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Abstract

This paper discusses three models related to catastrophic hydrological
occurrences in the mountains. The first model calculates and predicts the
hydrographs of ice-dammed lake outbursts; the second model calculates the
occurrence probability distributions of the volumes of water in and maximum
discharges of water from moraine lakes; and the third one computes volume and
discharge of flood water from the hydrograph, volume, and maximum discharge
of the debris flow. The three models are developed for the high-elevation
mountains where occurrences of glacial outbursts are quite common.

Introduction

Glacial outburst floods are quite rare at any particular site, but they are still
quite common occurrences in high-elevation mountains. This paper presents
principles for modelling of two dangerous hydrologic occurrences: outbursts from
the ice-dammed lakes and from moraine lakes.

Outbursts from Ice-Dammed Lakes

Satellite photographs and glacial monitoring can be expected to provide
sufficient information about the appearance and conditions of ice-dammed lakes.
However, for forecasting purposes it is beneficial to have in addition a
mathematical model of the hydrograph of the flood that can be expected from an
€ventual outburst.

We consider a process of discharge from the ice-dammed lake, starting from the
beginning of the leakage in the ice-dam. The leakage process is defined by two
main sources: the increasing cross-sectional area of the tunnel and the decline in
the hydrostatic pressure due to the decreasing water volume in the lake. The
assumption is that the potential energy of the water in the lake will be
Completely spent on the tunnel melt.

The equation for the relationship between the rate of expansion of the tunnel
and decline of the water volume in the lake is as follows:

do  Pole(6,-0.)+ g(H + h) - "?1

s 1
dw prl (1)

423



International Conference on Ecohydrology of High Mountain Areas

where:
0] is the cross-sectional area of the tunnel;
w is the water volume in the lake;
p = 1,000kg/m’ is the density of water;
p’ = 920kg/m’ is the density of ice;

r = 334,000 J/kg is the latent heat of ice melting;

c = 4,190 J/(kg°C) is the specific heat capacity of the water;

g = 9.81 my/s? is the acceleration due to gravity;

0, -0, is the difference in temperature between the water
in the lake and the water at the exit from the
tunnel;

H is the water level in the lake above the centre of
weight the inflow hole of the tunnel;

h is the difference in the elevations of inflow and
outflow of the tunnel;

1 is the tunnel length; and

v is the water velocity in the tunnel.

It is worth noting that v*/2 in equation (1) is very small in comparison to the
other values, and that the relationship between water level and water volume is
expressed as follows:

H=aw" (2)

where,
a and n are the morphometric parameters of the lake depression.

We consider the process of outflow of water from a lake as the flow through a

'short pipe'.

Q=awiVH 3)

where,
Q is the water flow discharge; and
o is a coefficient evaluated from the best correspondence between
the model and field observations.

First, we consider the case under the assumption that the lake water

temperature is regulated by icebergs and the ice-dam and is equal to zero. Then
the equation is:

Q=af2: L thtw, -w )+ —2— (" =™ ) Fo Jaw (4)
p rl n+1
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where,
Wy, is the initial water volume in the lake;
w is the variable water volume in the lake.

Using this expression, the maximum flood discharge is easily evaluated for a w
computed from the following equation:
a 25

(—+3.5)w"] 5)
n+1 n

wolh+——p") = w %5 4 vn+
n+1 n

Recomputation of the hydrograph Q = fi(w) into Q = f,(t) is done by
differentiation. If the available information about the lake water temperature
indicates 8 > 0°C then we can use the following equation:

0=at2 L+ x)two-w)+ —2—(wi* - w1 Ji Jaw" (6)
p rl n+1
C 4000 0.31 n 015
=—0/[1 - exp(- a‘m law”) Vi (7)
g Q7 p,C

It is obvious that equations (6) and (7) cannot be solved for Q. Therefore,
equation (4) can be solved for the first approximation and then the principle of
iteration can be applied. The coefficient a is defined by the tunnel length: for 1 =
0,a=2.7; forl = 2km, o = 2.0; for 1 = 5km, a = 1.0; for 1 = 10km, o = 0.4;
for1 = 35km, @ = 0.1; and for 1 = 50km, o = 0.07.

The model for computing outburst hydrographs with their characteristically
strong negative asymmetry was validated for the following lakes: George in the
Chugach Mountains, Alaska (1951), Talsequa on the Coastal Ridge on the border
of British Columbia and Alaska (1958), the glacier Medvezhii in the western
Pamir Mountains (1973), and Grenalown (1935, 1939) and Grimsvetn (1922,
1934, 1945), both in Iceland. Sufficient correspondence to the model was
obtained with somewhat vague data for Lake Vatnsdalur (1898) in Iceland and
the Pleistocene Missoula Lake in the Columbia River basin.

In cases when the tunnel diameter approaches dimensions corresponding to the
Size of the ice-dam, the model should be applied with great care. For example, at
Lake Yapshan at the headwaters of the Shyok River in the Karakoram Mountains
(1929), the cross-sectional area of the tunnel at the time of the maximum
outburst flood is predicted to be equal to 65,500m® (diameter 290m), when the
total height of the ice-dam was not greater than 150m (w, = 3.8*10°m®, h =
10m, / = 1,500m, n = 0.33, a = 0.08). It is obvious that when the tunnel
diameter reached 50-70m, the tunnel vaults would collapse and the flow would
be through an open channel.
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Moraine Lake Outbursts

Moraine lakes are very common in the conditions of high-elevation mountains.
They appear, evolve, and disappear. Sometimes they burst out catastrophically.
Forecasting such outbursts is best accomplished by using graphs showing
temporal increases in the water volumes in the lake. If such a curve has a
parabolic shape, and the annual increment in the water volume increases
consistently, the probability of an outburst becomes very high.

For purposes of ecological planning in mountainous terrain with moraine lakes,
the probability distribution curves of lake volumes and maximum discharge rates
are required. Methods for calculating such curves are not available.
Nevertheless, there are some means to obtain such distribution curves by
mathematical modelling under some reasonable assumptions. The following is
one technique for such modelling — mainly stochastic, but with some elements
of a deterministic approach.

We assume that the size of moraine lakes is dependent on the size of the glaciers
nourishing them.

The pararneters are:

T is the age of the moraine lake (usually 50-100 years);

C. is a variance coefficient characterising the degree of possible deviation of
the water volume in the lake resulting from random site-specific reasons
(range 0.2-1.0);

P is the probability of a moraine lake outburst during its maximum volume
(range 0.2-0.5).

The average volume of a moraine lake during its maximum volume is computed
as:

Wo= Woo F" (8)

where:
Weo = 0.2*10°m’/km®™, m = 0.7, Fis the glacier area in km?®.

The location of the point, ¢ along the time axis is defined as ¢ = &, 7, where €, is
a uniformly distributed random value in the range of 0.0000 -~ 0.9999.

For the computation of w, a normally distributed random value, u, is first
derived. The volume of the possible outburst is defined as:

w = max {wo(§fu+u,,c, L0} S =56 9)

The probability of a lake outburst is computed as:

p=(p)~ (10)
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The fact of outburst is defined as a uniformly distributed random value, €, in the
interval 0.0000 to 0.9998. The outburst occurs if €, < p.

The maximum discharge of an outburst is computed as:

Q. = Kwaw*, K=012z=0.75 (11)
where,
a is the maximum average slope on a 100m section chosen on the

moraine below the dam.

Iterative repetition (N = 10’ - 10°) of the described procedure forms synthetic
rows, w and @, which compose variation rows in decreasing order. Variation
rows, w and @,, including zero values correspond to the order of probability
computed from the equation P = M/, where /Vis the number of cases accepted
for the experiment and M is the order number of the variation row member.

The determined probabilities (P), together with the corresponding maximum
discharges (Q,,) and the volumes (w), are used for building the distribution
curves for these variables.

Parameters and numerical values of the coefficients are approximated on the
basis of observations of moraine lakes in Pamir and Tian-Shan. The methodology
of the modelling can be applied to any high-elevation mountain terrain, e.g., the
Himalayas, Hindu Kush-Karakoram, Tibet, and the Andes.

Debris Flows
In many cases the proposed algorithms can be combined with the model of
transport-dislocation debris flows. By this means, the characteristics of a given

Probability for debris flows can be obtained. This process can occur only on
slopes that exceed the critical value:

tgf = (PP (1-£)tgp

* (12)
[p(l-g)+ p,e]
where,
p is the rock density;
P, = 1,0001(g/m3 is the density of water;
£ is the porosity of the debris; and
[0} is the dynamic angle of interior friction in the

debris.

We assume that the increment of discharge of solid material (G) transported
along with the debris flow is directly proportional to the coefficient of fluidity of
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the debris flow mass:

R = (}’A{-:/) (13)

’

(7M - po)
and the elementary potential power of the flow:
= gyQ, sna, (14}

and inversely proportional to the coefficient of debris mass stability on the slope
(lL.e.: tg@/tga):

4G B2 g, (15)
d/ gy

where,

Y is the density of the debris mass;

Y is the density of the debris mass at the limit of fluidity;

[0} is the static angle of interior friction; '

Qpr is the debris flow discharge; and

1 is the length of flow movement along a channel with the slope a

> b.

Different transformations lead to the following equations:

G =NQ (16)

Qo =L[IFA+CIN]Q (17)

[14(+L) W prosnsess [ 1400 ¢, )N P sutsin’ =

Po
(18)
=explj g Al(p+p04’M)sina£g—a]
gy
where,
Q is the discharge of the water stream;
& is the relative volumetric moisture of the debris deposit (ratio of
water volume to the solid mass volume);
Gk is the relative volumetric moisture of the debris deposit at the
fluidity limit;
N is the ratio of solid matter discharge to the water discharge; and
Al is the length of the part of the stream under consideration.
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Equation (18) can be solved with respect to NV by any numerical method of
iteration. Model (16)-(18) can be also useful for the computation of rainstorm
debris flows. The model predicts the movement, deceleration, and cessation of
flows.

Some of the problems stated in this paper are considered in more detail in
Vinogradov (1977 and 1980).

References

Vinogradov Y.B., 1977. Glacialnye proryvnye pavodki i selevie potoki. Leningrad:
Gidrometeoizdat.

Vinogradov Y.B., 1980. Etudy o selevyh potokah. Leningrad: Gidrometeoizdat.

429





