada 1999); the pixel size 
was 25 m by 25 m. Truth data were extracted by human interpretation of time-series cloud 
free optical images (ALOS AVNIR-2 and Landsat 7 ETM+) and land cover maps.

Figure 19:  JAXA’s MRV system
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A simple threshold for time series 
differences in γ0

HV was effective in 
detecting the deforestation areas 
automatically (Figure 20). A fixed 
threshold for all data provided 
72−96% accuracy (average 87%). 
The difference to the accuracy derived 
by optimized thresholds for each time 
series data was only 2%. γ0

HH did not 
provide such accuracy because γ0

HH is 
unable to show systematic changes 
after deforestation occurrences. 

One of the causes of detection error is 
temporal variation in γ0. The temporal 
γ0 variations in deforested areas were 
larger than those in natural forests. 
This different behaviour may decrease 
the accuracy. These γ0 variations 
correlated well with accumulated 
precipitation. In the study, we averaged 
PALSAR data obtained at two different dates within one year to minimize the γ0 variations. This 
can reduce the error and provide consistently high accuracy (average 91%, range 82–96%) 
but temporal resolution is reduced. This accuracy is compatible with the results of recent 
studies that used mid-resolution (10–60 m) optical sensors. The annual deforestation map 
obtained by applying the above method for PALSAR gamma naught mosaics over Riau 
Province is shown in Figure 21. 

Figure 22 shows the area of natural forests in individual years; it shows that PALSAR data can 
provide yearly monitoring of forest areas, which is difficult to obtain from optical satellite 
images mainly due to persistent cloud cover. This type of information on forest cover change 
is one of the key parameters for estimating time series changes in forest carbon stocks. The 
PALSAR-based deforestation detection method has the potential to provide more detailed 
information, especially in tropical forests.

Biomass map

Biomass maps were produced from PALSAR data using two methods. Method 1 used  
land-cover classification results derived from PALSAR multi-temporal mosaic images  
(Shiraishi et al. 2014). The average biomass value for a class was taken as the representative 
value for that class, and assigned to the respective class. Method 2 used the correlation 
between radar backscattering (γ0

HV) and forest above ground biomass (AG-biomass). The 

Figure 20: Areas in acacia plantations with 
decreased γ0 (γ0 change < -1 dB) (a); true colour 

images of ALOS AVNIR-2 RGB data (b,c,d)

(a) (b)

(c) (d)
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Figure 21:  Annual deforestation map of Riau Province obtained using  
ALOS PALSAR time series data
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Figure 22:  Time series changes in the natural forest area in Riau province

Data for the period 2008–2010 were calculated using the PALSAR mosaic deforestation map. Data for 1985, 
1990, 2000, and 2007 were obtained from WWF Indonesia land cover data (Uryu et al. 2010). Data for 
1996 were obtained from the report of Forest Watch Indonesia/Global Forest Watch (2002). The solid line 
shows the regression line for the data from 1996 to 2010, y = -121.31 x + 246354, R2=0.994, p < 0.001.
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γ0
HV-(AG-biomass) relation derived using half of the biomass data (134 regions, each region 

3.6 ha) and estimates from the Lidar data is presented in Figure 23. The solid line represents 
the fitting result with the water cloud model. 

HV
0 b b 1– exp –b AG_Biomass))]1 2 3= +c ^ ^6

where b1, b2, and b3 are free parameters

Root mean squared errors (RMSEs) for the biomass estimation were calculated using the water 
cloud model and the rest of the data.

Figure 24a shows the biomass map derived using Method 1. The total biomass in the study 
area was estimated to be 3.06 Gt. The average biomass value for natural forest estimated 
from 28 field biomass measurements was 256.1 t/ha with a standard deviation of 44% and 
range of 55–301 t/ha.

Table 12 summarizes the RMSEs for the AG-biomass estimation (Method 2). The simple average 
indicates that the value is estimated from the averaging of biomass derived from Lidar data and 
corresponds to Method 1. RMSEs were 62.8, when the γ0

HV-(AG-biomass) relation was 
available. This value is smaller than the value of 99.1 estimated from a simple average. 
Figure 24b shows the AG-Biomass map produced with the γ0

HV-(AG-biomass) relation.  
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Figure 23: The γ0HV-(AG-biomass) relation derived using half of the biomass data (134) 
and estimates from the Lidar data in Model 1. The solid line represents the fitting result 

with the water cloud model. 
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The total biomass in the study area was estimated to be 3.23 Gt. The biomass value for 
natural forests was assigned to 256.1 t/ha for Method 1, as shown by the white in the 
biomass map (Figure 24a). The variation of biomass within a natural forest class as seen in 
the biomass map (Figure 24b) was as expected. The area surrounded by the blue rectangle  
in Figure 24b shows AG-biomass values of 30 to 100 t/ha. This area is called the peat  
dome, and is known as a very wet area containing less biomass, which is correctly reflected  
in the AG-biomass map.

Figure 24:  Biomass maps derived from a) the classification map and  
b) the relation between g0

HV and AG-biomass

Table 12: AG-biomass estimation error

AG-biomass
(t/ha)

Std. Dev.a/RMSEb

(t/ha)

Simple average 218.0 99.1a

AG-bio-mass − γ0 
(Model 1)

Total 62.8b

< 100 t/ha 13.2b

>100 t/ha 223.4 67.0a

a b
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Linking PALSAR Observation to Forest Policies for Visualizing the 
Future Perspective of Tropical Forest 
Tropical deforestation is considered to be a major source of greenhouse gas emissions  
and is expected to continue for the next several years. To reduce deforestation and forest 
degradation and mitigate forest-related GHG emissions, the United Nation’s initiative for 
REDD+ is being developed to offer a financial value for the carbon stored in forests as an 
incentive for local communities. The requirement for the setup of a REDD+ programme is  
the monitoring, reporting, and verification (MRV) of baseline carbon stocks and their changes 
over time. Therefore, timely monitoring of tropical deforestation and investigating the future 
impact are essential. Integration of remote sensing and spatial modelling techniques is a 
promising tool for deriving the solutions. In this study, we investigated tropical forest loss  
and associated biophysical factors in Riau Province, Indonesia between 2007 and 2010  
using time series PALSAR data, fieldwork, and other ancillary data. We developed a spatial 
simulation model to fit the existing deforestation experience and project future forest patterns. 

Four what-if scenarios were formulated in the modelling and examined empirically (Thapa et 
al. 2013): business as usual (BAU); forest regeneration (FR); governance as conservation 
forest (G–CF); and governance through concession for plantation and selective logging  
(G–CPL). The model generated landscape spatial patterns indicated the potential locations 

Figure 25:  Time series forest and deforestation patterns by scenario
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and extent of deforested areas by 2030 and provided crucial time-series information on the 
forest landscape under various scenarios for future landscape management projects 
(Figure 25). The results suggest that the current deforestation process is at a critical stage, 
where some local areas may face unprecedented stress on primary forest that will lead to loss 
of rivers and forest ecosystems as soon as the end of 2020. By quantifying the forest patterns 
and taking the BAU as a reference scenario from the REDD+ perspective, it can be calculated 
that the G-CF, FR, and G-CPL scenarios could save 1.67, 10.82, and 12.93%, respectively, 
of natural forest land from deforestation by the end of 2020. The landscape saving from 
deforestation under these scenarios is expected to be better in the subsequent decade (by 
2030), i.e., 3.21, 15.17, and 18.88%, respectively. Each scenario derives a set of spatially 
explicit deforestation storylines with different possibilities incorporating simulations; which help 
people to grasp the possible risks and possibilities involved in particular courses of action by 
testing forest plans and strategies. The maps can be linked with the AG-biomass maps 
(Figure 24) to quantify the scenario wide future carbon emissions in the study area.
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Different methods are used to measure above ground biomass (AGB) and thus the 
carbon stock of forests. Combining very high resolution (VHR) optical satellite data 
with airborne Lidar data has provided new opportunities to assess and map the 

carbon stock of forests accurately. The present study was conducted in a subtropical forest in 
Kayer Khola watershed, Chitwan District, Nepal. The retrieval of canopy height, crown 
projected area (CPA), and tree species classification was assessed, and their application in 
carbon stock estimation evaluated. WorldView-2 and Geo-Eye satellite data were co-registered 
and combined with airborne Lidar data to obtain a canopy height model. The main objective 
of the study was to map biomass and carbon stock in three community forests in Chitwan 
District, Nepal. Other specific objectives were to compare community and government forest 
management, assess the community forest certification process for sustainable forest 
management, assess forest trees species diversity, and develop a model base to estimate soil 
organic carbon. 

Keywords: carbon stock, VHR satellite images, Lidar, community forest, Nepal

Introduction 
The growing concentration of greenhouse gases (GHGs) in the atmosphere is thought to be 
the cause of increasing temperatures, and has raised concerns about global warming and 
climate change issues. Carbon dioxide (CO2) is one of the main contributors to the 
greenhouse effect in the atmosphere. The global atmospheric concentration of CO2 increased 
from 280 ppm in the pre-industrial era to 379 ppm in 2005, with an average increase of 
1.9 ppm per year. Further increases in CO2 and other gases are expected to lead to an 
increase in the global temperature by between 1.8 and 4°C by the end of the century (IPCC 
2007). The rapid increase in CO2 concentration is closely related to anthropogenic causes 
such as the heavy use of fossil fuels, deforestation, and land degradation. Deforestation and 
forest degradation are responsible for about 20% of GHG emissions, and are thus a major 
issue for climate change (World Bank 2010).
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Carbon is sequestered and stored by terrestrial and marine ecosystems. About 
2,500 gigatonnes of carbon (GtC) are stored in terrestrial ecosystems, compared to 
approximately 750 GtC in the atmosphere. Healthy forests sequester and store more carbon 
than any other terrestrial ecosystem and are considered to be an important natural brake on 
climate change (Gibbs et al. 2007). At present, forests cover around 31% of the total global 
land area and store a vast amount (289 Gt) of CO2 in their biomass (FAO 2010). Forests 
sequester CO2 from the atmosphere through the process of photosynthesis and act as a 
carbon sink. At the same time, some areas of forest are being destroyed, overharvested, 
burned, or converted to non-forest use, thus becoming a source of carbon emissions. Tropical 
forests represent a large pool of both carbon sinks and carbon sources, and the estimation of 
the carbon stock in tropical forests is crucial for understanding the global carbon cycle and 
reducing global warming.

The Kyoto Protocol to the United Nations Framework Convention on Climate Change 
(UNFCCC) contains quantified and legally binding commitments to limit or reduce GHG 
emissions at an average rate of 5% to the 1990 level over the five-year period 2008–2012 
(UNFCCC 2011). All the contracting parties to the convention commit themselves to develop, 
periodically update, publish, and report to the Conference of Parties (COP) their national 
inventories of emissions by sources and removals by sinks of all GHGs using comparable 
methods. In addition, the Bali Action Plan of UNFCCC in 2007 (COP 13) opened windows of 
opportunity for developing countries to participate in forest carbon financing through the 
mechanism of ’reducing emissions from deforestation and forest degradation‘ (REDD) (UN-
REDD 2009). REDD is an international effort to create a financial value for the carbon stored 
in forests. It offers incentives for countries to preserve their forestland in the interest of 
reducing carbon emissions and investing in low-carbon paths of sustainable development. 
The UNFCCC COP 15 meeting introduced the ’REDD+’ mechanism, which is concerned 
with both reducing emissions and enhancing carbon stocks through actions that address 
deforestation, forest degradation, forest conservation, and sustainable forest management 
(UN-REDD 2009). To achieve the entire target, REDD+ will require the full engagement and 
respect for the rights of indigenous peoples and other forest-dependent communities. 

Nepal is acknowledged and highly appreciated for its participatory forest management 
regimes. At present, approximately 39.6% of the geographical area of the country is covered 
by forests, 25% of which are managed by local and indigenous communities as community 
forest. The role of community forestry in REDD+ implementation is a central topic of discussion 
in Nepal’s REDD process, and is likely to be an important component for an approach that is 
both environmentally effective and equitable. Nepal, as a UNFCCC signatory and a member 
of the UN-REDD Programme, has recently submitted a Readiness Preparation Proposal to 
participate in the Forest Carbon Partnership Facility. In order to further participate in the 
Carbon Finance Mechanism, Nepal has to show the current status of carbon stored in forests 
and emitted from deforestation and forest degradation. Therefore, it is crucial to estimate 
precisely the national forest carbon stocks in terms of biomass and sources of carbon 
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emissions to determine a national reference scenario and to develop a national REDD strategy. 
The main objective of the present study was to map biomass and carbon stock in three 
community forests in Chitwan District, Nepal. Other specific objectives were: to compare 
community and government forest management, assess the community forest certification 
process for sustainable forest management, assess forest tree species diversity, and develop a 
base model for estimating soil organic carbon. 

Methodology
Study area

The study area was located in Kayer Khola watershed in Chitwan District (Figure 26), one of 
the 75 administrative districts of Nepal, which is located approximately 80 km southwest 
(260°) of the capital, Kathmandu. Chitwan District shares a common boundary with Dhading, 
Gorkha, and Tanahun districts to the north, and Rapti and Makawanapur districts to the east, 
and is bounded by the Narayani River to the west, and the international border with India to 
the south. Geographically, the district lies at latitude 27°30’51”–27°52’01” N and longitude 
83°55’27”–84°48’43” E. The elevation ranges from 300 to 1,200 masl. The land is 
characterized by many steep gorges with slopes varying from 30% to more than 100%. The 
area is drained by the Kayer Khola River, which has many small tributaries. 

Figure 26:  Location of the study area

N
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The district is famous for its rich natural resources and high quality timber. The study area has 
three main types of forest: 1) sal (Shorea robusta) forest; 2) hardwood forest; and 3) riverine 
khair-sissoo forest. Sal is the dominant tree species and comprises nearly 70% of forest 
composition. Other dominant tree species are Terminilia bellirica, Schima wallichii, Semicarpus 
anacardium, Mallotus phillippensis, Cassia fistula, Cleistocalyx operculatus, Careya arborea, 
Holarrhena pubescens, Syzygium cumini, Aesandra butyracea, and Terminalia chebula.

Research method

The overall research method is shown in Figure 27. 

Results and Conclusion
Biomass, carbon, and diversity

Figure 28 shows the results of carbon mapping in the study area. WorldView-2 satellite 
imagery and airborne Lidar data are very promising remote-sensing sources for estimating 
and mapping the above ground carbon stock of tropical broadleaved forest in Nepal. The 
main technique used to estimate the carbon stock of the study area was a species specific 
regression model developed from the crown projected area (CPA) and height of the trees 
using object based image analysis (OBIA). The results showed that Lidar derived tree height 
was able to explain 76% of field measured tree height with an RMSE of 3.84 m. Pearson’s 
correlation test indicated a statistically significant correlation between field height and Lidar 
height at P<0.05, whereas the F-test showed no difference between the means of the two 
heights. Transformed divergence among six major dominant tree species showed a best 
average separability of 1,970.99, which indicates a good separation among the species. 
NIR1, NIR2, and Red-Edge in the WorldView-2 image were found to be the best bands for 
spectral separability of different tree species in comparison to other visible bands in the 
image. The classification accuracy for classifying six dominant tree species was 58.1% and 
Kappa statistics 0.47; overall accuracy for classifying three dominant tree species was 72.7% 
with Kappa statistics 0.62. Two types of accuracy assessment were used for segmentation of 
the image: measure of closeness (D value) and 1:1 spatial correspondence. The overall 
D value for the study area was 0.33, with 0.29 over segmentation and 0.34 under 
segmentation, which means there was a 33% error (67% accuracy) in segmentation; 75% 
accuracy of segmentation was obtained from 1:1 spatial correspondence. Pearson’s 
correlation analysis indicated a strong positive correlation (r>0.70) between height and 
carbon stock for five tree species. The correlation between CPA and carbon was 0.70, 0.79, 
and 0.84 for Shorea robusta, Terminalia tomentosa, and Schima wallichii, respectively, 
whereas a poorer relationship (r< 0.70) was found between CPA and height for all the 
species. On average the correlation coefficients of CPA and carbon, height and carbon, and 
CPA and height were 0.73, 0.76, and 0.63, respectively. Model validation results showed that 
species wise regression models were able to explain 94%, 78%, 76%, 84%, and 78% of the 
variation of the carbon estimation for Shorea robusta, Lagerstroemia parviflora, Terminalia 
tomentosa, Schima wallichii, and others, respectively.
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Sustainable forest management and timber certification

The integration of Lidar data and WorldView-2 imagery was evaluated for estimating and 
mapping indicators using OBIA to assess the condition and sustainability of three community 
forest areas in Chitwan (Devidhunga, Janprogati, Nebuwater). The selected five indicators 
were positively assessed with reasonable accuracy using Lidar data and WorldView-2 imagery. 
The segmentation accuracy was assessed using measure of closeness (D value) and 1:1 
spatial correspondence. The 1:1 relationship showed an overall segmentation accuracy of 
79%, while the D value (measure of closeness) gave a segmentation accuracy of 69%. The 
OBIA classification method was used for both forest type and species classification. The 
overall classification accuracy for forest cover was 94% for Devidhunga, 86% for Janprogati, 
and 82% for Nebuwater. The species classification resulted in an accuracy of 86% for 
classifying two species, 75% for classifying five species, and 67% for classifying six species. 
Two major forest cover types were found: forest and non-forest. At the more detailed species 
level, six dominant species were found in the study area: Shorea robusta, Terminalia 
tomentosa, Schima wallichii, Lagerstroemia parviflora, Semicarpus anacardium, and Mallotus 
phillippensis. A total of 243,079 Mg of above ground biomass (AGB), with an average of 
367 Mg ha-1, was found in the study area. The total timber volume was 222,143 m3, and the 
mean timber volume 0.79 m3/tree. The results of forest parameters, i.e., forest cover and 
area, species composition, AGB, and timber volume, were used to assess the status of each 

Figure 28:  Carbon stock map of community forests (CF) in the study area
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community forest. For instance, the species diversity was comparatively low in Janprogati, and 
high in Devidhunga. More than 90% of Devidhunga and Janprogati was covered by forest, 
whereas 48 ha of non-forest area was found in Nebuwater. However, Nebuwater had a 
significantly higher AGB and timber volume than Devidhunga and Janprogati.

Forest management

The synergistic use of very high resolution (VHR) GeoEye satellite images and airborne Lidar 
data was evaluated for AGB/carbon stock estimation and comparison of two forest 
management regimes. AGB/carbon was estimated using interactive regression models, 
specifically one for Shorea robusta and one for ‘other species’ for each of the forests. The 
accuracy of estimation for community forest was R2 = 0.81 with RMSE = 10% for Shorea 
robusta, and R2 = 0.62 with RMSE = 13% for other species. The accuracy for the 
government-managed forest was R2 = 0.69 with RMSE = 25% for Shorea robusta, and 
R2 = 0.73 with RMSE = 13% for other species. This means that the prediction accuracy for 
Shorea robusta in community forest (90%) was much better than that for the same species in 
government-managed forest (75%). On the other hand, the prediction accuracy for other 
species in both forests was the same (87%). The average carbon stock for community forest 
was approximately 244 t C/ha, while that for government-managed forest was approximately 
140 t C/ha. The results of the average carbon stock and t-test revealed that there is a 
significant difference in carbon stocks for the two forest management types. AGB/carbon 
stock is a function of stand density, basal area, species composition, and canopy density, and 
other factors that have not been dealt with in this study. These are influenced by the forest 
management practices. The results of this study showed significant differences in these 
variables in the two forests, which in turn led to a difference in their estimated average carbon 
stocks. The results show that there is a strong relationship between forest management 
practice and AGB/carbon stock. Although only limited attention was paid to assessing 
deforestation in this study, the primary data, basic observations during fieldwork, and site 
statistics analysis (stand density, canopy density models), suggest that there is some level of 
deforestation in the government-managed forest. The tree density for community forest was 
397 trees/ha, while that for government-managed forest was 120 trees/ha. Thus there 
appears to be a significant difference in stand density in the two forest types. 

Soil organic carbon

The study aimed to assess the effect of elevation, above ground biomass, and tree species 
diversity on soil organic carbon (SOC) and to develop a model to estimate SOC stock using 
airborne Lidar and high resolution WorldView-2 measured variables rather than direct 
measurement of soil samples. The results were as follows. The correlation matrix and stepwise 
regression showed that elevation and SOC are positively correlated. The strong correlation 
(r = 0.74) was thought to reflect the strong correlation between above ground biomass and 
elevation. Figure 29 shows the predicted SOC map. All variables are interconnected within 
the system and it is difficult to measure the influence of individual variables on each other. 
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Thus in a backward regression model, elevation individually didn’t predict SOC. When 
elevation is related to species diversity, AGB, and soil bulk density, it can predict SOC. But in 
this model, species diversity and bulk density were not significant (p values of 0.11 and 0.15, 
respectively). 

This study showed a strong positive correlation between SOC and AGB (at 95% confidence 
interval, p value < 0.001). Based on a backward stepwise regression model, AGB can predict 
SOC when it is correlated with elevation, species diversity, and bulk density. In similar way, 
based on a forward stepwise model, AGB can predict SOC when AGB is correlated with litter 
quality (p = 0.07). Based on the results of the stepwise regression, it was found that litter 
quality is very marginally correlated (p = 0.07) with SOC and can predict SOC in relation to 
AGB. In this study, litter quality was the representative index for species type. From this, it can 
be concluded that there is a marginal correlation between SOC and species type. However, 
there was a poor correlation between species diversity and SOC. When species diversity is 
used to predict SOC in relation to AGB, bulk density, and elevation, the significance level of 
species diversity was very low (p = 0.11). 

From the findings of the study, it can be summarized that the following model is the best fit 
model based on the AIC and p value of the stepwise regression procedure. SOC can be 
measured using two remotely sensed variables, AGB and litter quality. The coefficient of 

Figure 29:  Map of soil organic carbon 
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determination (R2) indicates that 66% SOC can be measured using this model. The model 
predicted an average value of 1.77 SOC (kg/m2) within the 0 to 10 cm soil layer in Chitwan 
District, Nepal. 
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Forests cover around 31% of the total global land area and the carbon stored in their 
above ground biomass (AGB) is directly impacted by deforestation and degradation. 
Regional scale AGB estimation using coarse and medium resolution optical datasets 

becomes problematic in sites with a complex forest structure, and where estimation using 
high-resolution data is hampered by the small area of coverage, frequent lack of availability of 
data, and topographical effects. Both low- and high-resolution datasets are also restricted by 
cloud cover. Airborne Lidar systems have been used for forest AGB estimation, but only with 
coarse spatial sampling; furthermore, a huge amount of logistic support is required for flight 
planning and execution. Spaceborne synthetic aperture radar (SAR) offers high resolution, 
cloud-penetrating, earth observation capability and is independent of nearly all weather 
conditions. At low-frequencies (P- and L-bands), spaceborne SAR penetrates the tree canopy, 
and the backscatter varies with biomass up to a certain AGB density threshold. Many recent 
studies have shown the use of L-band SAR for forest biomass estimation. An overview is given 
here, and specific issues on the usage of SAR for forest biomass estimation in the Hindu Kush 
Himalayan (HKH) region are discussed (HKH region overall and Pakistan specifically). 
Understanding the possibilities and limitations of SAR for forest biomass estimation in this 
region is essential in order to plot the future course of action for research in this direction.

Keywords: SAR, biomass

Introduction 
Forests cover around 31% of the total global land area and store a vast amount (289 Gt) of 
CO2 in their biomass alone (FAO 2010). The carbon stored in the above ground living 
biomass of trees is typically the largest pool and is directly impacted by deforestation and 
degradation (Yang et al. 2013). Different approaches based on field measurements, remote 
sensing, and geographic information system (GIS) modelling are widely used for biomass 
estimation (Goetz et al. 2009; Lu 2006). According to the Intergovernmental Panel on 
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Climate Change (IPCC) Good Practice Guidance (IPCC 2003), remote sensing methods are 
especially suitable for independent verification of the national land use, land use change, and 
forestry (LULUCF) carbon pool estimates. Accurate biomass estimation and mapping is vital 
for better understanding of the carbon cycles in terrestrial ecosystems (Houghton 2005). 
Active and passive optical remote sensing datasets and methodologies are commonly used 
for quantification of biomass and carbon stock estimation (Goetz et al. 2009). Despite several 
advantages, however, these systems have limitations in terms of accurate and reliable linkages 
between ground realities and remotely sensed datasets in terms of the monitoring, reporting, 
and verification (MRV) system for REDD+ (Reducing Emissions from Deforestation and Forest 
Degradation).

Coarse and medium optical spatial resolution data, such as Moderate-Resolution Imaging 
Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) provide a potential for above 
ground biomass (AGB) estimation at a regional level, but mixed pixels and data saturation 
lead to problems in AGB estimation at sites with complex biophysical environments (Gibbs et 
al. 2007; Lu 2005). Very high spatial resolution data provide more accurate results than 
coarse and medium resolution satellite data, but commercial data availability and the small 
coverage area are obstacles to use. In high resolution datasets, the complex forest stand 
structure means that shadows caused by the tree canopy or topography affect the accuracy of 
biomass estimation (Steininger 2000). Achieving high pixel-to-pixel positional accuracy in 
multi-temporal very high resolution datasets is also challenging (Potere 2008). Another 
drawback of high resolution satellite data until recently was the limited spectral variation. This 
has now been overcome to a large extent by the launch of satellites like WorldView-2. 
However, there is still a long way to go to resolve the issues of topographical and positional 
adjustment. A major restraint to the use of passive sensors in the visible and infrared range is 
that they cannot penetrate through clouds. The Hindu Kush Himalayan (HKH) region is often 
covered by clouds, which present a big challenge in acquiring suitable multi-temporal 
datasets to understand the seasonal variations in vegetation in terms of biomass and carbon.

Several airborne and space-borne small- and large-footprint Lidar systems have been used to 
make measurements of vegetation. The Lidar waveform signature from large-footprint 
instruments such as Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) and Laser 
Vegetation Imaging Sensor (LVIS) has been successfully used to estimate tree height and forest 
AGB (Drake et al. 2003; Sun et al. 2011). Simard et al. (2011) have derived a global 
inventory of forest canopy height at 1 km resolution using the Geoscience Laser Altimeter 
System (GLAS) Lidar onboard Ice, Cloud, and land Elevation Satellite (ICESat). However, one 
major limitation of spaceborne Lidar systems is the lack of imaging capabilities and the fact 
that they provide sparse sampling information on the forest structure (Sun et al. 2011). 
Hyyppä et al. (2008) reviewed methods for small-footprint airborne laser scanning for 
extracting forest inventory data and concluded that the extraction of forest parameters through 
airborne laser scanning in high-relief terrain is challenging. ALS can only cover very small 
areas and also requires considerable financial and logistical resources to fly over certain 
areas with special approval needed for flight campaigns.
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The idea of using airborne or spaceborne radar followed by higher-resolution synthetic 
aperture radar (SAR) to extract AGB measurements from forests has been around for some 
time. The primary advantages of SAR in this context are cloud penetration and through-
canopy backscatter at certain frequencies. It is now well established that longer wavelengths 
(L- and P-band) penetrate through the canopy and go through multiple backscatter from 
canopy, trunk, stem, branches, leaves, and soil. Often, there may be multiple-bounce 
backscatter too, such as stem-ground. So, in theory, under certain feasible imaging 
conditions, low-frequency SAR backscatter contains contributions from all components of 
AGB. However, in practice, it is not a trivial task to extract this information from SAR datasets. 
Previously, backscatter models have been used; Michigan and Santa Monica microwave 
canopy backscatter models have been popular. Of late, statistical methods to calibrate 
models and measurements against reference biomass measurements (e.g., from ground 
surveys or Lidar campaigns) have been used to derive biomass from SAR measurements. Koch 
(2010) in a comprehensive review of laser scanning, SAR, and hyperspectral remote sensing 
data for forest biomass assessment also discussed advances in the use of SAR, especially 
combined with polarimetry and interferometry for biomass estimation. In a good summary of 
the topic, Woodhouse et al. (2012) note that while the relationship of radar backscatter with 
AGB is still not known under all forest conditions, satellite-based radar is a most useful tool 
for “mapping forest extent, estimating forest structural variability, and detecting deforestation 
and degradation”. 

Current State of the Art
Efforts to model and characterize radar backscatter from forest canopies were started in the 
late 1970s, and notable progress was made through the radiative-transfer based ‘Michigan 
microwave canopy scatter model’ (Ulaby et al. 1990). For woodland vegetation, the ‘Santa 
Barbara microwave backscatter model’ was developed (Wang et al. 1993). The use of a 
macroecological model was proposed by Woodhouse (2006). It is now well-established that 
at low frequencies (P- and L-bands) the radar backscatter is composed of backscatter 
contributions from canopy, trunk-ground interactions, canopy-ground interactions, and in 
some cases, also direct surface backscatter (Beaudoin et al. 1994; Wang et al. 1998). 
Figure 30 (adapted from Beaudoin et al. 1994) is a good graphical representation of the 
backscatter components for low-frequency (P-band in this case) backscatter from forests at 45° 
incidence angle. Figure 30a is a graphical representation of the major backscatter 
contributions, while Figures 30b and 30c show the backscatter variation with respect to AGB 
for horizontal-horizontal (HH) and vertical-vertical (VV) polarization, respectively.

Attempts to derive accurate AGB measurements from SAR backscatter measurements have 
generated mixed results, and a clear need has emerged for calibration using either ground 
measurements, Lidar campaigns, or field surveys. Hyde et al. (2007) found that using X-band 
and P-band SAR with Lidar data did not noticeably increase the AGB measurement accuracy, 
and they concluded that Lidar is a much better instrument for AGB measurement than SAR. In 
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contrast, preliminary results from Sun et al. (2011) show that using Lidar and SAR datasets in 
synergy can be very useful for AGB estimation. Sun et al. (2000) explored the use of 
Spaceborne Imaging Radar-C (SIR-C L-band horizontal-vertical (HV) polarization data to map 
forest biomass in mountainous areas, and their basic results were encouraging. A recent 
paper (Rahman and Tetuko Sri Sumantyo 2013) gives a very good summary of previous work 
done on estimation of forest biophysical parameters using SAR backscatter data over different 
regions and different forest types (see Table 13 in that reference). Woodhouse et al. (2012) 
give a good short note that describes the current problems with estimation of biomass from 
SAR and its interpretation.

Since there is no legacy of spaceborne SAR at P-band frequency, which may perhaps be most 
useful for canopy-penetration, further discussion will now focus on the L-band for which we 
have legacy spaceborne sensors (JERS-1, ALOS-1) and the recently-launched ALOS-2. As a 
side-note, the first P-band SAR satellite, the European Space Agency (ESA) BIOMASS mission, 
is being planned for launch in 2020. L-band backscatter is directly proportional to effective 
vegetation water content and soil moisture, and is good for estimation of woody AGB when 
surface moisture and rainfall are minimal (Lucas et al. 2010). Other studies show that radar 
polarization also plays an important role. Horizontal-horizontal (HH) polarization has more 
penetration through forests than vertical-vertical (VV) polarization (Lang and Kasischke 2008). 
Many studies show that L-band cross-pol horizontal-vertical (HV) backscatter has the best 
correlation and is the most sensitive to AGB (Kasischke et al. 2011; Robinson et al. 2013, 
and references therein in Sec. 4.2). Others, such as Dobson et al. (1995), show that SAR 
backscatter is also dependent on forest structure. At smaller incidence angles, radar 
penetrates further into the forest and provides better sensitivity to forest structure or volume. 
However, small incidence angles also cause complexity by causing direct backscatter from soil 
to make a contribution (Robinson et al. 2013); an interesting result is also shown in this study, 

a. Major backscatter 
contributions

b. Backscatter from different 
components and variation  
with respect to AGB for  
HH polarization

c. Backscatter from different 
components and variation with 
respect to AGB for VV 
polarization

Figure 30:  Modelled results of major contributions to radar backscatter from forest 
canopy at P-band frequency and 45° incidence angle

Adapted from Beaudoin et al. 1994
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that AGB estimation from L-band SAR is more accurate at larger spatial scales up to 1 ha 
than at small spatial scales. Overall, it is now well-established by many published studies that 
L-band backscatter is directly proportional to AGB until it reaches a saturation point with 
respect to AGB density, and that this saturation point depends on forest and ground 
characteristics, radar wavelength, and polarization (Cartus et al. 2012a,b; Dobson et al. 
1995; Lucas et al. 2010; Mitchard et al. 2009). A general range for this L-band saturation 
point is 100-150 Mg/ha (see Lucas et al. 2010, and Figure 7 and Table IV therein).

Recent efforts to derive AGB from L-band SAR measurements have been focused on 
calibration with biomass measurements from other methods. Cartus et al. (2012b), for 
example, used the Water-Cloud Model (WCM) to derive regional scale biomass from HH and 
HV multi-polarization L-band backscatter, ignoring higher-order interactions like stem-ground 
interactions. The model was calibrated via regression with reference optical-based biomass 
measurements. Their results agreed with earlier findings that HV backscatter gives higher 
biomass retrieval accuracy than HH backscatter. In another study (Cartus et al. 2012a), the 
Random Forest Regression Tree Model was used as a fusion and modelling tool for biomass 
estimation between airborne Lidar, Landsat ETM+, and ALOS PALSAR. The results from this 
study showed that the combined use of all these datasets yielded higher biomass retrieval 
accuracy than each dataset alone. He et al. (2012) derived AGB measurements from ALOS 
PALSAR L-band SAR data by regression with Lidar-derived biomass; their results, however, did 
not indicate SAR to be very useful for forest biomass measurements. Englhart et al. (2011) 
also used Lidar biomass measurements as a calibration source and derived biomass from 
both X-band (TerraSAR-X) and L-band (ALOS PALSAR) data. Their observation that L-band 
backscatter is more sensitive to AGB than X-band backscatter agrees with earlier studies; 
however, they also propose that use of X-band and L-band backscatter together might lead to 
even better AGB estimates from SAR.

The Way Forward for the Hindu Kush Himalayan Region  
and Pakistan
The IPCC recognizes the Hindu Kush Himalayan (HKH) region as a ’data-deficit area‘ (IPCC 
2007), and there are no readily available regional scale biomass inventories. A global-scale 
forest growing stock biomass assessment was made by Kindermann et al. (2008) based on 
the United Nations Food and Agriculture Organization (FAO) 2005 statistics (FAO 2005). 
Datasets for this global inventory are publicly accessible through the International Institute for 
Applied Systems Analysis (IIASA) web portal. AGB measurements for the HKH region were 
extracted from the Kindermann datasets (Kindermann et al. 2008) and mapped; the results 
are shown in Figure 31. This derived global-scale dataset has certain limitations, and the 
reliability of global-scale figures is always a challenge at the regional and national level in 
terms of the statistics and accuracy. Nevertheless, the maps can be seen as general indicators 
of biomass distribution in the HKH region.
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Figure 31:  Global scale above ground biomass inventory at a resolution of 0.5° x 0.5°  
(a) for the HKH region and (b) for Pakistan

Based on the global biomass inventory developed by Kindermann et al. (2008) using FAO statistics

a

b
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Figure 31a shows the global scale AGB density map for the whole HKH region. There is a 
large range of AGB density values, especially in the South Asian region. Keeping in mind the 
general saturation threshold of ≈150 MgC/ha for L-band backscatter, it may not be feasible 
to attempt biomass retrievals from SAR over huge areas where the biomass density is higher 
than this threshold. The saturation threshold also depends on many other variables, such as 
moisture content and forest structure. It may thus be a better approach to first carry out 
small-scale pilot projects in high biomass density regions to ascertain the usefulness of SAR for 
biomass measurement in such regions. In areas where biomass density is below the saturation 
threshold, studies already published have established that SAR can give very useful 
measurements of AGB.

In the specific case of Pakistan, between 1990 and 2010, forests were destroyed at the 
alarming rate of 27,000 ha per annum, placing Pakistan among the countries with the highest 
percentage-wise deforestation rates in the world (FAO 2010). Since 2011, Pakistan has 
become a member of the Reducing Emissions from Deforestation and Forest Degradation 
(REDD) programme. The global scale AGB density map for Pakistan is shown in Figure 31b. 
National or local scale AGB maps will be required in the future for accurate MRV as part of 
the REDD programme; remote-sensing data, especially synergetic use of optical, Lidar, and 
SAR remote sensing, is ideally suited for this purpose. To the authors’ knowledge, there has 
been no reported study of AGB estimation at the national or local scale in Pakistan. The 
global-scale map (Figure 31b) indicates that the AGB density may be too high for L-band SAR 
to be of much use in the northernmost part of the country, but biomass retrievals from SAR 
can definitely be attempted in other areas.

As mentioned before, L-band spaceborne SAR data will be required for further work on 
deriving biomass over the HKH and associated regions. Data from the legacy L-band SAR 
satellites from the Japan Aerospace Exploration Agency (JAXA), JERS-1, and ALOS-1, may be 
explored to understand the data and delineate areas where biomass estimation may be 
possible. We further recommend exploring the possibility of more frequent imaging of focus 
areas through the upcoming ALOS-2 satellite.

Finally, for the data processing approach, we recommend following the recent focus on using 
reference biomass data in conjunction with models to calibrate SAR backscatter and derive 
biomass measurements. In fact, independent SAR datasets will not be useful unless reference 
measurements are available for calibration purposes. Reference biomass data can come from 
any other source at a comparable scale: optical or infrared satellite measurements, plot 
surveys, or Lidar campaigns. It is imperative that either reference measurements are already 
available before acquisition of SAR datasets for biomass estimation in the HKH region, or that 
measurement campaigns from other methods are conducted in parallel. The exact form of the 
model and regression methods to be used remains an open question, and will depend on the 
specific forest type, forest structure, and biomass density in the areas of interest. Other 
important factors that need to be kept in mind are vegetation water content and soil moisture 
conditions as these affect L-band backscatter.
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L idar (light detection and ranging) is an active remote sensing technology which provides 
3D information on terrain and vegetation. In general, Lidar data with a pulse density of 
~1 return per square metre are sufficient for forest inventory applications. Vegetation 

height and density can also be assessed directly from Lidar data, but compared to optical or 
radar satellite data, this is not efficient when high temporal resolution or very large area 
mapping is required. The Lidar Assisted Multi-source Program (LAMP) is a forest inventory 
methodology that integrates Lidar data with satellite data and field data for estimating forest 
characteristics such as biomass and carbon stocks over large areas. It takes advantage of both 
the high precision of Lidar and the good temporal and spatial coverage of satellite data. LAMP 
methodology was applied in three case studies in the tropical countries of Lao PDR, Nepal, 
and Ghana. Wall-to-wall LAMP biomass estimates were produced for a grid with a cell size of 
maximum 1 ha and verified against field data. The case studies prove that LAMP is a scalable, 
fast, robust, and cost-efficient approach for estimating forest carbon and biomass. The results 
indicate that LAMP methodology is a promising approach for achieving the Tier 3 requirements 
for REDD+ in monitoring, reporting, and verification (MRV) at national and sub-national scales.

Keywords: light detection and ranging, Lidar, satellite imagery, REDD, Bayesian 
interpretation, forest inventory

Introduction
Tropical deforestation and forest degradation account for about 15–20% of annual 
greenhouse gas (GHG) emissions, thus being the second largest source of GHG emissions 
globally (IPCC 2013). The Reducing Emissions from Deforestation and Forest Degradation 
(REDD+) scheme may provide sustained incentives for developing countries in the future to 
reduce emissions from forested lands and invest in sustainable development by providing a 
financial value for the amount of carbon stored in forests (Angelsen et al. 2009). REDD+ 
includes the role of forest conservation, sustainable management of forests, and enhancement 
of forest carbon stocks in the financing mechanism (Angelsen et al. 2011). A successful 
REDD+ mechanism will require the design and implementation of operational forest 
monitoring, reporting, and verification systems that are transparent, complete, consistent, 
comparable, and accurate at national and sub-national scales (Walker et al. 2010; Penman 
et al. 2003). 



113

11 – Estimation of Forest Biomass Using the Lidar-Assisted Multi-Source Programme

An integrated system of unbiased geospatial and statistical estimators of sequestered carbon 
amounts across forest land is highly important for REDD+. Combining remotely sensed data 
with a forest resource inventory provides a practical means to generate such information. 
Remote sensing can be used to collect and interpret information about features from a distant 
location and obtain continuous data over large areas in the form of continuous thematic 
maps (e.g., forest biomass). There is a tremendous diversity in the number and properties of 
sensors and imagery available today, ranging from space-borne to airborne to ground-based 
systems. Each system has different properties with different spatial resolution, number of 
spectral and radiometric bands, temporal frequency, and cost of acquisition. Despite this 
diversity, no current remote sensing system directly measures forest biomass and sequestered 
carbon. Remote sensing is effective at indicating where specific features are and how they are 
distributed, but cannot provide an accurate estimate of how much of that feature is in the 
mapped area without an integrated resource inventory.

In recent years, airborne Lidar has become an integral part of operational forest inventory in 
Scandinavian countries (Næsset 2007). Its high potential for REDD+ related biomass 
inventories in tropical countries has been well demonstrated (Asner et al. 2009, Gautam et al. 
2010, Asner et al. 2012, Asner et al. 2013, Asner et al. 2014). Vegetation heights can be 
acquired with high accuracy using Lidar height metrics (Figure 32). Since tree height is 
strongly correlated with tree volume, forest biomass can be predicted with high accuracy when 

Figure 32:  Lidar point cloud cross section and Google map image from the same location 
(green rectangle) from Savannakhet province, Lao PDR

(a)

(b)
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regressing Lidar metrics with data from field measured plots. Wall-to-wall covering of an area 
of interest with Lidar is relatively expensive, thus a two-phase estimation approach has been 
proposed which only requires Lidar data from a sample of the study area. This methodology is 
referred to as the ’Lidar-Assisted Multi-source Programme‘ (LAMP) and combines Lidar 
coverage of a sampled sub-area with field plots with wall-to-wall satellite data to develop 
forest biomass statistics and a biomass map of up to one hectare spatial resolution (Gautam 
et al. 2010, 2013). The method can be applied to many types of forest when adjusted to 
local biophysical conditions.

In this paper we review the LAMP method in the context of three different case studies from 
Lao PDR (Gautam et al. 2010), Nepal (Gautam et al. 2013; Joshi et al. 2014), and Ghana 
(Sah et al. 2012). First, the general LAMP process is described briefly, the three studies are 
then presented with the main results, and finally, we discuss the common findings of the  
case studies.

Methodology

Lidar-Assisted Multi-source Program (LAMP)

The LAMP method follows a two-phase estimation approach. In the first phase, forest 
variables related to biomass are estimated with high accuracy from Lidar information in 
selected sample areas where full-coverage Lidar data and data from ground-truth plots are 
collected. A rectangular sample block or strip sample design is applied to sample Lidar data 
over the area of interest. The field plots are used as a training dataset for the first-phase of 
biomass estimation. In the second phase, the highly accurate estimates in the Lidar sample 
area are used as surrogate plots (simulated field plots) in the interpretation of medium-
resolution satellite scenes for the entire study area (Gautam et al. 2010). 

LAMP Phase 1: Estimating forest parameters for Lidar coverage area

In the first phase of the LAMP approach, a regression model is generated based on the 
relationship between the Lidar metrics (height and density) and field measurements. Sparse-
Bayesian methods offer a flexible tool for regressing Lidar echo histograms with forest 
parameters. The Sparse-Bayesian regression method is a robust estimation algorithm that 
automatically builds an optimal linear regression model for forest parameter estimation and 
selects predictor variables so that the model remains well-conditioned even when the 
candidate predictors are highly correlated and when there are not many field plots available 
for model calibration. While performing comparably to traditional regression methods, they 
are computationally more efficient and allow better flexibility than step-wise regression 
(Junttila et al. 2008; Junttila et al. 2010). The Sparse-Bayesian regression model is then 
applied to predict forest characteristics for a set of thousands of surrogate plots of about one 
hectare size within the forested area of the Lidar coverage. 
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LAMP Phase 2: Expanding the estimates to the entire area of interest using satellite data

In the second phase of the LAMP approach, the forest characteristics estimated for the 
surrogate plots from the Lidar data are applied as simulated ground-truth to generate a 
regression model between biophysical forest parameters and features derived from satellite 
imagery. Again, the Sparse-Bayesian method is used to regress satellite-derived variables with 
the forest characteristics for the locations of the surrogate plots. The satellite-based variables 
are derived from the satellite data’s spectral and textural features and vegetation indices for 
the area within each surrogate plot and include the means and standard deviations of spectral 
values in the red, green, and infrared bands, and from the Normalized Difference Vegetation 
Index, and Haralick texture features from the same bands (Haralick 1979). A subset of the 
variables is selected for each inventory project using the Sparse-Bayesian method.

In the second phase, it is possible to produce Tier 2 level output for forest classes by using 
surrogate plot estimates to derive forest class specific estimates for mean and variance. This 
can be done if the inventory area is classified into meaningful forest classes using, for 
example, satellite data.

Variance preserving estimates are produced so that the true variance of forest parameters that 
Lidar models can reproduce is imputed into the satellite-based estimates via histogram 
matching from the corresponding histogram of the surrogate plots.

The final Tier 3 level output includes biomass and carbon estimates for coarser spatial 
resolution. The spatial resolution of the Tier 3 level outputs is reduced to one hectare pixel 
size. The mean value of biomass/carbon calculated from the forest class mean values (Tier 2 
level output) and the mean from the Tier 3 level output (one hectare grid) are equal, and both 
are unbiased estimates of the mean biomass/carbon within the area of interest. 

Case studies

The LAMP method was used in three case studies. The main features are described briefly in 
the following sections. The materials used in each case study are summarized in Table 13. 

Lao PDR

The study area was situated in Savannakhet province, Lao PDR. The Lidar survey covered the 
whole study area, a total of 25,000 ha. The Lidar survey and field campaign were carried out 
in 2009; the satellite images (ALOS AVNIR-2 and Landsat 7) were from 2006 and 2000, 
respectively. To test the two-phase LAMP approach, every tenth Lidar flight line (strip) was used 
as a sample. In order to acquire a plot sample that represents the variation in biomass in the 
study area well, surrogate plots were placed at random with a probability proportional to the 
estimated biomass. In all, 90% of the area was interpreted using satellite data with the 
regression models based on the Lidar estimate of the surrogate plot data (Gautam et al. 
2010). Stratification was not applied due to the small study area.  
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Nepal

The study area was located in the Terai Arc Landscape in southern Nepal. The Lidar survey 
and field campaign were carried out in 2011; the satellite images (five Landsat 5 TM images) 
were from 2010 and 2011. The applied Lidar sample was a weighted random block sample 
with a block size of 5 x 10 km. The weights were decided by expert judgement of the variation 
of forest types. The Lidar sample covered about 5% of the total study area of more than 
23,300 km2. A total of 738 systematically located field plots measured inside the Lidar blocks 
were used in phase one. The images were radiometrically normalized and mosaiced. In LAMP 
phase one, biomass models were estimated based on Lidar features and field-measured 
biomass. In LAMP phase two, the phase one models were used to generate 10,000 surrogate 
plots of one hectare and the surrogate plot estimates were used to generate the phase two 
model. The final result was a grid level estimate (cell size 1 ha) for the whole study area 
(Gautam et al. 2013). 

Ghana

The study area was located in western Ghana. The total area was 15,153 km2 of which 5% 
was covered with a systematic Lidar strip sample. Seven ALOS AVNIR-2 and one DMC satellite 
scene were used to produce a land use classification for the study area (Sah et al. 2012).
A weighted cluster plot sample of 254 field plots was used to generate phase one regression 
models for a total of four forest strata (a closed canopy forest model and models for open 
forests/croplands within wet, moist, and dry zones). In phase two, the phase one models were 
used to estimate mean and variance for each forest zone using the whole Lidar sampled area. 
The primary result of the LAMP process in this case was the Tier 2 level output, i.e. Lidar-
model derived means and variances for each ecological forest zone. 

Table 13:  Materials used in the case studies

Lao PDR Nepal Ghana

Inventory area (km2) 250 23,300 15,153

Lidar sample area (% of inventory 
area)

10 5 5

Laser scanner Leica ALS 40 Leica ALS 50-II Leica ALS 50-II

Point density (points/m2) ~1 ~0.8 ~2.0

Satellite data Alos AVNIR-2 Landsat 5 TM Alos AVNIR-2/ DMC

Number of images 1 5 7/1

Field plot type rectangular circle rectangular

Field plot area (m2) 400 500 400

Number of field plots 328 738 254
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Figure 33:  Scatter plot of the Nepal case study 
LAMP Phase 1 estimates and field measured 

values at field plot level

Source: Joshi et al. 2014

Results
LAMP Phase 1 estimation 
results

The Phase 1 biomass estimates were 
validated against field plots. In Lao 
PDR, the relative root mean square 
error (RMSE%) for mean above 
ground biomass (AGB) estimate was 
23.3% when the Lidar estimates were 
validated against the original field 
plots of size 400 m2 (Gautam et al. 
2010). In Nepal, the phase one Lidar 
models were validated against 
independently sampled larger 
validation plots of 2,826 m2 (Joshi et 
al. 2014) and the RMSE% was 17.0% 
(Gautam et al. 2013). In Ghana the 
Lidar model results were validated in 
a similar way to those in Lao PDR. In 
general, the Lidar estimated biomass 
correlated well with the field measured 
biomass and there was no saturation 
effect (Figure 33). 

LAMP Phase 2 estimation results

In the Lao PDR and Nepal case studies, in which Tier 3 level outputs were produced, the 
phase two outputs were validated against Lidar estimates of surrogate plots. In Lao PDR, the 
RMSE% of the mean AGB estimate was 23.9% at one hectare level (Gautam et al. 2010); in 
Nepal, the value was 42.1% (Gautam et al. 2013), indicating better estimation results in Lao 
PDR than in Nepal. The RMSE% values do not include the phase one model bias and may 
therefore slightly underestimate the true error. Saturation of the satellite image signal is a 
common problem when optical satellite data are applied in biomass estimation. Comparison 
of the scatter plots of surrogate plot biomass and LAMP phase two output showed that the 
satellite signal saturated at about 200 tonnes/ha in the Lao PDR case, whereas no such effect 
was visible in the Nepal case (Figure 34). The Nepal estimates were produced by imputing the 
variance of surrogate plots, which eliminates the saturation effect almost completely but 
increases the RMSE%. In the Ghana study, Tier 2 level output was provided, thus no RMSE% 
values were available at the one hectare level.  
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Discussion
In the following sections, we present 
some of the key findings from the 
three case studies concerning the 
specifications of the input data 
materials and the reference  
data costs.  

Field plots

The field plots used in LAMP have 
requirements for plot positioning and 
plot size that differ from those of 
field-based surveys. To overlap field 
data with Lidar data accurately, the 
plot positioning error should be 
minimized and the plot size 
maximized. The experience from the 
three case studies showed that the 
field plots should be positioned with a 
differentially corrected GNSS (global 
navigation satellite system) to achieve 
sub-metre accuracy when the plot size 

is relatively small. A very dense canopy may obscure the GNSS satellite signal reception 
completely in dense tropical forests (Nakayama et. al 2014). In this case, it is necessary to 
perform a bearing and distance measurement between an accurately measured location and 
the actual plot reference points.

The optimal field plot size is related to the plot positioning accuracy, the spatial pattern of tree 
locations, and the size of tree crowns. In a field sample, a tree is classified as inside a plot if 
its trunk centre at a height of 1.3 m is inside the plot. If a tree is close to the plot border, a 
large part of the crown can be outside the plot but is counted as within. In contrast, Lidar 
observations for the plot are clipped with a circular cone with exactly the same radius as used 
for selecting the field trees. Thus, the canopy is presented differently in the field data and the 
Lidar observations. This border effect increases as an inverse function of plot size and function 
of mean tree crown size. The spatial pattern of tree locations also affects the estimate; the 
more clustered the trees are, the more significant the border effect can be. In regular patterns, 
the effect can also be large if the plot shape and location do not take the spatial trend in 
forest structure into account, for example the distance between planting rows. In natural 
tropical forests, the tree crowns can be very large, tree sizes can have a lot of variation, and 
the spatial pattern is random or clustered. Thus the optimal plot size is usually larger in a 
natural tropical forest than, for example, in a plantation.    
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Lidar sample design

Lidar sample design is a trade off between accuracy of the estimates and cost. In the most 
straightforward approach, the whole area is scanned with wall-to-wall Lidar. Usually, this is not 
a feasible solution and some kind of sampling strategy should be used; a 2–10% sample rate 
is sufficient for LAMP. A systematic or random strip sample allows a good representation of the 
whole area of interest and gives a good starting point for producing unbiased above ground 
biomass or carbon estimates. However, using strip sampling may give a poor representation 
of forest types that are present in only a small fraction of the whole inventory area. Block 
sampling can be more efficient in large and fragmented forest areas, since blocks can be 
designed so that a large enough sample is collected from each forest type. The cost of Lidar 
collection is highly dependent on Lidar sample design, thus the sample design should be 
optimized for each project individually taking into account the representativeness of the 
sample and other issues while considering the total flight time.  

In all three case studies discrete return Lidar was used. There were some indications that if the 
vegetation structure is very dense the pulse penetration to the ground can be a problem. To 
provide sufficient ground observations, full waveform Lidar could give more reliable data. 

Satellite data 

LAMP is not dependent on the particular type of satellite data. The requirements are that the 
signal in the satellite data should correlate with the biomass or carbon and that the geometric 
accuracy is good compared to pixel size. Using Lidar estimated surrogate plots allows us to 
use a large basic estimation unit, for example one hectare pixel size, which is not feasible if 
field plots are used directly. This feature of LAMP gives an excellent possibility for using low or 
medium resolution satellite data. The challenge for satellite data application is image 
normalization without losing the signal. The correlation between the optical satellite data 
features and the amount of biomass is low compared to the correlation between Lidar features 
and biomass (see, for example, Figure 33). Further, processing the imagery to render the 
images spectrally equivalent does not usually improve the correlation. 

Reference data cost

Lidar provides a cost-efficient means for acquiring reference data for above ground biomass 
inventories and distribution mapping. In the field plot based approach, more plots have to be 
collected to achieve the targeted estimation precision when there is more above ground 
biomass variation. The cost benefits are highest where the rate of above ground biomass 
variation within forest strata is high and field measurement costs are higher. 

Figures 35a-d illustrate the scale and conditions under which Lidar acquisition with a limited 
number of field plots (50) per stratum generates cost savings. To provide a realistic view, the 
sensor and operators are mobilized from abroad in the example calculations, even though 
local service providers and Lidar data archives are available in many countries. Lidar 



120

Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective

coverage of 2% per stratum is expected to be sufficient, and field measurement costs per plot 
(USD 500–2,500) in the Lidar-assisted and plot-based cases are assumed to be equal. The 
Lidar acquisition reference costs are modelled based on solicited service provider offers for 
ten real project cases in Asia (4), Africa (4), and Latin America (2). A power regression model 
was fitted by applying the total Lidar covered area as the independent variable (hectares) and 
the Lidar unit cost (USD/hectare) as the dependent variable. The independent variable range 
was taken from 13,000 to 334,200 ha. The coefficient of determination (R²) is 0.96 for the 
resulting Lidar cost model. The Lidar cost model considers mobilization, acquisition, and 
pre-processing costs. 

The scale of operation can have a significant impact on the number of plots required to reach 
a target precision with a plot-based approach, but that can vary country by country, 
depending on the degree of spatial variation in forest structure. In our cost comparison 
figures, the required plot number is kept constant regardless of the scale of operations, while 
the plot cost is variable (dashed cost lines). This issue can be addressed when adjusting the 
curves for a specific country case, but requires analysing the available field inventory data. 

Figures 35a–d show reference data acquisition costs for Lidar-assisted and plot-based 
approaches for different scales of operation with different numbers of required plots and 
different plot costs. The plot-based approach remains more advantageous than the LAMP 
reference data collection approach, when a field sample of only 100 plots is required to 
reach the targeted overall precision and the average cost remains below USD 1,000 per plot 
(Figure 35a). LAMP reference data collection becomes the most cost-efficient approach for an 
average stratum size of less than 100,000 ha (1,000 km2) when the requirement is for a plot 
based sample of 250 plots at a cost of USD 500 per plot (Figure 35b); when the scale of 
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Figure 35:  The scale of operations and reference data acquisition costs for Lidar-
assisted and plot-based approaches. The required number of measured plots for the 
plot-based approach for all scales of operation is taken as a) 100; b) 250; c) 500;  

d) 1,000 (dashed cost lines)
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operations is below 1 million hectares for a plot based sample of 500 plots per stratum at a 
cost of USD 500 or USD 1,000 per plot (Figure 35c); and under all conditions for a plot 
based sample of 1,000 or more, even when the average measurement cost remains USD 500 
per plot (Figure 35d).  

Conclusion
LAMP is an agile, scalable, and reproducible approach for large area biomass and carbon 
inventories. It can be applied to various forest inventory tasks and it is not dependent on 
specific input data. However, this gives the user a variety of parameters, which affects the 
quality of the end result. The reference data costs can be significantly lower and the output 
data more valuable than in traditional field-based inventories or satellite-based inventories not 
applying Lidar. LAMP is an example of a multi-source concept. In large scale biomass 
inventories, multi-source approaches can be effective, since fusing data at different scales 
provides accurate full coverage results without extensive field measurements. 
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Satellite observation of forest cover at local, regional, and global scales is helpful for 
wall-to-wall forest cover mapping and forest biomass estimation, which contributes to 
better understanding of the terrestrial carbon flux and global climate change. The 

objective of the study was to assess above ground forest biomass and carbon stocks in forest 
ecosystems using Landsat and ALOS PALSAR data together with terrestrial sample based 
inventory data. The study area was located in southeastern Bangladesh. The area is dominated 
by tropical moist evergreen and semi-evergreen forest. A Landsat Enhanced Thematic Mapper 
Plus (ETM+) image from 2001 and Advanced Land Observing Satellite Phased Array L-band 
Synthetic Aperture Radar (ALOS PALSAR) data from 2007 were used in the study. A forest 
survey was conducted to measure tree diameter and height by laying sample plots in various 
forest strata. The measurements were converted to above ground forest biomass using 
allometric relations and ratios. Forest biomass estimation using optical and radar backscatter 
was shown to be a challenging task because of the low correlation (r) in regression models. 
The value of r2 generally varied between 0.17 and 0.47 for Landsat ETM+ and between 0.17 
and 0.50 for ALOS PALSAR. Techniques like the addition of dummy variables in the regression 
models slightly increased the r2 value to 0.54 using Landsat data; while normalization of 
PALSAR backscatter from two different incident angles increased the r2 value to 0.53.

Keywords: forest biomass, carbon, Landsat ETM+, ALOS PALSAR, regression

Introduction
Periodic monitoring of forest biomass at local, regional, and global scales is essential since 
the biomass stock in forest ecosystems is changing in different parts of the world. Increases in 
biomass mean enhanced carbon sequestration and play a role in mitigating global climate 
change. On the other hand, deforestation and forest degradation release sequestrated 
carbon to the atmosphere and accelerate the process of global climate change. Forest 
biomass assessment using terrestrial sample-based forest inventory data is tedious, costly, and 
time consuming. The technique can function well at a local scale, but at regional and global 
scales it is extremely difficult to generate a biomass database because of the variability in 
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forest conditions and biomass levels. However, the approach can be efficient if terrestrial 
sample based forest inventory can be successfully integrated with remote sensing based 
biomass assessment. Remote sensing based assessment can provide a wall-to-wall forest 
biomass map. But the task of successfully combining remote sensing based measurement with 
ground measured forest biomass data remains challenging.

This article describes a procedure for forest biomass assessment using Landsat Enhanced 
Thematic Mapper Plus (ETM+) and Advanced Land Observing Satellite Phased Array L-band 
Synthetic Aperture Radar (ALOS PALSAR) data together with terrestrial sample based forest 
inventory data. A regression method was used to prepare a forest biomass map for the  
study area.

Methodology
Study area and datasets

The study area is located in the forests of southern Chittagong in Bangladesh (Figure 36). The 
forests in the study area are classified as tropical wet evergreen and semi-evergreen 
(Champion et al. 1965; Figure 37). Dipterocarps are the characteristic feature of the evergreen 
stratum with some deciduous species from Anacardiaceous and Swintonia genera also present. 
Parts of the forests have been deforested or degraded by extreme human interference. 

Figure 36:  Location of the study area



126

Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective

A Landsat ETM+ satellite image from 7 February 2001, and ALOS PALSAR scenes from three 
different acquisition modes, Fine Beam Single (FBS), Fine Beam Dual (FBD) and PoLaRimetric 
acquisition mode(PLR), acquired on 13 February, 9 March, and 16 November 2007, 
respectively, were used in the study. The image acquisition angle for FBS and FBD was 38.78, 
and for PLR was 23.98.The images were acquired in ascending pass. Data from 100 sample 
plots were collected from the forests in the study area.

Landsat and PALSAR data processing

The Landsat satellite data were atmospherically corrected using the COST method (Chavez 
1996). The COST method is a modified dark object subtraction method where the cosine of 
the solar zenith angle is taken as the atmospheric transmittance; it is a substantial 
improvement to the dark object subtraction method. The reflectance of a dark object was 
taken to be 1% (Moran et al. 1992; Chavez 1996). Landsat digital numbers were converted 
to at-satellite radiance and finally to surface reflectance.

Level 1.5 PALSAR data were orthorectified with the Shuttle Radar Topographic Mission (SRTM) 
digital elevation model and PALSAR orbit information obtained from the image header. 
PALSAR data was further corrected with distributed ground control points taken from the 
Landsat ETM+ 2001 image. PALSAR digital numbers were converted to Sigma naught (σ0, in 
decibels), using Equation 1 (Shimada et al. 2009). 

Figure 37:  Tropical wet evergreen and semi-evergreen forests in the study area
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	 σ0 = 10 log 10(DN)2 + CF						      (1)

Where, CF is the calibration factor (-83.0) obtained from the image header.

The normalized backscattering coefficient (normalized radar cross section; NRCS) was 
computed using a 7 × 7 mean spatial filter.

Forest biomass measurement

Terrestrial sample based forest inventory was conducted from late 2001 to early 2004 in  
the forests of the study area. One hundred temporary sample plots with sizes ranging from  
25 to 900 m2 were surveyed (Table 14). Eight different vegetation types were recognized in 
the satellite image and sample size varied depending on the vegetation types and 
characteristics. Sample size was determined based on the results of the previous inventories 
conducted in the region. 

Tree-diameter at breast height (DBH) was measured for all trees exceeding 5 cm DBH inside 
the sample plots. The height of the three to five dominant trees inside the plot was measured 
and the height of the remaining trees estimated from these measurements. Trees less than 
5 cm in diameter were measured in sub-sample plots of 2 × 2 m usually laid in the centre of 
the sample plot. The estimate from the sub-sample was normalized to the standard sampling 
unit. From the 100 terrestrial samples analysed in the study, 70 samples were chosen at 
random to develop a forest biomass model, while the remaining 30 samples were used for 
validation purposes. The validation results are only presented for the ALOS PALSAR data.

Regression analysis

The reflectance values acquired by Landsat ETM+ at different spectral bands and forest 
biomass were modelled with different forms of regression equations, i.e., linear, logarithmic, 
inverse, and exponential. Individual band reflectance and the various dummy variables 
assigned for different forest types were taken as independent variables, and the forest biomass 
as the dependent variable, in multiple regression models. 

Dummy variables are usually unrelated to the physical levels that might exist in the factors 
themselves (Draper and Smith 1998). If two forest types (type A and B) that produce different 
response levels (reflectance acquired by satellite sensor data) are included as independent 
variables in a regression model, a dummy variable, Z, can be added into the model with a 
regression coefficient, a, so that an additional term aZ appears in the equation. Values can be 
assigned to Z as follows: Z=0, if the observation is from forest type A, and Z=1, if the 
observation is from forest type B (Rahman et al. 2008). Draper and Smith (1998) described 
the use of dummy variables in regression analysis.
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Table 14: Vegetation characteristics and distribution of ground samples

Vegetation 
type

Number 
of plots

Plot size 
(m2)

Vegetation structure and characteristics

Structural attributes Dominant species

Natural vegetation

Primary 
forest

16 30×30 •	 Natural origin, multi-storied, a number 
of mature trees in upper canopy, shrubs 
and sometimes bamboo in lower 
canopy, rich in biodiversity

•	 Tree canopy is approximately 10–20 m 
high in logged-over forest and 
20–28 m in well-stocked forest

Dipterocarpus turbinatus, 
D. alatus, Syzigium 
grande, S. wallichi, 
Swintonia floribunda 

Secondary 
forest

10 10×10 •	 The succession stage following earlier 
disturbance; the trees are younger and 
smaller than in the primary forest 

•	 The forest has a uniform canopy with a 
height of approximately 5–12 m

Dipterocarpusturbinatus, 
D. alatus, 
Syzigiumgrande 

Bamboo 10 5×5 •	 Dominated by bamboo, occasionally 
some scattered trees in the upper 
canopy

•	 Bamboo is a monocotyledon with a 
different structure to broadleaved trees. 
It grows with a single straight stem; 
small branches with leaves develop 
from the stem 

Melocanna baccifera is 
commonly seen on 
hilltops and mid-slope; 
Bambusa tulda in the 
foothills and valleys 

Shrubs 11 5×5 •	 Shrubs intermixed with seedlings and 
saplings of tree species, bamboo, and 
grasses

•	 Vegetation in this formation is usually 
1–2 m in height

Mixed species

Plantation

Indigenous 
species

1
8

10×10 
(young 
plantation)
15×15 (old 
plantation) 

•	 Monoculture with various indigenous 
species; the branching patterns of 
different species are different 

•	 Heights of the plantations are variable 
due to difference in species, age, and 
site quality 

Dipterocarpus turbinatus, 
Syzygium grande, 
Artorcarpus chaplasha, 
Hopea odorata

Teak 9
3

10×10 
(teak 
coppice)
15×15(teak 
plantation)

•	 Teak has identical large leaves; no 
other tree species, undergrowth, or 
ground vegetation is seen in these 
plantations 

•	 Coppice appears in places when 
parent trees are removed 

Tectona grandis or 
coppice

Acacia 10 10×10 •	 There is a thick layer of green canopy 
•	 The heights of plantations are variable 

mainly because of the difference in age 
class 

Acacia auriculiformis, A. 
mangium

Rubber 12 10×10 •	 A managed and cultivated ecosystem; 
the undergrowth is very sparse due to 
intense weeding operations

•	 Generally, trees are planted with a 
wider spacing than in other plantations

Hevea brasiliensis

Total 100

Adapted from Rahman et al. 2008; Rahman and Sumantyo 2013
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The PALSAR response to forest biomass was modelled using the following regression equation 
(Equation 2):

	 Y = b0 + b1(X)								        (2)

Where, X is above ground forest biomass in Mg ha-1, Y is the PALSAR backscattering 
coefficient (in dB), b0 is the intercept, and b1 is the slope of the regression line. The value of b0 
and b1 can be used to check whether the fitted regression line is similar to the scatter plot data 
used in building the regression model. They can be used as criteria for choosing a regression 
model, particularly if several models appear with a similar value of r2. 

PALSAR backscatter from different observation modes (and incidence angles) was normalized 
using Equation 3.

	 Average backscatter = (BC1 + BC2 + …..+ BCn)/n  			   (3)

Where, BC1, BC2, and BCn are the backscattering coefficients of channels 1, 2, and n, 
obtained from different incidence angles, respectively.

Results and Discussion
Landsat ETM+ derived forest biomass

The results of the regression analysis show a low correlation (r) in the Landsat ETM+ derived 
forest biomass model (Table 15). The value of r2 varies from 0.019 to 0.47. 

The value of r2 increased in the regression analysis when dummy variables were added as 
independent variables (Table 16). Dummy variables were assigned for different forest types 
(Table 17). Assignment of different sets of dummy variables produced different intercepts in 
the regression equation when keeping the same regression coefficient. 

ALOS PALSAR derived forest biomass

The coefficients of determination (r2) obtained from regression analysis for the ALOS PALSAR 
dataset are presented in Table 18 and Figure 38. The validation result is presented for a low 
biomass level (0–150 Mg ha-1) and high biomass level (0–423 Mg ha-1) calculated using the 
selected regression model (Table 19). The value of r2 increases slightly if the PALSAR data are 
normalized. The PALSAR derived forest biomass map for the study area is presented in 
Figure 39. The model derived for an average PALSAR backscatter value of HH and HV 
(marked * in Table 18), was used to prepare the forest biomass map. Different ranges of forest 
biomass are shown in different colours. The area estimate of forest biomass presented in the 
map is shown in Table 20.
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Table 15:  Coefficient of determination (r2) computed for the Landsat ETM+ derived 
forest biomass model using different optical bands

Variable Type of regression equation

Linear Logarithmic Inverse Exponential*

Band 1 0.167 0.152 0.134 0.337

Band 2 0.264 0.236 0.198 0.473

Band 3 0.241 0.220 0.186 0.380

Band 4 0.025 0.023 0.019 0.036

Band 5 0.226 0.193 0.141 0.313

Band 7 0.242 0.224 0.180 0.332

Adapted from Rahman et al. 2008
* r2 computed in a log-transformed model is not comparable with non-transformed models (Parresol 1999) 

Table 16: Coefficient of determination (r2) computed for the Landsat derived forest 
biomass model using dummy variables

Independent variables Multiple coefficient of 
determination (r2)

B1, B2, B3, B4, B5, B7, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.542

B2, B3, B4, B5, B7, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.542

B2, B3, B4, B5, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.542

B2, B3, B4, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.542

B2, B4, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.541

B2, Z1, Z2, Z3, Z4, Z5, Z6, Z7 0.539

B2, Z1, Z2, Z3, Z4, Z5, Z6 0.538

B2, Z1, Z3, Z4, Z5, Z6 0.532

B2, Z1, Z3, Z4, Z6 0.515

Adapted from Rahman et al. 2008
B1: Landsat ETM+ Band 1, etc. 
Z1 etc.: value of dummy variables (Table 17)

Table 17:  Coefficients of dummy variables

Vegetation types Z1 Z2 Z3 Z4 Z5 Z6 Z7

Acacia 1 1 1 1 1 1 1

Bamboo 0 1 1 1 1 1 1

Plantation of indigenous species 0 0 1 1 1 1 1

Primary forest 0 0 0 1 1 1 1

Rubber 0 0 0 0 1 1 1

Shrubs 0 0 0 0 0 1 1

Teak 0 0 0 0 0 0 1

Secondary forest 0 0 0 0 0 0 0
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Table 18:  Regression statistics and biomass estimation performance of  
ALOS PALSAR data

Data type Polarization Model formulation

Regression coefficients r2

b0 b1

FBS HH -15.037 1.084 0.499

FBD HH -11.720 0.699 0.289

HV -23.856 1.249 0.190

PLR HH -12.432 1.095 0.173

HV -21.723 1.377 0.499

VH -22.084 1.404 0.499

VV -12.981 0.886 0.398

Average backscatter (FBS 
and PLR)

HH HH -13.735 1.0891 0.352

HH HV* -18.380 1.2301 0.533

HH VH -18.561 1.2438 0.532

HH VV -14.009 0.9849 0.507

Rahman and Sumantyo 2013
*Model used to prepare the forest biomass map (Figure 38)

Table 19:  Validation results for the PALSAR derived forest biomass model

Data type Polarization Validation

RMSE (Mg ha-1)

Limit 
0–423

Limit 
0–150

FBS HH 161 62

FBD HH 169 69

HV 205 78

PLR HH 140 53

HV 180 65

VH 176 67

VV 173 54

Average backscatter (FBS 
and PLR)

HH HH 151 44

HH HV 175 63

HH VH 174 63

HH VV 163 57

Rahman and Sumantyo 2013
Note: The limit in RMSE computation means that the result is only valid within this range. If a model computed 
higher than the range of the last limit, the highest value (150 or 423) was taken as the estimated biomass in 
the computation procedure.
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Figure 38:  PALSAR backscattering coefficient plotted against forest biomass (n = 70) and 
fitted models; the response of PALSAR backscatter on biomass for different forest 

categories is shown by different symbols

Source: Rahman and Sumantyo 2013
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Figure 39:  Forest biomass map of the study area derived from ALOS PALSAR data (2007). 
Forest biomass was computed using the average backscatter of HH (FBS) and HV (PLR) 

PALSAR scenes; non-forest was excluded (shown in white)
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Table 20:  Forest biomass and area 
estimate of the map

Biomass level  
(Mg ha-1)

Area  
(ha)

Non-forest (including biomass 
less than-1) 11,425

1–100 10,397

>100–200 2,712

>200–300 1,326

>300–400 739

>400–423 4,589

Total 31,188

Conclusion
The results indicate the following. 

�� Forest biomass estimation using optical 
and radar backscatter is a challenging task 
because of the low correlation (r) between 
forest biomass and satellite derived 
reflectance or SAR backscattering 
coefficient. The value of r2 generally varied 
between 0.17 and 0.47 for Landsat ETM+ 
and between 0.17 and 0.50 for ALOS 
PALSAR.

�� The low correlation could be the result of 
signal saturation for the optical and 
microwave images at a certain biomass 
level. Moreover, the diversity of the tropical 
forest ecosystem is high. Satellite reflectance and SAR backscattering coefficients are not 
only affected by the plants containing the major amount of biomass, but also by other 
understory and scrubby vegetation layers in the ecosystem. 

�� Advanced techniques like addition of dummy variables and normalization of SAR 
backscattering coefficients from various incidence angles slightly increased the coefficient 
of determination (r2) in the regression models. 

Further study should concentrate on the inclusion of datasets with a higher spatial resolution, 
and use of interferometric SAR and Lidar data to examine whether the precision in biomass 
modelling can be increased.

Acknowledgements
I would like to thank Professor Elmar Csaplovics, Dresden University of Technology, Professor 
Barbara Koch, Albert-Ludwigs University, Freiburg, Professor Michael Köhl, University of 
Hamburg, and Professor Josaphat Tetuko Sri Sumantyo, Chiba University, for their comments 
and suggestions on the research.

References
Champion, HG; Seth, SK; Khattak, GM (1965) Forest Types of Pakistan. Peshawar, Pakistan: 

Pakistan Forest Institute

Chavez, PS, Jr. (1996) ‘Image-based atmospheric corrections—revisited and revised.’ 
Photogrammetric Engineering and Remote Sensing 62: 1025–1036

Draper, NR; Smith, H (1998) Applied Regression Analysis (3rd edn). New York, USA: Wiley

Moran, MS; Jackson, RD; Slater, PN; Teillet, PM (1992) ‘Evaluation of simplified procedures for 
retrieval of land surface reflectance factors from satellite sensor output.’ Remote Sensing of 
Environment 41: 169–184



135

12 – Forest Biomass Assessment in Southeastern Bangladesh Using Landsat ETM+ and ALOS PALSAR Data

Parresol, BR (1999) ‘Assessing tree and stand biomass: a review with examples and critical 
comparisons.’ Forest Science 45: 573–593

Rahman, MM; Csaplovics, E; Koch, B (2008) ‘Satellite estimation of forest carbon using regression 
models.’ International Journal of Remote Sensing 29(23): 6917–6936

Rahman, MM; Sumantyo, JTS (2013) ‘Retrieval of tropical forest biomass information from ALOS 
PALSAR data.’ Geocarto International 28(5): 382–403

Shimada, M; Isoguchi, O; Tadono, T; Isono, K (2009) ‘PALSAR Radiometric and Geometric 
Calibration.’ IEEE Transactions on Geoscience and Remote Sensing 47(12): 3915–3932



Multi-Scale Forest Biomass Assessment and Monitoring in the Hindu Kush Himalayan Region: A Geospatial Perspective

136

Geospatial Information Systems for Multi-Scale Forest Biomass assessment and Monitoring in the HKH region



137

12 – Forest Biomass Assessment in Southeastern Bangladesh Using Landsat ETM+ and ALOS PALSAR Data

Technology Trends: 
Multi-Scale Remote 
Sensing Using Optical 
Sensors

3



138



139

13 – Spatial Distribution of Biomass in Indian Forests Using Spectral Modelling

Spatial Distribution of Biomass in  
Indian Forests Using Spectral Modelling

CS Jha1*, R Fararoda1, G Rajashekar1, S Singh2, and VK Dadhwal1

1 National Remote Sensing Centre (ISRO), Balanagar, Hyderabad 500037, AP, India 
2 Indian Institute of Remote Sensing (ISRO), Deharadun, Uttarakhand 248001, India

* Corresponding author: C S Jha, jha_cs@nrsc.gov.in

T his paper presents spatial estimates of the above ground phytomass density for 
temperate, tropical, and deciduous forests in three states of India – Sikkim, Tamil Nadu, 
and Madhya Pradesh – using a spectral modelling method applied to MODIS (250 m 

spatial resolution) satellite data from 2010. Phytomass density was estimated using inventory 
data collected in 2009/10 as part of a larger national effort, the ISRO GBP National Carbon 
Project, and organized in a geographic information system. Tree level measurements were 
converted to phytomass density using region and species specific volume equations (from the 
Forest Survey of India), biomass expansion factors, and wood specific density. In addition, 
diameter/girth and height and their relationship with tree volume/biomass were used to assess 
plot biomass. The phytomass density at site level ranged from 11.66 to 256.09 t ha−1, with an 
average of 93.07 t ha−1, for temperate forest (Sikkim); from 31.66 to 308.53 t ha−1, with an 
average of 160.36 t ha−1, for tropical forest (Tamil Nadu); and from 2.2 to 146.14 t ha−1, 
with an average of 53.38 t ha−1,for deciduous forest (Madhya Pradesh). We discuss the utility 
of spectral models for regionalizing field inventory data and for a nationwide effort. We also 
attempt to assess the uncertainties in above ground biomass estimates (AGB) and examine 1) 
error due to tree measurement, 2) error due to choice of allometric model relating AGB to 
other tree parameters, 3) sampling uncertainty related to the size of the study plot, 4) 
representativeness of a network of small plots over a large forest area, and 5) spatial 
uncertainty related to the geographic location of the study plot.

Keywords: forestry, forest inventory, allometric equation, above ground biomass (AGB), 
carbon stock, spectral model, uncertainty

Introduction
Forests contain about 80% of global terrestrial above ground carbon stocks and play an 
important role in the global carbon cycle (Houghton 2005). Tropical forests are important 
carbon-pools comprising approximately 40% of terrestrial carbon storage (Dixon et al. 1994) 
and they support a large stock of carbon in the form of biomass, but release more CO2 when 
disturbed (Palm et al. 1986). Tropical deforestation contributes about one-fifth of total 
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anthropogenic CO2 emissions to the atmosphere (Houghton 2007). In order to obtain 
accurate estimates of carbon flux, it is necessary to know the actual biomass of degraded and 
logged forest, rather than use values averaged over large regions (Houghton 2005). The 
quantity of biomass carbon in a given ecosystem is one of the most uncertain factors involved 
in estimating changes in carbon flux from terrestrial ecosystems (Brown et al. 1989). Accurate 
estimates of carbon flux require improved knowledge of the density and spatial distribution of 
forest biomass across the globe, particularly in high biomass tropical forest ecosystems. Indian 
forests are a major tropical forest ecosystem constituting nearly 69.20 million hectares, 21.1% 
of the geographical area of country (FSI 2011). India’s geographical area constitutes 2.4% of 
the world’s land area and about 2% of the global forests, while supporting 16% of the world’s 
human population. Indian forests are known to be one of the richest in terms of vegetation 
types and species diversity. 

There are three main approaches to biomass assessment: field measurements, remote sensing 
(RS), and geographic information systems (GIS) (Lu 2006). Field measurement is often 
considered the most accurate, but is costly and time consuming. Although field inventories are 
an efficient way of assessing carbon stock, it is essential to address uncertainties associated 
with above ground biomass (AGB) estimates. There are many sources of error which can 
affect the estimation of forest biomass: a) sampling error; b) measurement error related to the 
tree variables, such as DBH (diameter at breast height), height, and weight; and c) error due 
to the choice of model to relate biomass to the tree variables. Chave et al. (2004) reported 
uncertainty on the AGB estimation of a single tree of diameter 10 cm or greater as 47% of the 
estimated AGB, 31% due to the allometric model and 16% due to the measurement 
uncertainty. These uncertainties are greater for tree level AGB estimation; the errors average 
out at stand level.

Modern tools like remote sensing and GIS have provided new opportunities for quick and 
reliable assessments and for monitoring of AGB and carbon pools. Many studies have been 
carried out in recent years for biomass estimations of Indian forests, but there have been fewer 
efforts to take full advantage of high temporal resolution remote sensing data in assessing 
vegetation carbon pools.

The carbon stock in Indian forests has been estimated based on growing stock volume data of 
forest inventories and using appropriate conversion factors for both biomass and carbon 
(Ravindranath 1997; Lal and Singh 2000; Chhabra et al. 2002; Dadhwal et al. 2009). 
Dadhwal and Shah (1997) used state-wise remote sensing based forest area, field inventory 
based growing stock, and crown density based biomass expansion factor to derive the 
phytomass carbon pool (4,017 Tg C) and phytomass carbon density (63.6 Mg C ha-1) for 
India’s forests. Using a similar approach, Chhabra et al. (2002) estimated the forest 
phytomass carbon pool of the entire country as 3,871.2 in 1988 and 3,874.3 Tg C in 1994.
Earlier studies show that vegetation indices, particularly NDVI, are good indicators of leaf 
area index (LAI), and are positively correlated with biomass and productivity (de Fries et al. 
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1995; Kale et al. 2001; Madugundu et al. 2008; Roy and Ravan 1996). Madugundu et al. 
(2008) used IRS P6 LISS-IV satellite data for AGB estimation in deciduous forests in the 
Western Ghats of Karnataka. A regression model based on NDVI and field measured LAI  
(r2= 0.68, P ≤0.05) were used to generate a remote sensing based LAI. A regression model 
was developed between LAI and field measured AGB (r2= 0.63, P ≤0.05) to generate the 
spatial distribution of AGB in the region.

Keeping in view the importance of AGB estimation and its spatial distribution, this study 
discusses the utility of spectral models for regionalizing field inventory data for different  
forest types. We also attempt to assess the uncertainty in AGB estimates and examine 1) the 
error due to tree measurement, 2) the error due to the choice of allometric model to relate 
AGB to other tree parameters, 3) sampling uncertainty related to the size of the study plot,  
4) representativeness of a network of small plots over a large forest area, and 5) spatial 
uncertainty related to the geographic location of the study plot.

Methodology
Study area

Spatial estimates of phytomass density were developed for temperate, tropical, and deciduous 
forests. The three different vegetation types were covered in three states of India – Sikkim, 
Tamil Nadu, and Madhya Pradesh (Figure 40). A total forest area of 3,003 km2 was covered 
in Sikkim, mainly Himalayan Moist Temperate (1,775 km2) and Montane Wet Temperate 
(1,139 km2); 4,831 km2 forest in Tamil Nadu, dominated by Dry Deciduous (1,887 km2), 
Moist Deciduous (1,631 km2), Evergreen (718 km2), and Semi-evergreen (517 km2); and 
21,915 km2 forest in Madhya Pradesh, mainly Dry Deciduous (10,100 km2, close to 50%), 
Teak (7,394 km2), Moist Deciduous (3,262 km2), and Sal (958 km2).

Field sampling

Field inventory data collected in 2009/10 as part of a larger national effort, the ISRO GBP 
National Carbon Project (Dadhwal et al. 2011), were used in the present study. The National 
Carbon Project employed a common inventory design for the entire country. Satellite data (IRS 
AWiFS) from 2007/08 and ancillary maps available from ISRO/DOS and the Forest Survey of 
India (FSI) were used to design the sampling strategy. The country was divided into 20 zones 
(corresponding to AWiFS scenes) representative of the different bio-geographical and agro-
climatic zones. A total of 125 sample sites were randomly selected for the inventory in each 
zone based on the type and density of the forest/vegetation. The sample sites were 
250 x 250 m, the size was chosen to be usable with MODIS and AWiFS satellite data. Four 
sample plots of 0.1 ha each were laid out at each sample site. The design ensured adequate 
coverage of all major forest types and forest density classes in the different ecoregions. In 
total, about 10,000 sample plots at 2,500 sample sites were identified for ground 
observations in forest ecosystems, equivalent to a sampling intensity of 0.0015% in the forest 
ecosystem at country level. 
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The clustered sampling approach using four 0.1 ha plots at each sample site provides better 
biomass average values and improves the correlation between biomass and satellite data 
during spectral modelling. Diameter at breast height (1.3 m above the ground) and height 
were measured with a measuring tape and hypsometer for all trees with DBH>10 cm. 
Coordinates of all plots were recorded using GPS. The present study used the ground 
inventory data from 28, 32, and 50 sample sites in Sikkim, Madhya Pradesh, and Tamil 
Nadu, respectively. 

Figure 40:  Study area
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Data processing

The field inventory data were organized in a geographic information system. Tree level 
measurements were converted to phytomass density using region and species specific volume 
equations (FSI 1996), biomass expansion factors, and wood specific density. In addition, 
individual tree level parameters – diameter/girth and height – and their relationship with tree 
volume/biomass were used to assess plot biomass. 

Area weighted biomass was calculated from the actual forest area within the sample site 
(derived from satellite data) multiplied by the average biomass of the sample plots within the 
site (from the field inventory). The steps followed in the area weighted biomass estimation are 
shown in Figure 41. The area weighted biomass was regressed with satellite derived 
parameters, and a best fit regression equation was used to map the spatial distribution of 
AGB. The area weighted biomass was used in the regression instead of the average site 
biomass to exclude any contribution from non-forest classes. Non-forest classes were given 
zero weight in the weighted area biomass estimation.

Figure 41:  Area weighted biomass estimation
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Results and Discussion
Allometric equations (see below), wood density, and expansion factors were used to estimate 
species biomass from the inventory data. The field measured phytomass density for individual 
plots for temperate forests ranged from 11.23 to 425.04 t ha-1, with an average of 
93.07 t ha-1, while for tropical forests phytomass density ranged from 30.89 to 495.98 t ha-1, 
with an average of 160.36 t ha-1. Phytomass density for deciduous forest ranged from 0.97 to 
221.34 t ha-1 with an average of 53.38 t ha-1. The wide variation in AGB in individual plots is 
the result of variation in species composition, age, tree density, and basal area (tree size) of 
trees within plots. The mean site biomass (averaged from the four inventory points at each 
site) was11.66 to 256.09 t ha-1 for Sikkim, 2.20 to 146.14 t ha-1 for MP, and 31.66 to 
308.53 t ha-1 for Tamil Nadu.

The plot level biomass values were used to calculate area weighted biomass.

Regression analysis

The area weighted biomass ranged from 5.49 to 178.33 t ha-1 for temperate forest, 2.53 to 
148.21 t ha-1 for tropical forest, and 7.00 to 111.39 t ha-1 for deciduous forest. 

Multi season MODIS images (February, May, October, and December; year 2010) were used 
to establish the regression between area weighted biomass and the satellite derived parameter 
Normalized Difference Vegetation Index (NDVI) for spectral modelling. Multi season MODIS 
imagery was used because remote sensing data are very sensitive to season, tree phenological 
characteristics, and degree of crown closure. A significant correlation was observed between 
the area weighted biomass and spectral responses of different bands and indices. 

The area weighted biomass was significantly correlated with NDVI in all three study regions. 
NDVI is a simple spectral index which can be used to assess whether the target area being 
observed contains live green vegetation or not. NDVI is calculated from the visible and 
near-infrared light reflected by vegetation. Healthy vegetation absorbs most of the visible light 
that hits it, and reflects a large portion of the near-infrared light. Nearly all satellite vegetation 
indices use the difference formula (Equation 1) to quantify the density of plant growth on 
earth. Calculations of NDVI for a given pixel results in a number that ranges from minus one 
(-1) to plus one (+1); no green leaves give a value close to zero. A zero means no vegetation 
while close to +1 (0.8–0.9) indicates the highest possible density of green leaves.

	 NDVI = (NIR - VIS)/(NIR + VIS)						      (1)

NIR and VIS stand for the spectral reflectance measurements acquired in the near-infrared 
and visible (red) regions, respectively.
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Best fit models for each study area are 
presented in Figures 42, 43, and 44. 
The regression equations used for 
spectral modelling in temperate, 
deciduous, and tropical forests are given 
in Equations 2, 3, and 4.

AGB = 305.9x4.864, R² = 0.787, n = 28 .....(2)

SD = 189.43	 SE = 35.80

where x = December NDVI

AGB = 360.3x2.836, R² = 0.721, n = 32 .... (3)

SD = 93.09	 SE = 16.45

where x = February NDVI

AGB = 0.387e7.000x, R² = 0.735, n = 50 .. (4)

SD = 23.16	 SE = 3.27

where, x = February NDVI

The spectral model for Sikkim gave a 
comparatively higher standard error due 
to the high variability in AGB. The 
spectral model for Madhya Pradesh gave 
a low standard error due to the low 
variability in AGB of deciduous forests. 
The standard error was lowest in the 
Tamil Nadu spectral model because of 
the higher sampling intensity (large 
number of sample sites). 

The spatial estimates of biomass are 
presented in Figures 45, 46, and 47. 
The model estimated total AGB for the 
three study areas was 18.49, 31.33, and 
84.78 million tonnes, respectively. The 
mean AGB density was estimated to be 
71.57, 64.86, and 38.68 t ha-1 for 
temperate, tropical, and deciduous 
forest, respectively. These results are 
consistent with the available biomass 
estimates for different forest types in 
India. Chaturvedi et al. (2011) reported 
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Figure 45:  Predicted biomass in Sikkim (temperate forest)
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Figure 46:  Predicted biomass in south Tamil Nadu (tropical forest)
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Figure 47:  Predicted biomass in part of Madhya Pradesh (deciduous forest) 
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a carbon density for tropical dry deciduous forest ranging from 15.6 to 151 t ha-1. FAO 
(2007) estimated the average biomass density in India as 70 t ha-1. Spatial estimates indicate 
differences in the range of observed and predicted AGB, which may be attributed to the 
distribution of field plots (field plots not covering all biomass ranges), phenological condition 
of the trees at the time of satellite data acquisition, selection of allometric equations, and 
wood density.

Uncertainty analysis

Measurement error related to tree variables, such as DBH, height, and weight 

All trees with DBH greater than 10 cm were tagged and their diameter measured. The 
measurement is likely to have some imprecision, particularly in the case of irregularly shaped 
trunks. The standard errors associated with diameter and height are denoted as σD and σH . 
The error in diameter is expected to be an increasing function of D. 

Species wood density (ρ) is used for each tree to convert species volume to biomass. There 
can be a corresponding error due to misidentification of tree species or variation within 
species (e.g. variation in wood density with age of tree).

Allometric models are usually in the form of

AGB = f(D,H,ρ)

The errors in diameter, height, and wood density are propagated to AGB through the 
allometric models.

σAGB = f(σD ,σH, σρ)

Chave et al. (2004) reported uncertainty in the AGB estimation of a single tree of diameter 
10 cm or greater as 47% of the estimated AGB, 31% due to the allometric model and 16% 
due to the measurement uncertainty.

Uncertainty due to allometric model selection

The selection of allometric models is crucial in biomass estimation as different allometric 
models give different errors in the AGB estimation. We used three different sets of allometric 
models to assess the error associated with these models. For the first, we used a species 
specific volumetric equation for the dominant species in the study area; for the second, we 
used a state pooled equation for tree level biomass estimation; and for the third, we used a 
global volumetric equation (pan tropical equation) for biomass estimation. The biomass and 
standard errors were calculated at the site level (four plots per site).
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A total of 25 species specific allometric equations were used in the three study areas. The 
equations are listed in Table 21. The global and state pooled equations used for comparison 
are given in Equations 5, 6, 7, and 8.

Global equation used in the study:

B(D,ρ) = (ρ/0.6) exp(-3.742 + 3.450ln(D) - 0.148ln(D)2)	  			   (5)

State pooled equation used for Sikkim:

Y = 0.3555 - 3.7D + 12.59D2							       (6)

State pooled equation used for Madhya Pradesh:

Y = 0.0697 - 1.4597D + 11.79933D2 - 2.35397D3 				    (7)

State pooled equation used for Tamil Nadu:

V = 0.058 + 4.598D2								        (8)

The biomass range and standard errors for the different allometric models in the study areas 
are given in Table 22. The global volumetric equation has the largest standard error; the 
standard errors for the state pooled equation and species specific equations are comparable. 

Table 21:  Species specific allometric equations used in the study

State Species Name Volume Equations

Madhya 
Pradesh

Madhuca longifolia
Lagerstroemia parviflora
Diospyros melanoxylon
Acacia catechu
Tactona grandis
Lannea coromandelica
Anogeissus latifolia
Shorea robusta
State Pooled Equation

V = -0.00092 - 0.55547D + 7.3446D2

V = 0.01617 - 0.66446D + 9.71038D2

V = 0.0333 - 0.93267D + 8.15911D2 + 1.30093D3

V = 0.04235 - 0.7424D + 7.26875D2

V = 0.04346 + 8.79334D2 - 0.26352√D
V = 0.046731 - 0.962906D + 7.301883D2

V = 0.13053 - 1.94625D + 11.67213D2

√V = 0.30205 + 5.63243D - 2.2544√D
V = 0.0697 - 1.4597D + 11.79933D2 - 2.35397D3

Sikkim Abies densa
Acer campbelli
Cryptomeria japonica
Symplocos theifolia
State Pooled Equation

V = 0.12167 - 1.14D + 8.12D2

V = 0.06674 - 2.039D + 15.59D2

V = -0.01097 + 5.30991D2

V = -0.03754 + 5.87D2

V = 0.3555 - 3.7D + 12.59D2

Tamil 
Nadu

Adina cordifolia
Anogeissus latifolia
Artocarpus hirsutus
Dillenia pentagyna
Hopea parviflora
Olea dioica
Pterocarpus marsupium
Tectona grandis
Terminalia paniculata
Terminalia tomentosa
State Pooled Equation

V = 0.296 - 2.829D + 12.207D2

V = 0.289 - 2.653D + 11.771D2

V = 0.076 - 1.313D + 11.370D2

V = 0.070 - 1.295D + 9.429D2

V = 0.288 - 2.913D + 13.869D2

V = -0.03001 + 5.75523D2

V = 0.70-1.295D+9.429D2

V = 0.086+5.641D2

V = 0.13100-1.87132D+9.47861D2

V = 0.289-2.653D+11.771D2

V = 0.058+4.598D2
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The uncertainty for the different allometric models at the three study sites is shown in 
Figures 48, 49, and 50.

The results suggest that we should use the species specific volume equations to minimize the 
uncertainty in biomass estimation.

Sampling uncertainty 

The sampling uncertainty is related to 
the size of plot to be inventoried and 
the number of trees in the plot. Errors 
in this category are mainly due to 
incorrect estimation of the plot area, 
trees missed or measured twice, or 
dead trees counted as alive. 

Table 22:  Biomass range and error associated with allometric models

Forest type Equation Biomass range (t ha-1) Standard error range 

Temperate forest Species specific volume equation 13.50 – 425 2.20 – 177.1 

State miscellaneous equation 10.75 – 451 2.76 – 177.26 

Global equation 17.65 – 719 3.28 – 214.39 

Deciduous forest Species specific volume equation 5.89 – 104.82 0.93 – 22.48 

State miscellaneous equation 5.71 – 111.28 0.79 – 22.49 

Global equation 9.54 – 166.05 1.08 – 35.04 

Tropical forest Species specific volume equation 30.89 – 289.28 0.48 – 40.53 

State miscellaneous equation 30.56 – 278.59 0.45 – 49.66 

Global equation 41.25 – 566.71 3.79 – 88.26 
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The standard error in biomass estimation at the 
three study sites is shown in Figures 51, 52, and 
53. The high standard error in plot biomass 
shows the variability in biomass at each site. 
The standard error increases with mean site 
biomass, and a small plot size gives a higher 
standard error since an occasional large tree 
will contribute a large fraction of the overall 
plot biomass. Tree level errors average out in 
large plots, and for this reason too it is 
advisable to establish large permanent plots

Representativeness of a network of small plots 
over a large forest area

Our study shows that the spectral models are 
area specific; a model developed for a 
particular region cannot be used in another 
region. Extrapolation of AGB estimates over a 
large area depends on topographic constraints 
and climatic conditions. 

Figure 51:  Within site variation in biomass  
and standard error for temperate forest,  

(Sikkim, 28 sites)

Figure 53:  Within site variation in biomass  
and standard error for tropical forest  

(Tamil Nadu, 50 sites)

Figure 52:  Within site variation in biomass  
and standard error for deciduous forest 

(Madhya Pradesh, 32 sites)
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A single plot corresponds to a particular sample or small patch of forest and is unlikely to 
represent the variability in AGB on a large scale, thus AGB estimates for a large area should 
be assessed by establishing a network of randomly distributed plots over the whole forest area 
to assess the variability of forest types. 

Table 23 shows the number of sample sites, AGB, and standard error at the three study areas. 
The standard error depends on the biomass range and number of sample sites, and is 
positively correlated with the ratio of AGB range and number of sample sites used.

It is advisable to distribute the sample plots in such a way that they cover all the biomass 
ranges in the study area; inclusion of available biomass estimates in the sampling design may 
improve the accuracy of AGB estimates.

Spatial uncertainty related to the geographic location of the sampling plot

The geographic latitude/longitude of the site measured with GPS is subject to some spatial 
error, and satellite images also have some spatial shift from the exact location. In addition, a 
sample site of 250 x 250 m doesn’t fit perfectly on pixels. Thus the pixels used for the spectral 
models may not be the actual pixels, and the regression equations used for AGB estimation 
may have uncertainty errors due to this spatial shift. This is the spatial uncertainty.

The regression coefficient observed for the three study sites may not be the actual coefficient, 
it could be anywhere between the best and worst possible regression coefficient. The spectral 
models for each of the three sites were moved over four surrounding pixels to get the best and 
worst possible fit. The results are shown in Figures 54, 55, and 56. The worst and best fit 
gives the possible range of r2 for the spectral model.

Table 23:  Sample sites, AGB, and standard error of spectral models

Study Area Standard error 
(t ha-1)

Number of 
sites

Forest area 
(km2)

AGB  
(t ha-1)

AGB/number  
of sites

Temperate 35.8 28 3,003 173 6.17

Deciduous 16.45 32 21,915 104 3.25

Tropical 3.27 50 4,831 146 2.92
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Conclusion
Our results show that integration of remote sensing data with field inventory data is a useful 
approach to obtain improved forest AGB estimates. Three different study areas were selected 
to check the suitability of spectral models under different climatic conditions. The high r2 
values of 0.787, 0.721, and 0.735 indicate a significant relationship between AGB biomass 
and satellite-derived NDVI. 

Field inventory is an efficient way of assessing biomass and carbon, but it has some 
associated uncertainties. The steps required to avoid these uncertainties are as follows:
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�� Allometric models are a basic requirement for AGB estimates using field inventories. 
Uncertainty in the AGB estimates depends largely on the selection of allometric model. It is 
advisable to use a species specific volume equation to minimize the uncertainty in biomass 
estimates.

�� A small plot size gives a higher standard error as individual large trees contribute a large 
fraction of the overall plot biomass. Tree level errors average out in large plots, thus it is 
advisable to establish large permanent plots.

�� Sample sites should be carefully distributed to ensure adequate coverage over different 
vegetation types and crown density. Inclusion of available AGB estimates in the sampling 
design may significantly improve the AGB estimates.
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Space observation is acknowledged as quintessential for providing reliable baseline 
assessment and monitoring strategies for vegetation at multiple scales over extensive 
territories with a low population and limited accessibility. Optical satellite imagery 

represents the major source of data and covers an ample continuum of image resolution and 
swath. Yet vegetation monitoring in both the dry and wet tropics has long been hampered by 
insufficient pixel resolution that renders the well-mastered, pixel-wise classification techniques 
inefficient. The increasing availability of images with high spatial resolution (HSR, pixels of 
10 m or less) to very high spatial resolution (VHSR, pixels of less than 1 m) has opened up 
new prospects by allowing the inference of vegetation properties from image texture features 
(i.e., local inter-pixel variability). In the present paper, we aim to illustrate this potential through 
recently published case studies dealing with semi-arid vegetation monitoring and baseline 
above ground biomass assessment in moist tropical forests. In both cases, we applied variants 
of the FOTO method (Fourier-based textural ordination) to quantify textural features in the 
images and relate them to meaningful vegetation properties, such as patterns of vegetation vs. 
bare ground in drylands, or crown and gap size distribution in forest canopy images. Textural 
ordination based on Fourier spectra provides a powerful and consistent framework for 
identifying prominent scales of landscape patterns and comparing scaling properties across 
landscapes. In the case of forest landscapes, texture features relate to crown size distribution 
and sometimes to inter-crown gaps and therefore are often good predictors of stand structure 
and biomass.

Keywords: above ground biomass, canopy grain, FOTO method, patterned semi-arid 
vegetation, tropical moist forest 

Introduction
Reducing Emissions from Deforestation and Forest Degradation (REDD+) to combat climate 
change requires participating countries to periodically assess their vegetation and forest 
resources on a national scale. Such a process is particularly challenging in the tropics, where 
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territories are often large and poorly accessible, there are insufficient means for ground-based 
inventories, and it is difficult to visit field sampling sites frequently. The monitoring, reporting, 
and verification (MRV) process requires documenting spatiotemporal variations of vegetation 
and stand structure characteristics within the broad realm of ‘forest land remaining forest 
land’. For this, providing meaningful information pertaining to vegetation biomass, cover, or 
functional properties is a challenge that demands smart synergies between remote sensing 
techniques and field data collection. However, although remote-sensing has long been seen 
as a useful source of data, progress has been slow over the last decades. Optical images are 
by far the most broadly available type of space-borne data, but their limited spatial resolution 
(i.e., large pixel size) has hindered applications in landscapes that do not show strong 
contrasts among vegetation and land-use types. This includes most dryland landscapes, as 
well as territories in the wet tropics that have not yet been cleared for commercial crops. 

In the wet tropics, most of the vegetation types of interest have sufficient photosynthetic 
vegetation cover to be within the range of signal saturation of existing optical and radar 
sensors, making it difficult to discriminate and characterize different vegetation types on a 
pixel-wise basis (Foody 2003). In arid and semi-arid landscapes, the progressive transition 
between vegetation types and land-use units renders the majority of pixels heterogeneous 
(Couteron et al. 2001). In both cases, the processing schemes that have proven particularly 
successful for monitoring intensive crop encroachment and deforestation using high to 
moderate optical remote sensing images no longer suffice. 

Very high spatial resolution (VHSR) imagery of approximately 1 m resolution, provided by 
satellites such as GeoEye, Ikonos, Orbview, Quickbird, or Pleiades, has now become widely 
available at an affordable cost, or even free in certain locations via Google Earth, or archives 
such as for Orbview. In the following, we show from recent studies that the increased 
availability of optical images of high to very high spatial resolution opens up new avenues for 
directly monitoring important vegetation properties such as above ground biomass and 
vegetation cover. These images can also provide indirect evidence of ecological processes 
that are shaping vegetation dynamics. Increased spatial resolution enables a move away from 
pixel-wise classification to schemes based on the analysis of textural properties of images at 
scales that are meaningful with respect to the vegetation properties under study. 

In the specific case of forest territories, VHSR greatly increases the potential for texture analysis 
of canopy images by enabling texture information to directly reflect the contrast between sunlit 
and shadowed tree crowns, and thus provide information on the size distribution of crowns 
and inter-crown gaps (Couteron et al. 2005; Malhi and Roman-Cuesta 2008; Palace et al. 
2008). Texture analysis of canopy satellite images can therefore furnish an objective, semi-
automatic visual interpretation of the aerial photographs that have been used in forestry since 
the 1950s, but barely translated into processing as digital images. In fact, foresters and 
ecologists have long known that canopy aspect in 2D views provides useful information on 
forest structure. Texture analysis can also be applied to historical series containing digitized 
aerial photographs and satellite images.
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To illustrate how HSR and VHSR optical imagery and texture analysis (specifically the FOTO 
method) may foster the use of space observations for vegetation monitoring, we review broad 
scale studies carried out by our group in dry and wet tropical environments. In the tropical 
case, the reviewed studies addressed the timely question of documenting stand above ground 
biomass (AGB) using space observation. In the dryland studies, we have focused on 
vegetation types featuring patterns of bare soil vs. dense (generally woody) vegetation that 
display periodic spatial patterns. Such striking patterns are a worldwide feature at the interface 
between deserts and savannas (Deblauwe et al. 2008) and have inspired numerous 
mechanistic models (e.g., Lefever et al. 2009). The patterns display four main morphologies: 
bands (so-called ‘tiger bush’), gaps of bare soil within vegetation, labyrinths, and spots of 
vegetation against a bare soil background. All published models for explaining such patterns 
embody a common principle of self-organization and make concordant predictions on how 
environmental factors may modulate these morphological properties. This array of predictions 
needs to be corroborated using synchronic and diachronic large-scale observations, thus HSR 
imagery and texture analysis were used. Both forest and dryland studies exemplified the 
relevance of HSR and VHSR imagery for monitoring vegetation and associated carbon stocks.

Methodology
The gray-scale values in panchromatic digital images convey different meanings depending 
on the ecological context and the overall contrasts of vegetation. In semi-arid landscapes, 
bright pixels usually correspond to bare soil, intermediate gray-scale levels to grass cover, and 
darker pixels to woody vegetation. As a first approximation, gray-scale levels can thus be 
considered as a monotonically decreasing function of AGB. In forested landscape images the 
interpretation is different since the fully sunlit crowns of canopy trees appear in white/light 
gray, while the shadowed inter-crown gaps are dark-grey or black. A monotonic relationship 
between gray-level scale and canopy height can thus be assumed in the absence of 
substantial relief-induced shadowing. In both cases, signal variation among neighbouring 
pixels, i.e., texture, is relevant for providing indirect information on vegetation. 

Implementing the FOTO (Fourier Textural Ordination) method (Couteron 2002; Proisy et al. 
2007) means first subdividing images into windows of a size consistent with the targeted 
vegetation properties. To analyse forest canopies, a square window of about 1 ha is generally 
relevant and is consistent with a popular field plot size. In semi-arid landscapes, previous 
studies have used window sizes in the range of 160 to 450 m depending on the scale of the 
bare soil vs. vegetation patterns that are of interest. Systematic analysis has shown that the 
results, i.e., the main textural gradients obtained, are to some extent robust against variation 
in window size (Couteron et al. 2006). When applying FOTO, each of the windows 
originating from one or several digital images is submitted to a two-dimensional Fourier 
transform and computation of a two-dimensional periodogram. The aim is to extract a 
simplified textural characterization (in terms of coarseness) via the computation of a ‘radial’ or 
r-spectrum. This means summing the periodogram values within ring-shaped concentric bins 
of unit width (same wave number) and neglecting information related to orientation and 
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possible anisotropy. Spectra computed from many image windows of the same size are 
systematically compared using principal component analysis (PCA), which provides an 
ordination along a limited number of coarseness vs. fineness gradients. In so doing, windows 
are treated as statistical observations that are characterized and compared on the basis of 
their spectral profile, i.e., the way in which window gray-scale variance is broken down in 
relation to Fourier harmonic spatial frequencies. For all the reviewed case studies, we applied 
the FOTO method in line with the procedure presented in Proisy et al. (2007) and using 
routines developed in the MatLab environment.

As an illustration, Figure 57 shows the Fourier signatures (r-spectra) for dryland vegetation 
image windows. The variants of the FOTO method automatically rank windows along 
coarseness gradients in a way that is consistent with the visual interpretation (see Couteron et 
al. 2005 and Ploton et al. 2012 for forest canopies, and Couteron et al. 2006 for dryland). 
Figure 58 provides an example of FOTO ordination using VHSR images of lowland forests in 
a logging concession in central Africa as an example of the analogy with human photo-
interpretation, and the ability of the method to implement photo-interpretation in a consistent 
and objective way (i.e., via quantitative indices) over a large area. In addition to the FOTO 
ordination based on the isotropic r-spectra, it is in some cases useful to extract from the 
periodogram information on possible dominant orientations in the image windows. This has 
proven specifically useful for studies dealing with semi-arid patterned vegetation because it is 

Figure 57:  Examples of the main morphologies of spatially periodic semiarid patterns from optical 
HSR images (top panel) and associated Fourier r-spectra (bottom) as observed in the Sudan study 
area in Deblauwe et al. (2011). In the bottom row, abscissa are spatial frequencies (cycles km-1) while 

ordinates feature rescaled r-spectra. Note the shift of the mode from left to right that contributes to the 
automatic discrimination and mapping of the morphologies (the dominant wavelength systematically 

decreases from spots to labyrinths and to gaps).



161

14 – Texture Analysis of Very High Spatial Resolution Optical Images as a Way to Monitor Vegetation and Forest Biomass in the Tropics

Figure 58:  FOTO textural ordination results from a VHRS panchromatic canopy image (GeoEye) 
over a logging concession in the lowland forests of southern Cameroon. The analysis yielded two main 

texture gradients (PCA axes) which are illustrated from specific image windows of 1 ha. The horizontal 
gradient opposed images marked by large tree crowns and sometimes felling gaps (or logging tracks) to 
images made of many small-sized crowns (in unlogged, seasonally flooded valleys). The vertical gradient 

pointed to canopies dominated by medium-sized crowns

of relevance in discriminating and mapping the main morphologies (e.g., labyrinths vs. gaps, 
see Figure 57) in a semi-automatic way (as in Deblauwe et al. 2011). Following Couteron 
and Lejeune (2001), this is done by averaging periodogram values for successive angular 
sectors. For the case study in central Sudan (semi-arid patterned vegetation; Deblauwe et al. 
2011) HSR panchromatic images (10 m resolution) were used. Window size was set to 
410 m2 and 132,388 such windows were used in the study. For the forest studies, Geoeye 
and Ikonos images and window sizes of 100 to 125 m were used. Ploton et al. (2012) treated 
1,253 windows of 125 m over the evergreen forest of the Western Ghats of India.

Results 
Studies of semi-arid vegetation

Studies carried out in several countries in the sub-Saharan African Sahel (northern Burkina 
Faso, southern Niger, and central Khordofan in Sudan) showed that the FOTO method 
applied to HSR panchromatic images allowed identification of spatially patterned vegetation 
against non-patterned savanna vegetation (characterized by no apparent bare ground). It also 
proved able to distinguish the four main morphologies of spatial patterns. In the Sudan study, 
classification and mapping of vegetation into four periodic pattern classes (Figure 57), and 
one non-periodic class enabled us to show a succession of patterns in the order predicted by 
self-organization models, namely non-periodic, gapped, labyrinth, and spotted, in a way that 
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paralleled decreasing mean annual rainfall. In addition, during the persistent drought that 
struck the Sahel through the 1970s and 1980s, we showed that transitions occurred 
diachronically along the same sequence: for example, in central Khordofan, labyrinths and 
gaps replaced non-patterned vegetation, while existing labyrinths and gaps ceded to spotted 
vegetation. All these changes meant an increase in the bare ground vs. vegetation ratio and 
concomitant decrease in AGB. In Niger, Barbier et al. (2006) witnessed a similar drought-
concomitant extension of gapped patterns in place of continuous vegetation in a protected 
area. Non-patterned vegetation directly shifted to labyrinths in unprotected adjacent areas 
where the biomass intake through grazing and wood-cutting reinforced the effect of drought. 

Above-ground biomass predictions from VHSR canopy images

Case studies corresponding to particular forested landscapes, typically of some hundreds of 
square kilometres, have shown that image PCA scores (FOTO textural gradients) generally 
display a good correlation with the stand quadratic mean diameter at breast height (DBH), 
and can thus be good predictors of AGB as measured in reference 1 ha field plots. Published 
results encompass mangrove forests in French Guiana (Proisy et al. 2007 from Ikonos 
images), tropical terra firme forests in French Guiana (Couteron et al. 2005 from digitized air 
photos), and forests in the western Ghats of India (Ploton et al. 2012 from Google Earth 
Ikonos images). Singh et al. (2014) successfully applied FOTO to AGB mapping in logging-
impacted landscapes in Sabah, Malaysian Borneo. One of the clear advantages of FOTO 
(and more generally of texture methods) over pixel-wise processing of either optical or radar 
data of high to moderate spatial resolution (pixels of 10 to 300 m) is that texture indices from 
VHSR images appear immune to signal saturation effects up to AGB values of at least 
500 Mg DM ha-1 (and probably more). AGB predictions with root mean square errors of less 
than 15–20% were achieved in the case of evergreen closed canopy forests in the case 
studies. Bastin et al. (2014) found similar errors in central Africa in spite of the forest types 
being more diverse (including semi-deciduous and open canopy forests). In all these studies, 
high resolution AGB maps (100–125 m pixels) were produced over regions of up to 400 km². 
The efficiency of the method can be explained by the allometric relationship that exists 
between crown diameters, which are reflected in the canopy texture analysis, and the bole 
dimensions (notably the DBH) that are classical predictors of total tree biomass. Antin et al. 
(2013) concluded that the DBH-crown relationship displays less inter-species variation than 
the tree-height allometry. A second important point that explains the relevance of canopy 
grain for predicting AGB is that ‘large trees’, whose crowns are always visible in the canopy, 
are known to contain most of the AGB. 

Field plots are an invaluable reference for calibrating and testing any space observation 
method targeting AGB. But they are costly to acquire and therefore often too scarce to allow 
for systematic analysis of the reliability of the inversion process (canopy texture to AGB) in 
relation to the diversity of forest stand structures and acquisition conditions of the satellite 
images (i.e., sun height, sensor-sun angles, and others). It is well known and fairly intuitive 
that variation in acquisition conditions is liable to induce strong artificial variation in the 
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texture: the same portion of canopy will automatically display finer textures in configurations in 
which shadows are concealed from the observer. To multiply scarce field data and gain 
knowledge from virtual canopy images corresponding to known stand structures, we have 
proposed a modelling framework that allows simulation of forest canopy images for any type 
of forest with basic forest inventory data as the only input. This framework combines a simple 
3D forest model named ‘Allostand’, using field-measured DBH distributions and allometry 
rules, with a radiative transfer model ‘Dart’ (Gastellu-Etchegorry 2008). The simulated images 
obtained appear to have good realism for textural analysis, and allowed us to verify that the 
FOTO indices correlate strongly with the median crown diameter of the virtual canopy scenes 
(Barbier et al. 2012). Simulated images also allowed validation of a simple method (called 
partitioned standardization) for attenuating the effects of discrepancies in acquisition 
conditions. However, systematically applying this principle at operational scale would require 
a very large array of VHSR images grasping both the breadth of the regional stand structure 
gradients and very diverse sun-view configurations. Such an array is not yet available, but 
assembling it could be an objective for donors keen to back the development of MRV 
methods for the REDD+ mechanism.

Conclusion
Texture analysis of HSR and VHSR optical images is able to provide meaningful information on 
vegetation properties and biomass that could be crucial in many regions and countries for 
reaching operational and cost-efficient MRV schemes. Results from such analyses can also 
benefit basic ecology and vegetation science. In the case of semi-arid patterned vegetation, 
we demonstrated that the corresponding landscapes are reactive to decadal climate variations 
and are sentinels for climate change. VHSR imagery is increasingly available, and versions of 
Ikonos images downloadable from Google Earth (Ploton et al. 2012) proved suitable for the 
analyses reviewed in this paper.
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Reducing carbon emissions from deforestation and degradation is of central importance 
in efforts to combat climate change, and many countries are emphasizing quantification 
of the carbon emissions from deforestation and forest degradation. This paper focuses 

on a study under the ’Mitigation of climate change impacts through restoration of degraded 
forests and REDD Plus activities in Bago Yoma Region, Myanmar’ project implemented under 
the auspices of Korea Forest Services (KFS). The study focused on estimation of above ground 
biomass (AGB) using Landsat ETM+ for two reserved forests in the Bago Yoma region, 
Myanmar. It demonstrates the use of spatially explicit AGB estimation over a large area using 
forest inventory data and satellite imagery and providing basic information on biomass/
carbon for the monitoring, reporting and verification (MRV) system. Although the special 
reflectance of the Landsat image is not sufficient on its own to provide good results for 
estimating forest density in tropical mixed deciduous vegetation, in this study it provided 
relatively good results for estimating AGB.

Keywords: REDD, AGB, Landsat, Lidar, MRV, NDVI, MLR, two-dimensional approaches, 
three-dimensional approaches

Introduction
An estimated 16.9 million hectares of tropical forest are thought to be lost annually, mainly 
through conversion for agriculture, and more than 5 million hectares become secondary 
forests following timber harvesting. Thus Reducing Carbon Emissions from Deforestation and 
Forest Degradation (REDD+) in developing countries is of central importance in efforts to 
combat climate change. Many developing countries are emphasizing the quantification of 
carbon emissions from deforestation and forest degradation; which means obtaining 
information on forest clearance and carbon storage. Many studies have looked at estimating 
the carbon and biomass status of forest areas using a variety of methods in order to 
understand the carbon storage capacity of forests.
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In general, forest biomass includes above ground and below ground living mass, including 
trees, shrubs, vines, roots, and the dead mass of fine and coarse litter associated with the soil. 
Due to the difficulty of collecting field data on below ground biomass, most research on 
biomass estimation has focused on above ground biomass (AGB). 

Many approaches and data sources have been used for estimating AGB, including field 
measurements, GIS, and remote sensing. Traditional techniques based on field measurements 
are generally considered to be the most accurate way of collecting biomass data. A sufficient 
number of field measurements are a prerequisite for developing AGB estimation models and 
for evaluating the AGB estimation results. However, these approaches are often time 
consuming, labour intensive, and difficult to implement, especially in remote areas, and they 
cannot provide information about the spatial distribution of biomass over large areas. 
GIS-based methods using ancillary data are also difficult because of problems in obtaining 
good quality ancillary data, indirect relationships between AGB and ancillary data, and the 
comprehensive impacts of environmental conditions on AGB accumulation, and these 
approaches have not been applied extensively for AGB estimation. In recent years, remotely-
sensed data have become the primary source for biomass estimation and remote sensing 
techniques have become prevalent in estimating AGB (Lu 2006).

The advantages of remotely-sensed data lie in the repetitive nature of data collection, a digital 
format that allows fast processing of large quantities of data, the high correlation between 
spectral bands and vegetation parameters, and the broad spatial coverage. Remote sensing 
has become the primary source for large area AGB estimation, especially in areas with 
difficult access, and remote sensing-based AGB estimation has increasingly attracted scientific 
interest. AGB can be directly estimated from remotely-sensed data using different approaches 
including multiple regression analysis, K nearest-neighbour, and neural network, and indirectly 
estimated from canopy parameters, such as crown diameter, which are first derived from 
remotely-sensed data using multiple regression analysis (frequently used) or different canopy 
reflectance models. 

Landsat ETM+ data is the most widely used source of remotely-sensed imagery for forest 
biomass estimation. Many studies have used geo-statistical approaches to generate spatially 
explicit maps of AGB from field plots and to improve upon existing biomass estimation. Many 
methods for biomass estimation rely on the link between ground plots and satellite imagery, 
and GIS is often used as a mechanism for integrating multiple data sources such as forest 
inventory and remotely sensed data.

Estimation of forest AGB is required as an input for the national forest monitoring, reporting, 
and verification (MRV) system required under the 1997 Kyoto Protocol. National-level forest 
biomass estimation is necessary and might be an important attribute. However, in Myanmar 
information related to AGB is still very limited and thematic maps of AGB are still lacking. This 
study focused on a preliminary study for AGB estimation using Landsat ETM+ for two reserved 
forests in Bago Yoma with the support of Korea Forest Services under REDD+ initiative 
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activities. The objective was to demonstrate spatially explicit AGB estimation over a large area 
using a combination of forest inventory data and satellite imagery, and to provide basic 
information on biomass/carbon for the MRV system.

Methodology
Study area

The study area consisted of two contiguous reserved forests, Sa Byin and Lon Yon, in the 
Central Bago Mountains in Myanmar (Figure 59). The total area was approximately 
10,300 ha, with an elevation range from 70 to 523 masl. The average annual rainfall during 
the period 1995–2006 at the nearest meteorological stations was 1,917 mm. The forest type 
is predominantly mixed deciduous, which is by far the most economically important forest type 
in Myanmar. The area is an important timber production area and the study area spans a 
wide range of forest structure, as reflected in various forest parameters, which together with 
the large number of tree species results in heterogeneous forest cover.

Data sources

Landsat 7 Enhanced Thematic Mapper plus (ETM+) imagery was selected for AGB estimation 
due to its suitability in terms of resolution (the spatial resolution of 30 m x 30 m is adequate to 

Figure 59:  Location of the study area
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assess information at the forest stand level) and practical considerations associated with its 
use. The image for 23 January 2009 (path/row: 133/47), a gap-filled SLC-off product, was 
downloaded from the Global Land Cover Facility. The image was georeferenced to the 
coordinate system of the study area (WGS 84, UTM projection, Zone 46N) and then 
converted from digital number values to reflectance according to Jakubauskas and Price 
(2000) and Joshi et al. (2006). The NDVI for the study area was then calculated to support 
the field survey.

Ground data were collected during March 2012. We used sample plots of 40 m × 40 m in 
order to match the spatial resolution of the satellite image. The total number of sample pots 
was 220. As the study area is a production forest, it could be assumed that the time difference 
between image acquisition date and survey time would not have had any marked impact on 
the study.

Sampling design

As the total area was around 10,300 ha, complete enumeration was impossible within the 
available time frame. A stratified random sampling design was used.

Representative samples were selected based on the vegetation density calculated from the 
NDVI. The NDVI was calculated using the spectral reflectance of the near infrared and red 
channels in the satellite image using NDVI

(NIR RED)
(NIR RED)=

+
-

. The NDVI values range from -1 to +1; 
we divided the values into five classes as shown in Table 24 (total area) and Figure 60 (spatial 
distribution).

For plot selection, a systematic 200 m grid-intersect of sample plots was prepared for the 
study area using Hawth’s analysis tools for ArcGIS, a total of 2,600 sample plots. The 
vegetation density was extracted for each plot using the Arcgis spatial analysis tool. Then a 
specific number of plots were selected at random within each of the five vegetation density 
classes as shown in Table 25 and a 40 m x 40 m sample plot delineated for each selected 
plot, giving a total representative sampling percentage by area of 0.34%. The locations 
(coordinates) of sample plots were recorded in GPS for field data collection (Figure 61).

Table 24:  Area of vegetation density classes based on NDVI

NDVI Vegetation density class Area (ha)

<0 Class 1 3.33

>0 to <0.1 Class 2 178.74

>0.1 to <0.2 Class 3 2,988.18

>0.2 to <0.3 Class 4 6,542.46

>0.3 Class 5 555.21

Total area 10,267.92
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Inventory in sample plots

The sample plot design is shown in Figure 62. 
Subplots of 20 m x 20 m and 10 m x 10 m were 
delineated within the 40 m x 40 m sample plot. 
We recorded trees with a DBH of > 20 cm inside 
the 40 m x 40 m plot (plot A), trees with a DBH 
of > 10 cm (saplings) inside the 20 m x 20 m 

Figure 60:  Vegetation density in the study area based on NDVI (in 2009)
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Table 25:  Number of selected samples

NDVI class Stratified plots Selected plots

Class 1 37 20 

Class 2 56 50 

Class 3 755 50 

Class 4 1,616 50 

Class 5 136 50 

Total 2,600 220
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subplot (plot B), and trees with a DBH of > 5 cm (seedlings) inside the 10 m x 10 m subplot 
(plot C). The location of the sample plots was checked at the centre using GPS and their 
respective coordinates. 

The field inventory (ground truth) was carried out by the Inventory Section of the Planning and 
Statistics Division of the Forest Department. The inventory crew recorded data with field sheets 
and followed the instructions developed under the National Forest Inventory, Myanmar. 
Unfortunately, the field plots did not contain enough information for non-forest classes, for this 
we set up sample plots subjectively using visualization of the images.

Figure 61:  Location of sample plots within the study area
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Estimation of AGB for field sample plots

We defined forest biomass density as the total AGB per unit area (1,600 m2) of trees with a 
DBH of 5 cm or more. The inventory data from each sample plot was first put into Microsoft 
Excel and the biomass of each tree estimated using a biomass regression equation and 
field-measured DBH (Brown et al. 1989). After generating the tree level biomass, the AGB for 
each sample plot was summed and converted into stand level total AGB (tonnes (t)/plot and  
t/ha). The biomass regression equation used was developed for tropical trees of DBH 5 to 
148 cm using 170 trees and was as follows:

Y= 42.69 - 12.80 (D) + 1.242 (D2)

where Y = biomass per tree in kg and D= DBH in cm; adjusted r2 was 0.84. 
Selection of training samples for multiple linear regression was done using PASW 18. The 220 
samples were divided into 112 training samples and 108 samples for accuracy check of the 
output thematic map. The descriptive statistics of sample plots used for training and accuracy 
are shown in Table 26.

Figure 62:  Field survey sample plot design 
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Table 26:  Descriptive statistics of sample data used for training and accuracy  
                (biomass t/ha)

Category Minimum (t/ha) Mean
(t/ha)

Maximum
(t/ha)

Standard 
deviation

Training (112 plots) 0 136.66 423.79 9.35

Accuracy (108 plots) 0 142.51 510.87 11.85
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Generation of regression model for remote sensing biomass estimation

Multiple linear regression (MLR) is a general statistical technique used to analyse the 
relationship between a dependent variable and several independent variables or covariates 
(Hair et al. 2006). MLR has been used to estimate forest parameters such as forest age and 
forest canopy density using spectral responses of remotely sensed data (Ripple 1994; 
Salvador and Pons 1998; Jakubauskas and Price 2000; Joshi et al. 2006; Mon et al. 
2012a,b). In the present study, biomass was estimated using the spectral reflectance of six 
Landsat ETM+ bands (bands 1–5, 7). The spectral reflectance values of the six bands were 
extracted for the 112 training samples. Statistical analysis was conducted in PASW 18. The 
linear relationship between the dependent and independent variables was examined in scatter 
plots. The results did not show any non-linear relationships between the dependent and 
independent variables. MLR was then run to estimate the regression model. 

High collinearity between the independent variables poses a statistical problem, thus we first 
examined collinearity between the independent variables using the variance inflation factor 
(VIF) and tolerance in the regression. High collinearity between independent variables occurs 
when tolerance < 0.20 or VIF > 4 (Allison 2001, cited by Eeckhaut et al. 2006). We 
subsequently excluded four variables, the spectral reflectance values of landsat ETM+ bands 
1–3 and 7, from the independent variables because of the high correlation among them. 
Normality, linearity, homoscedasticity, and independence of the error terms were examined to 
verify whether the regression model was applicable for estimation (Hair et al. 2006). 
Normality of the equation was checked using the histogram of residuals. Linearity of the 
overall equation was examined through the residual plots. Homoscedasticity was examined by 
plotting the Studentized residuals against the predicted dependent values. Independence of 
the error terms was identified by plotting against sequencing variables. All the diagnoses 
exhibited linear patterns and indicated that application of the regression model was 
acceptable. The equation used in the MLR model for estimating biomass was 

Y = 0.963+ 0.359 B4 − 0.248 B5 
(R2 = 0.64, F109 = 36.978, P ≤ 0.01)

where Y is the predicted biomass and the variables B4 and B5 are the spectral reflectance 
values of the ETM+ bands 4 and 5. A thematic biomass map was generated in ArcGIS 9.3 
using the above equation.

Results
Accuracy assessment

Evaluation of the model performance and accuracy assessment of the estimated results are 
important aspects in the AGB estimation procedure. In order to make comparisons between 
the field plots and the remotely sensed outputs, the field plots were assigned into four biomass 
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classes: < 50, > 50 < 100, > 100 < 200, and > 200 t/ha. The reclassification process of 
thematic biomass was conducted in the reclassify option under the ArcGIS spatial analyst tool. 
The accuracy of the output thematic maps was checked by four measures based on error 
matrices: producer’s accuracy, user’s accuracy, overall accuracy, and kappa statistics (Thapa 
and Murayama 2009) (Table 27). An overall accuracy of 60.18% and Kappa statistics of 0.42 
were accepted for the thematic map resulting from multiple regression analysis. 

AGB estimation map

Multiple linear regression (MLR) analysis was used to develop AGB estimation models based 
on the integration of vegetation inventory data and remote sensing variables as described in 
the methodology section. Figure 63a shows the 
AGB estimation maps for the two reserved forests 
developed using MLR analysis, and Figure 63b after 
classification into the four biomass categories 
generated using the regression results. The 
estimated AGB ranged from 48.88 to 223.73 t/ha 
with a mean AGB of 140.89 t/ha, giving an 
estimated total of about 1.4 million tonnes 
(1,444,659 t) for the two reserved forests. The 
estimated areas of the individual biomass categories 
are shown in Table 28.

Discussion
The MLR AGB estimation using field inventory data and Landsat ETM showed that the most 
common biomass class in the two reserved forests was 100–200 t/ha. Although the highest 
biomass (t/ha) based on field inventory data was more than 400 t/ha, the highest biomass 
value generated by multiple linear regression was 224 t/ha. Other methodologies should be 

Table 27:  Error matrix of biomass estimation by multiple regression analysis

Ground measured biomass (t/ha)

UA
Class 1 2 3 4 Total

Estimated 
biomass
(t/ha)

1 14 0 0 0 14 100.00

2 4 7 0 0 11 63.64

3 4 2 6 1 13 46.15

4 8 12 14 41 75 54.67

Total 30 21 20 42 113

PA 46.6 33.3 30.0 97.6

Notes: Class 1 = < 50 t/ha; Class 2 = > 50 < 100 t/ha; Class 3 = > 100 < 200 t/ha; Class 4 = > 200 t/
ha; PA = producer’s accuracy (%); UA = user’s accuracy (%)

Table 28:  Area of individual 
biomass categories

Biomass class 
(t/ha)

Area 
(ha)

< 50 217.8

> 50 <100 1,928.3

> 100 < 200 4,874.7

> 200 3,247.2

Total area 10,268.0
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considered in future biomass calculations. The range of AGB values estimated in the two 
reserved forests of 49 to 224 t/ha was similar to the values found in other biomass studies of 
126 t/ha in tropical forests of Canada, 144 to 182 t/ha in Brazilian rainforests (open), and 
149 to 267 t/ha (Cummings et al. 2002).

Multiple regression analysis generated relatively high overall accuracy, kappa statistics, and 
user and producer accuracies for each class. More heterogeneous forest categories generate 
more complex patterns of spectral reflectance, which led to lower accuracies in the 50–100 t/
ha class and 100-200 t/ha class in this study. Multiple regression analysis produced a 100% 
user’s accuracy for the almost non-forest class, i.e., less than 50 t/ha AGB, and thus 
developed a difference between forest and non-forest categories. Figure 64 shows the AGB 
estimation for the reserved forests in the study and the neighbouring area.

Although the spectral reflectance of the Landsat image alone is not sufficient to deliver good 
results in estimating forest density in tropical mixed deciduous vegetation, it provided relatively 
good results in estimating AGB in this study. But we still need to test other methods and also 
different data sources. The limitation in spatial, spectral, and radiometric resolution inherent 
in remotely-sensed data is an important factor affecting AGB estimation performance. For 
example, a Landsat TM image with 30 m spatial resolution often contains many mixed pixels, 
with different tree species and vegetation ages in a single pixel. Multi-resolution data has a 

Figure 63:  AGB estimation maps of the field study area (a) following multiple linear 
regression analysis and (b) after classifying into four biomass categories

a b
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potential for improving AGB estimation performance, but the time and labour involved in 
image processing is significantly increased. Economics is an important aspect of the use of 
multi-source remotely-sensed data over a large area.

AGB is calculated using allometric equations based on measured DBH and/or height, or from 
the conversion of forest stocking volume (Brown et al. 1989). These methods may generate 
major uncertainty because of the different purposes of field measurements, inconsistency of 
data collection dates, complex tree species composition, and different wood densities. 
Calibration or validation of the calculated AGB is necessary. A combination of spectral 
responses and image textures has proven useful in improving AGB estimation performance. 
The incorporation of remote sensing and GIS will also be useful in improving AGB estimation 
results when multi-source data are available.

Remote sensing techniques have many advantages in AGB estimation over traditional field 
measurement methods and provide the potential for estimating AGB at different scales. 
Therefore, future research may focus on the integration of multi-source data, which involves 
the effective integration of remote sensing (including optical and microwave data), GIS, and 
modelling techniques; a combination of multi-scale remotely sensed data, which involves the 
integration of field measurements with high (e.g. IKONOS), medium (e.g. Landsat TM/ETM+ 
and Terra ASTER), and coarse (e.g. MODIS and AVHRR) spatial-resolution data; and the 

Figure 64:  AGB estimation for the study forests and the neighbouring area
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development of a suitable procedure for AGB estimation. The following factors should be 
considered to improve the accuracy of biomass estimation:

�� Ground data collection time and image acquisition date should be considered as an 
important factor.

�� This calculation depends only on a two-dimensional approach (spectral reflectance of the 
images); a three-dimensional approach including tree height (using aerial photos and 
Lidar data) should be used in order to increase the accuracy.

�� Biomass estimation was conducted using a default equation developed from other regions; 
an allometric equation should be generated for the biomass equation.

Conclusion
Above ground biomass (AGB) of natural ecosystems is an important variable because it 
reflects the productivity of the land and as such can be used as an indicator for the degraded 
state (or otherwise) of the ecosystem. Furthermore, AGB is correlated with the carbon content 
of the vegetation species and is therefore useful for estimating the effectiveness of ecosystems 
as a carbon sink. Landsat imagery, which has the appropriate spectral and spatial resolution, 
relatively long historical datasets, and free worldwide data availability, has been extensively 
applied in forest biomass/carbon estimation. The integration of remote-sensing data with field 
surveys can provide estimates of biomass density in natural forest. This study was a preliminary 
study on estimation of forest AGB and may be useful in future estimations of AGB in other 
forest areas.
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T he land use, land use change, and forestry sector makes a major contribution to the 
greenhouse gas (GHG) inventory at the national level in Nepal. National 
communications submitted to the UNFCCC cover a large portion of the emission reports 

from agriculture, forestry, and other land use (AFOLU). The AFOLU data can be attributed 
using the land system information provided by land cover dynamics over time, e.g., 1990 and 
2010. The activity data from the land use change analysis provides forest change dynamics 
data in terms of categories such as ‘forest remaining as forest’, ‘forest converted to other land 
systems’, and ‘other land systems converted to forest’ over time. This paper considers carbon 
flux assessment in Nepal using the gain-loss method and a geospatial approach with land 
use/land cover data. A regular spatial framework was developed and applied to the 
indicators used in carbon flux quantification using land use change data and national 
estimates of forest growth and resource demand.. Between 1990 and 2010, the Terai forest 
had a negative carbon flux of 1.64 Mt, and the High Mountains forest a positive uptake of 2.4 
Mt; in total 2.07 Mt carbon was estimated to be taken up by the forest areas in Nepal. This 
type of study can be used in other geographical areas to support the national GHG inventory 
and reporting processes. The study could be improved in the future using higher depth data 
such as VDC level population, land cover data with more forest types, species level growth 
rates, and recent national forest inventory data.

Keywords: forest cover change, GHG, carbon flux, geospatial approach

Introduction
Land cover dynamics provide a basis for studying the ecosystem services generated from a 
forest over time, especially those related to carbon sequestration, forest growing stock, 
sustainable harvestable amount, and forest contribution to the national economy. Repeated 
land cover assessments over time provide a basis for analysis of the environmental, social, 
biophysical, livelihood, and economic services of a forest (Bajracharya et al. 2010). 

The contemporary issues of climate change and mitigation of climate change impacts and 
forest cover and contribution to atmospheric carbon accumulation are major topics of 
discussion, nationally and internationally. Stern (2007) and IPCC (2006) state that forest acts as 
both a sink and a source of carbon emissions, and that at present forest contributes 
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approximately 18% of global GHG emissions. This led to the concept of payment for avoided 
deforestation and forest degradation and the Bali Action Plan, which endorsed the REDD+ 
mechanism, which extended the REDD+ (Reducing Emissions from Deforestation and Forest 
Degradation) mechanism to include the role of conservation, sustainable management of 
forests and enhancement of forest carbon stocks, as a mitigation option. The approach of 
payment for the environmental services of forests in mitigating carbon emissions requires 
regular monitoring of the forest as well as a baseline for comparison of future forest restoration. 

The population in Nepal is growing (CBS 2011); this and urban expansion are increasing the 
pressure on forests (MOPE 2004). The IPCC Guidelines (IPCC 2006) list agriculture, forestry, 
and other land use (AFOLU) as one of the contributors to global GHG emissions, with others 
including transportation, energy, and waste management. In line with these guidelines, 
Nepal’s GHG inventory mainly focussed on five categories: energy activities; industrial 
processes; agriculture, land use change, and forestry; and waste management (MOPE 2004). 
The first national communication (2000) concluded that the net carbon emissions in Nepal 
from land use change and forestry were about 8,117 Gg in the base year 1994/95, after 
deduction of 14,738 Gg of carbon dioxide sequestered due to biomass growth. 

Most of the countries in the Hindu Kush Himalayan region have provided a first (initial) 
national communication to the UNFCCC; very few countries have provided, and many are 
preparing, a second communication. However, there is a general lack of the relevant land 
cover change data and integration to develop forest cover change for use in the estimation of 
carbon flux. The present study aimed to apply the gain-loss method to estimate carbon fluxes 
due to forest cover changes in Nepal, making use of complete and consistent decadal land 
cover databases and developing a GIS-based customization to integrate field based emission 
factor data. Such a spatial framework and customized system will help the countries of the 
region in developing and improving estimates using a geospatial approach.

Methodology
Forest carbon flux estimation methods

There are two different methods for estimating changes in carbon stock: 1) the gain and loss 
method, which estimates the net balance of additions to and removals from carbon stock;  
and 2) the stock change method, which estimates the difference in carbon stock at two points 
in time.

Gain and loss method

In the gain and loss method, annual changes in carbon stocks are estimated by summing the 
differences between the gains and losses in a carbon pool. In growing stock, gains occur due 
to growth (increase of biomass) and due to transfers of carbon from another pool. Losses 
occur due to transfers of carbon from one pool to another including through processes such 
as decay, burning, or harvesting (e.g., the carbon in the slash during harvesting is a loss from 
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the above ground biomass pool). For each pool, the carbon stock change is calculated using 
the following equation:

	 ΔC = ΔCG – ΔCL 

where	 ΔC 	 annual change in carbon stocks in the pool, tC/yr
	 ΔCG 	 annual gain of carbon in the pool, tC/yr
	 ΔCL 	 annual loss of carbon from the pool, tC/yr

Stock-change method

The stock change method can be used where carbon stocks in a pool are measured at two 
points in time. The following equation is applied:

	 ΔC = (Ct2 – Ct1)/(t2 – t1)

where	 ΔC 	 annual change in carbon stocks in the pool, tC/yr
	 Ct1 	 carbon stocks in the pool at time t1, tC
	 Ct1 	 carbon stocks in the pool at time t2, tC

The two methods give essentially the same result in terms of emissions, but differ in terms of 
effort (Bird et al. 2010). Figure 65 highlights the differences between the two methods.

Stock-change method

The difference between carbon
stocks gives carbon

accumulation

Carbon 2

Carbon 1

Time 2 Time 1

Carbon accumulation is
calculated from gain minus loss

Carbon uptake

Carbon release

– Growth
– Enrichment

– Timber harvest
– Fuelwood removals
– Charcoal production
– Sub-canopy fires
– Grazing

Gain-loss method

Forest /
Grassland

    C = (C12 – C11) / (t2 - t1)
    where,     C = change in C stock
C12 and C11 = carbon stocks at time t2 and t1

    C =    CG –   CL
    where,     C = changed in carbon stock
CG and    CL = annual gain and loss of carbon

Figure 65:  Approaches for estimating changes in carbon stock

Source: Bhattarai et al. 2010
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Study methodology

The study used the gain-loss method to estimate carbon flux, as there were no consistent 
repeated biomass inventories available for use in the stock change method. The gain-loss 
method has two components that are critical for estimating the carbon flux: the activity factor 
database and the emission factor database. The activity factor database addresses land cover 
change dynamics, while the emission factor database addresses biomass dynamics due to 
natural and anthropogenic systems. Hence the emissions estimates are based on data on land 
use change (activity data) multiplied by a factor that expresses the significance of this change 
in terms of GHG emissions. In essence this means the following: 

Emission estimate = [emission factor] x [activity data] 

Generation of activity data 

IPCC (2006) describes three different approaches for generating activity data:
Approach 1: Total data are generated from a whole land-use area within a spatial unit, which 
is often defined by political boundaries such as a country, province, or municipality. Only the 
net change in land-use area can be tracked. 

Approach 2: This approach provides an assessment of the net losses or gains of specific 
land-use categories within a defined area and what these conversions represent (i.e., changes 
both from and to a category). It includes information on conversions between categories, but 
is still not spatially explicit, and the location of specific land use and land-use conversions 
over time are not known.

Approach 3: This approach provides spatially-explicit observations of land-use categories and 
land-use conversions, often tracking patterns at specific point locations and/or using gridded 
map products that can be derived from remote sensing imagery. The data may be obtained by 
sampling or wall-to-wall mapping techniques or a combination of the two. The advantage of 
spatially explicit data is that analysis tools such as a geographic information system (GIS) can 
be used to link multiple spatially explicit datasets (e.g., those used for stratification) in order to 
describe the conditions of a particular piece of land prior to and after a land-use conversion 
in detail.

Land cover change databases for Nepal for 1990–2000–2010 were prepared using Landsat 
TM datasets under the SERVIR-Himalaya initiative (supported by NASA and USAID) (Uddin et 
al. 2015). Object-based image analysis (OBIA) techniques were used to give a better and 
more efficient classification. The approach used the Normalized Difference Vegetation Index 
(NDVI) for the interpretation of vegetation and other class segmentation, and other image 
indices such as Normalized Difference Snow Index (NDSI), Soil Adjusted Vegetation Index 
(SAVI), and Land Water Mask (LWM) for the interpretation of snow, land, water, and bare 
areas. In addition, ancillary digital information such as expert knowledge on forest types and 
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topographic information on altitude, slope, and aspect were also used to refine the 
classification rule sets used during the classification. The classification was verified and 
validated using field information from partners such as WWF and the Forest Resource 
Assessment (FRA) Project, among others. These consistent and systematic datasets formed a 
reliable base for the activity data used in the estimation of carbon flux in the study presented 
here (study used 1990–2010).

After finalization of the land cover classification for 1990 and 2010, spatial change analysis 
was carried out using a GIS overlay method. This operation essentially gave three outputs 
– forest cover remaining as forest cover, forest cover converted to other classes, and other 
classes converted to forest cover – which provided specific land cover information on forest 
cover changes over time. 

The forest remaining as forest category can include both areas with regeneration and areas 
with degradation; however, drastic changes were not expected in these areas. The forest 
converted to other land use type reflects deforestation and is likely to be the main contributor 
to carbon emissions to the atmosphere from forest. The other land use types converted to 
forest category is likely to be the main contributor to the removal of atmospheric carbon over 
the time period.

Emission factors 

IPCC (2006) has three tiers for categorizing methods to estimate emissions. The higher the 
tier number, the more rigorous the requirements for the data, the more complex the analysis 
performed, and hence, the more accurate the estimate.

Tier 1 uses default values for forest biomass and forest biomass mean annual increment (MAI) 
obtained from the IPCC Emission Factor Data Base (EFDB), which correspond to broad 
continental forest types.

Tier 2 uses country-specific data (i.e., data collected within national boundaries). Forest 
biomass is resolved at finer scales through the delineation of more detailed strata.

Tier 3 uses actual inventories with repeated measurements of permanent plots to measure 
changes in forest biomass directly. Well-parameterized models may be used in addition  
or instead, in combination with plot data. The Tier 3 approach requires a long-term 
commitment of resources, and generally involves establishing a permanent organization  
to house the monitoring programme (Herold et al. 2012); the results can be used for 
estimating carbon fluxes.

The present study used available data and published information mostly from national or 
region specific databases for the emission factors (Tier 2 level information). As there is a large 
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degree of heterogeneity in the climatic, topographic, and biotic regimes affecting carbon flux, 
an effort was made to use emission factor information that was as spatially explicit as 
possible. The country was divided into 25 functional strata based on five altitude and five 
development regions (Figure 66); wherever possible, the data were generated at the finest 
strata level, otherwise they were aggregated to the next coarsest level strata. The broad 
parameters, data used for emission factors, and tier level and strata level at which data were 
generated are given in Table 29. The carbon flux from the forest was estimated based on the 
parameters and equations described in the paper by Kaul et al. (2009). 

Spatially explicit estimation

The land cover change product was generated at a spatial resolution of 30 m. The emission 
factor data generated at a broader strata level were also rasterized at 30 m grid resolution. 
This facilitated linking of the activity data layers (forest remaining as forest, forest to other, and 
other to forest) and the emission factor layers (biomass conversion, sustainable harvest, timber 
and wood removal, trees outside forest, mean annual increment, and conversion factors) and 
calculation of the carbon flux at 30 m resolution. 

Figure 66:  Stratification of Nepal by physiography and development region 
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Table 29:  Variables used in the carbon flux analysis and their source	

SN Parameter Source Tier Stratification

1 Activity data

1.1 Forest to forest ICIMOD estimates 2 Physiographic region, development region

1.2 Forest to other ICIMOD estimates 2 Physiographic region, development region

1.3 Other to forest ICIMOD estimates 2 Physiographic region, development region

2 Gain

2.1 Mean annual increment Kandel et al. 2012 2 Physiographic region

3 Loss

3.1 Timber removal Kandel et al. 2012 2 Physiographic region

3.2 Fuelwood removal WECS 2010 2 Physiographic region

3.3 Sustainable harvest WECS 2010 2 Physiographic region

4 Uptake by abandoned 
land

MOPE 2004 2 Physiographic region

5 Trees outside forest Kandel et al. 2012 2 Physiographic region

6 Soil MOPE 2004 2 Physiographic region

7 Forest fire MODIS burnt area 
product

2 Physiographic region

Table 30:  Nepal land cover 1990 and 2010

Class Land cover 1990 Land cover 2010

km2 % km2 %

Forest 59,537 40.2 58,754 39.7

Shrub 4,755 3.2 4,532 3.1

Grass 11,291 7.6 11,520 7.8

Agriculture 42,328 28.6 43,887 29.7

Bare land 14,862 10.0 15,489 10.5

Other 15,225 10.3 13,815 9.3

Results and Discussion
Activity data: Land cover change analysis

The overall areas of the different classes of land cover Nepal in 1990 and 2010 are shown in 
Table 30, and the changes in individual classes in the form of a change matrix in Table 31. 
The spatial distribution of the land cover classes and change in forest cover are shown in 
Figure 67. Between 1990 and 2010, there was a decrease in forest cover as a percentage of 
total land area of Nepal from 40.2% (with 3.2% shrub) to 39.7% (with 3.1% shrub) and an 
increase in cultivated land from 28.6% to 29.7%. 
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Table 31:  Land cover change matrix for Nepal 1990 to 2010 (area in km2)

Class Forest Shrub Grass Agriculture Bare land Other Total 1990

Forest 58,065 397 158 797 63 57 59,537

Shrub 187 3,716 285 556 10 1 4755

Grass 206 114 8,051 528 756 1,636 11,291

Agriculture 194 75 85 41,471 434 69 42,328

Bare land 38 42 1,128 426 11,733 1,495 14,862

Other 64 189 1,814 108 2493 10,557 15,225

Total (2010) 58,754 4,532 11,520 43,887 15,489 13,815 147,998

Data source: ICIMOD

Figure 67:  Land cover change analysis from 1990 to 2010 in Nepal: a) land cover 1990; 
b) land cover 2010; c) forest cover change 1990–2010; d) remaining forest

a b

In a previous study, the forest cover in Nepal was estimated to have decreased from 43% (with 
5% shrub) in 1978 to 39.6% (with 10% shrub) in 1994 (LRMP 1986, DFRS 1999). This 
suggests that the deforestation and degradation rate has slowed considerably, although the 
values in the three studies are not strictly comparable as they were derived using different 
methodologies. 
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Forest cover change analysis was also done using the stratified 5 x 5 matrix based on 
development regions (5) and physiographic zones (5) (Figure 66). The stratified changes in 
forest cover are shown in Table 32. The middle mountains of the Western Development 
Region showed the biggest conversion both of forest area to other (495 km2), and of other to 
forest (387 km2). The western Terai showed the smallest conversion both of forest area to 
other (29 km2), and of other to forest (9 km2). 

Table 32:  Forest cover change by development region and physiographic zone  
(area in km2)
Physiographic zone and development 
region

Forest remaining as 
forest

Forest to other Other to forest

High Himal

Eastern 232.0 25.7 61.3

Central 225.8 16.7 18.0

Western 240.9 68.2 61.5

Mid-Western 274.6 32.1 32.7

Far-Western 71.6 12.1 38.5

High Mountains 

Eastern 3,466.7 139.8 199.0

Central 2,552.2 101.8 82.0

Western 2,859.1 230.8 192.9

Mid-Western 5,682.3 420.6 353.8

Far-Western 2,536.6 263.9 163.0

Middle Mountains

Eastern 4,353.0 298.6 294.0

Central 4,711.2 286.4 239.1

Western 3,946.3 494.7 387.1

Mid-Western 3,406.4 479.6 301.5

Far-Western 3,621.9 192.6 156.9

Siwaliks 

Eastern 1,751.8 86.9 51.4

Central 4,407.2 111.4 94.6

Western 1,678.9 79.7 36.5

Mid-Western 3,746.7 120.7 99.6

Far-Western 1,689.3 52.6 35.4

Terai 

Eastern 507.3 87.5 19.0

Central 908.3 54.2 23.2

Western 399.9 29.2 9.4

Mid-Western 833.2 40.4 26.0

Far-Western 1,176.6 94.9 29.8
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Forest carbon flux analysis

Table 33 shows the results of the estimation of forest carbon flux using the gain-loss method in 
each of the physiographic zones. 

The carbon gain in a forest mainly comes from growth in forests that remain as forest, 
conversion of non-forest land to forest, and soil uptake. The Siwaliks and high mountains 
showed relatively high levels of carbon uptake. This was partly due to the large area of forest 
cover but is also thought to be the result of the community forest programme. Several studies 
have reported that community forestry, implemented in Nepal since 1990, has contributed to 
conservation and protection of forests. 

The carbon loss in a forest depends on the withdrawal of fuelwood and timber, and 
conversion of forest to non-forest. The high level of carbon loss in the Terai region is the result 
of high levels of both wood extraction and deforestation. The net loss in the high Himal region 
is the result of unsustainable extraction resulting from the relatively small per capita area of 
forest and lack of alternative fuel resources.

Forest carbon flux map

The spatial distribution of carbon flux values was also mapped. Carbon flux was calculated as 
a function of the carbon flux in forest remaining as forest and in forest converted to other land 
systems, as well as carbon uptake in abandoned land and due to forest restoration. The 
spatial distribution of carbon gain, carbon loss, and total carbon flux in forest between 1990 
and 2010 is shown in Figure 68. The net carbon uptake was estimated to be 2.07 Mt 
(Table 33). The high mountains and Siwaliks were the major carbon sinks and the Terai and 
High Himal the main sources of emissions.

Table 33:  Forest carbon flux in Nepal (1990–2010) (tonnes)

Description
Uptake (removal from 
atmosphere) Emission Carbon flux

High Himal 114 -181,596 -181,482

High mountains 2,402,969 -757 2,402,212

Middle mountains 171,844 -124,741 47,103

Siwaliks 1,466,337 -19,471 1,446,866

Terai 585 -1,643,317 -1,642,732

Total 4,041,849 -1,969,883 2,071,966
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Figure 68:  Carbon flux in Nepal (1990–2010): a) carbon gain;  
b) carbon loss; c) carbon flux
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Conclusion
The use of available information from various documents at national level can support Tier 2 
calculations of carbon flux using the gain-loss method by applying stratification in terms of 
development region and physiographic zone (elevation zones). The data and maps derived in 
this way can be used to provide more precise carbon flux estimations for national 
communications and national forest monitoring systems and for the formulation of national 
strategy on REDD+ activities such as reference emission level and monitoring, reporting, and 
verification.

Various improvements are being considered as a part of ongoing research efforts to improve 
the estimates. In the present study, changes in soil mineral carbon could not be taken into 
account due to the lack of sufficient information for 1990 and 2010. Carbon flux in other 
land converted to forest was also not quantified exactly due to the lack of information on 
emission factors for such areas. The use of growth rates for different forest types rather than 
for physiographic zones would also improve biomass gain estimates. Finally, VDC level 
population data and associated fuelwood demand would enable more spatially explicit 
calculation of extraction rates. 
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Table A1:  Growth rates

Physiographic zone

Annual 
Growth  
(t/ha)

High Himal forest 1.75

High mountains forest 1.64

Middle mountains forest 1.64

Siwaliks forest 2.34

Terai forest 2.34

Shrub 0.59

Grass 0.085

Table A2:  Conversion factors
Physiographic zone Wood density

High Himal 0.40

High mountains 0.45

Middle mountains 0.60

Siwaliks 0.76

Terai 0.72

Table A3:  Timber removal

Physiographic zone
Timber removal 
(tonnes/yr)

High Himal 194,000

High mountains 1,013,519

Middle mountains 707,481

Siwalik 706,196

Terai 749,804

Table A4:  Fuelwood removal
Physiographic zone Fuelwood 

removal  
(tonnes/yr)

High Himal 548,765

High mountains 830,879

Middle mountains 3,516,662

Siwaliks 1,890,109

Terai 3,541,940

Table A5:  Sustainable yield
Physiographic zone tonnes/yr

High Himal 399,000

High mountains 2,708,999

Middle mountains 1,891,001

Siwaliks 1,395,988

Terai 1,482,192

Table A7:  Forest area destroyed by fire (ha/yr)
Physiographic zone Development region

Eastern Central Western
Mid-
Western

Far-
Western

High Himal 0 425 100 0 175

High mountains 0 0 275 500 550

Middle mountains 475 0 350 0 0

Siwaliks 100 0 2,375 0 0

Terai 0 0 1,000 0 775

Table A6:  Trees outside forest
Geographic 
region

Number of trees Annual 
growth rate  
(tonnes/yr)

1990 2000 2010 1990–2000

Mountains 4,519,032 6,620,873 9,336,801 0.0389

Hills 29,685,585 47,540,657 72,632,801 0.0482

Terai 14,769,477 15,337,532 15,867,438 0.0038

Annex
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Nearly 40% of Nepal’s land area is forested. Although the current rate of deforestation 
is relatively low, it still needs improvement. Current forest policy and legislation 
classify the country’s forests mainly according to their tenure or control, and 

especially community forest is considered to have been successful in restoring degraded sites. 
Detailed information is needed for planning further conservation and management strategies, 
and in particular, the proposed introduction of a mechanism for REDD+ (Reducing Emissions 
from Deforestation and Forest Degradation) and associated requirements for monitoring, 
reporting, and verification (MRV) requires detailed information on forest biomass and changes 
in carbon stocks. Remote sensing techniques, through different sensors and methods, offer a 
means for estimating forest above ground biomass (AGB). This paper describes a methodology 
developed for assessing forest basal area, and ultimately carbon stocks, for operational 
REDD+ MRV, using very high and medium resolution satellite datasets with a very limited 
number of field plots. A crown projection area (CPA) vs. basal area (BA) model was 
developed and validated at the watershed level. Open source base map imagery in Arcmap 
was used to collect data from virtual plots for scaling up at district level. The approach can 
considerably reduce field data requirements for estimation of biomass and carbon in 
comparison with inventory methods based on enumeration of all trees in a plot. The proposed 
methodology is very cost effective and can be replicated with limited resources and time. The 
virtual plotting techniques will be tested to confirm that the method can be used by local 
people (members of community forest user groups, foresters, and others) to obtain meaningful 
estimates of basal area and biomass in their forest areas for reporting purposes. 

Keywords: REDD+ MRV, crown projection area, basal area, model, community forest

Introduction
In Nepal, 5.83 million hectares (40%) of the 14.7 million hectares of land is forested (DOF 
2012). FAO (2010) reported that the annual rate of deforestation (1990–2010) in Nepal is 
relatively low, < 50,000 ha/year, but still needs improvement (Figure 69). The annual rate of 
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deforestation is highest in the Terai (1.6%), followed by the High Himalayas (0.97%), and the 
Siwalik Hills (0.87%) (Niraula et al. 2013). In terms of forest policy and legislation, the forests 
are classified in terms of the form of tenure or control as government-managed, community-
managed, leasehold, religious, private, or protected (Acharya 2002). Government-managed 
and protected forests are directly administered by government agencies; community, 
leasehold, and religious forests are managed by local communities or user groups; and 
private forests are controlled by individual households (Singh and Chapagain 2006). A total 
of 1.65 million hectares of forest are controlled by communities (DOF 2012). The community 
forestry programme is generally regarded as having been successful not only in restoring 
degraded sites, maintaining biodiversity, and improving the supply of forest products, but also 
in forming local level institutions for resource management and improving the environmental 
situation (Niraula et al. 2013). 

Detailed information is needed for planning conservation or management strategies, 
especially on properties such as species distribution, stand density, basal area, and canopy 
density that describe the forest vegetation and influence the forest biomass and thus the 
carbon stocks (Kim et al. 2010; Kwak et al. 2007; Lovell and Graetz 2001; Yang et al. 
2013). FAO (2010) estimated the level of forest living biomass in Nepal in 2010 at 
484 million tonnes (t) (359 million tonnes above ground biomass [AGB] and 126 million 
tonnes below ground biomass [BGB]), but these values are aggregated at the national level, 

Figure 69:  Deforestation in Nepal

Source: FAO 2010 Global Forest Assessment Current Opinion in Environmental Sustainability
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and not detailed enough to use for planning purposes. In particular, the proposed 
introduction of a mechanism for REDD+ (Reducing Emissions from Deforestation and Forest 
Degradation) and associated requirements for monitoring, reporting, and verification (MRV) 
requires detailed information on forest biomass and changes in carbon stocks. 

Remote sensing techniques, using different sensors and methods, offer a means for estimating 
AGB. The advantage of using remote sensing data is that spatial distribution of forest biomass 
can be obtained at reasonable cost with acceptable accuracy (de Fries et al. 2007). A number 
of attempts have been made to estimate forest biomass and carbon stock using different 
platforms (air-borne and space-borne) and sensors (optical, radar, and Lidar) (Gibbs et al. 
2007). Furthermore, several methods have been proposed for estimating forest biomass using 
remote sensing techniques that make use of a combination of regression models, vegetation 
indices, and canopy reflectance models (Cho et al. 2012; Gonzalez et al. 2010; Huang et al. 
2013; Kajisa et al. 2009).

Medium and coarse spatial resolution datasets provide the potential for AGB estimation at 
national and regional level, but mixed pixels and data saturation pose a problem to 
estimation at sites with complex biophysical environments (Goetz et al. 2009). High spatial 
resolution data provide more accurate results than medium resolution data but are expensive 
and have less area coverage, thus they are not appropriate for use in operational REDD+ 
MRV in developing countries. Lu (2006) suggested that combining remotely sensed data 
derived at different scales (coarse to fine resolution) could improve the accuracy of AGB 
estimation at national and global scales. As a part of this, forest inventories are essential for 
quantifying the amount and distribution of carbon stocks, evaluating forests as a source of 
sustainable fuel (biomass for energy production), and conducting research on net primary 
productivity (Muukkonen and Heiskanen 2007). One of the important parameters in forest 
inventory is basal area (the area within a plot occupied by the cross-section of tree trunks and 
stems at breast height). The basal area of a tree can be derived from the tree diameter at 
breast height (DBH) and has a strong relationship with tree biomass and carbon stock 
(Balderas Torres and Lovett 2012). 

This paper describes a methodology developed for operational REDD+ MRV using very high 
and medium resolution satellite datasets together with a very limited number of field plots. A 
crown projection area (CPA) vs. basal area (BA) model was developed and validated at the 
watershed level. The model developed for watersheds and community forest was used to 
assess the change over three years. Open source basemap imagery in Arcmap was used to 
derive data for virtual plots for scaling up at district level. Using this approach could 
considerably reduce the requirement for field level data for estimation of biomass and carbon 
in comparison with inventory methods based on enumeration of all trees in an area. The 
proposed methodology is very cost effective and can be replicated with limited resources and 
time. It is relatively straightforward and will be tested in the next stage of development to 
confirm that it can be used by local people (members of community forest user groups 
[CFUGs], foresters, and others) to obtain meaningful estimates of basal area and biomass in 
their forest areas for reporting purposes. 
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The specific objectives of the study were

�� to develop and validate a CPA (delineated and extracted from satellite images) vs. BA 
(based on the field data) model; 

�� to quantify and compare BA maps using 2009 and 2010 GeoEye-1 VHRS images at the 
watershed and community forest level;

�� to design virtual plots using open-source base-map imagery in Arcmap;
�� to develop a multi-regression model for scaling up based on the virtual plot data and 

parameters extracted from remotely-sensed datasets; and
�� to validate the regression model and carry out BA area mapping for the entire district.

Methodology
Study area

Chitwan District in Nepal was selected for the overall study, and within this the Kayer Khola 
watershed for detailed development of the model (Figure 70). The watershed has an area of 
80 km², of which 23.81 km² is managed by 16 community forest user groups, while the 
whole district has an area of 2,218 km², which includes Chitwan National Park. The study 
area was selected on the basis of accessibility, data availability, variation in terrain, and 
ongoing implementation of a REDD+ pilot project. 

Figure 70:  Location and map of the study area – Chitwan District and  
Kayer Khola watershed – showing position of field plots within the watershed 

and virtual plots within the district
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The district has mixed forests with the dominant species Shorea robusta (sal) found on most 
areas with a southern aspect and at the lower altitudes of areas with a northern aspect. 
Schima wallichii (chilaune) and a few associated species also thrive in the area.

Data and software 

GeoEye-1 images captured on 2 November 2009 and 15 December 2012 were used for the 
watershed study. Both images were cloud and haze free. Landsat-8 Operational Land Imager 
(OLI) images from 2013 were used for scaling up at district level. Three images from 2013 
were used captured in different seasons, on 15 April (summer), 30 May (rainy), and 9 and 
18 November (winter), on row/path 142/041 and 141/41. A digital elevation model (DEM) 
was extracted from topographic sheets with a horizontal resolution of 30 m with extracted 
products like slope, aspect, and hill shade, to understand the topography of the area. An 
ordinary global positioning system (GPS) receiver was used for location identification in the 
field study, tree height was measured with a TruPulse 360B and DBH was measured with a 
measuring tape. 

A total of 38 plots of 500 m2 each within the watershed were used to develop the regression 
model; and a further 20 plots with the same area were used for validation. The position, 
height, and DBH of every tree with DBH > 5 cm in each plot were recorded. Thirty-five virtual 
plots of 1 ha (10,000 m2) randomly distributed on a base map were generated for scaling up 
across the entire district. 

The overall methodology is summarized in the form of a flow chart in Figure 71: the individual 
steps are described briefly in the following sections. 

Pre-processing of remotely sensed data

Individual band-wise GeoEye-1 images were ortho-rectified using rational polynomial 
coefficient (RPC) files along a horizontal 20 m topographic DEM by applying a cubic 
convolution method in zone 44 of the Universal Transverse Mercator (UTM) coordinate system, 
with datum and spheroid from the World Geodetic System (WGS) 84. The spectral information 
at lower resolution (2 m) was merged with the high spatial resolution information (0.5 m) from 
the panchromatic image. The two GeoEye-1 images were independently ortho-rectified and 
fused with their respective multi and panchromatic spectral bands, but positional differences 
were observed when they were overlaid. To overcome this, 26 points were taken as ground 
control points (GCPs) in both datasets. This resulted in an overall root mean square error 
(RMSE) of 1.2 m for the panchromatic image and 1.5 m for the multispectral image. Prior to 
segmentation, low pass median filters are usually applied to avoid over-segmentation and 
smooth the appearance (Platt and Schoennagel 2009). In this study, convolution 3 × 3 
low-pass filters were used to reduce local variation, remove noise, enhance tree features, and 
improve the quality of the analysed satellite images. The Landsat TM images were downloaded 
and a layer stack prepared to make multi-spectral images for visualization. The Normalized 
Difference Vegetation Index (NDVI) was extracted using the NIR and RED bands. 
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CPA delineation and development and validation of a regression model for BA comparison

Object based image analysis (OBIA) with a region growing technique was used for CPA 
delineation at the watershed level. In this method, tree tops are identified as maxima and the 
shadows between trees as minima. The segments are ‘grown’ from these maxima and the 
valleys act as boundaries (Figure 72). The first step in region growing was to create minimum 
size homogeneous objects through ‘chessboard segmentation’; the brightest pixels were then 
identified as seed pixels (tree tops). Regions were ‘grown’ from the seed pixels up to the local 
minima, resulting in homogeneous objects based on predefined homogeneity criteria (Cui et 
al. 2008; Erikson 2003; Shih and Cheng 2005). Validation of the delineation was done using 
manually delineated tree crowns (visual interpretation of the images in a 1 ha grid). 

Figure 71:  Summary of the methodology
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The DBH (in centimetres) of each tree recorded in the field was converted into BA (m2) and the 
values aggregated at plot level. In order to compare the results with the CPA extracted from 
satellite imagery using the region growing technique, the results from the 500 m2 plots were 
multiplied to give the equivalent in 1 ha (10,000 m2). The CPA was derived from the 
GeoEye-1 image of 2009 for the same plot areas using the region growing technique. A 
regression equation for the relationship between CPA and BA was derived and validated using 
the plot derived BA values and the image derived CPA values. 

The spatial CPA across the whole watershed was derived from the GeoEye-1 images for each 
of the two years, and the spatial BA across the watershed calculated using the regression 
equation. 

Template formation and BA identification at district level 

A total of 35 virtual plots of 1 ha (10,000 m2) randomly distributed on base map imagery of 
Arcmap were generated for scaling up from watershed to district level. The number of crowns 
and the crown area were observed in each plot by visual study of the image, and the BA value 
calculated using the regression equation, thus taking the diversity and different sizes of tree 
crowns into account. 

A template was prepared for broadleaved forest showing the appearance of different ranges 
of CPA in the satellite image for the watershed before and after application of the seeding 
technique, and relating these to the BA value (Figure 73). This template was used to help 
identify crown size and CPA during the visual study of the virtual plots in the district in the 
Arcmap images. 

The BA value for the district was derived using a multi-regression model which used the BA 
values for the virtual plots calculated from the CPA using the regression equation, together 

Figure 72:  Delineation of crown projection area (CPA): a) satellite image, b) image with 
local maxima/tree tops, c) distance from tree tops

a b c
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with additional parameters extracted for each of the three seasons from the virtual plots in the 
Landsat images. The parameters used were blue, green, red, and near infrared reflectance, 
and NDVI values. 

Results
CPA delineation and development and validation of the regression model for 
BA comparison

The CPA delineated through OBIA was compared with the CPA extracted manually within a 
100 x 100 m grid for accuracy assessment. The results are shown in Figure 74; there was an 
83% match (coefficient of determination R2 = 0.83) between the values. 

The CPA extracted from the satellite image of 2009 was compared with the BA derived from 
the DBH measured on the ground in the field plots. The two values showed a linear 
relationship with the coefficient of determination R2 = 0.76 (Figure 75). The CPA was 
converted into a spatial map of BA for the entire watershed using the regression equation 
derived from the correlation (Figure 76). The extrapolated maps had an accuracy of 83% 
based on observed and predicted BA values. 

The template (Figure 73) helped foresters recognize the variation in CPA in the basemap 
imagery from Arcmap. The spatial BA Classification and Regression Trees (CART) mapping 
model was used at the district level. CART is a non-parametric decision tree learning 

Figure 73:  Template for reading the virtual plots 



Figure 76:  BA maps of the watershed  
for 2009 and 2012
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technique that produces either 
classification or regression of trees, 
depending on whether the dependent 
variable is categorical or numeric, 
respectively. The CART model was 
used to extend the BA estimation to 
the entire district using 0.76 as the 
coefficient of regression. The results 
are shown in Figure 77.

Discussion and Conclusion
The study area is a natural broadleaf 
forest. The results show that the 
method of individual tree crown 
delineation using region growing was 
sufficiently flexible to detect tree 
crowns of different size. Ke and 
Quackenbush (2008) and Erikson 
and Olofsson (2005) also concluded 
that region growing is better than 
other algorithms. The methodology 
for BA mapping at both watershed 
and district level is convenient and 
easy to replicate. The template helped 
even those with limited knowledge of 
remote sensing to identify the number 
and area of tree crowns. This 

Figure 74:  Validation of crowns delineated 
using the region growing technique

Figure 75:  Linear regression between CPA 
and BA
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approach could considerably reduce the requirements for field data for estimation of biomass 
and carbon in comparison with inventory methods based on enumeration of all trees in an 
area. The method is suitable for pure broadleaved or coniferous forest, but could be less easy 
to use for mixed forests. 

BA maps can be easily translated into biomass for carbon stock quantification. Balderas 
Torres and Lovett (2012) have explored different forms of allometric equations and analysed 
the potential for using equations for individual trees to derive stand-level equations, using the 
basal area and average diameter as explanatory variables. 

The next step in this research will be to expand the methodology to other districts in Nepal. 
Instead of using commercial very high resolution satellite imagery, we are proposing to use 
less expensive imagery such as CARTOSAT-2. 
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