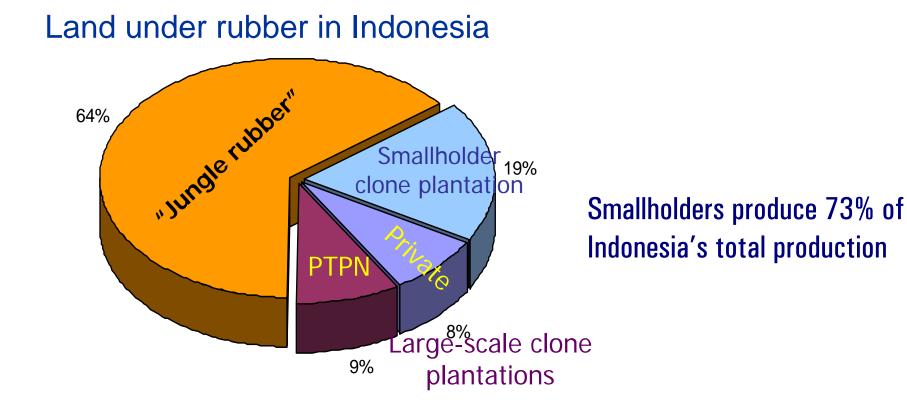


Economic Analysis of Improved Smallholder Rubber Agroforestry Systems in West Kalimantan, Indonesia - Implications for Rubber Development

> Yuliana Cahya Wulan Suseno Budidarsono Laxman Joshi


SSLWM: Linking research to strengthen upland policies and practices, 12-15 Dec 2006 Day 2 Parallel Session B Paper 11

Presentation outline

- Natural rubber in Indonesia
- Improved rubber agroforestry systems
- Economic data assessment
- Scenario testing examples
- Conclusions

Indonesia has 3.3 million ha rubber producing 1.8 million ton – 23% of world production

Numerous projects, plans to convert jungle rubber to improved system – but most smallholder farmers have not adopted "improved" system

Natural Rubber production in Indonesia

Smallholder rubber:

- 83% of rubber area (3.3 mill ha)
- Adapted slash and burn system
- Annual crops in first 2-3 yrs
- Unselected rubber seedlings
- Extensive management; little/no input

Consequences

Slow and heterogeneous rubber growth
Competition: rubber and forest re-growths
Mixed vegetation: complex jungle rubber
Low latex productivity: 1/2 - 1/3 of estate

Improved rubber-based agroforestry – alternatives to monoculture

- Based on traditional practices, but using clones
- Provide optimal return, diverse and adaptable by farmers
- On-farm trial-demo plots (managed by farmers, monitored by ICRAF)
- Data bio-physical and socioeconomics

Rubber Agroforestry Systems (RAS)

RAS-1: Natural vegetation regrowth outside weed-free strip

RAS-2: Fruit or timber trees between rubber rows; annual crops in inter-rows

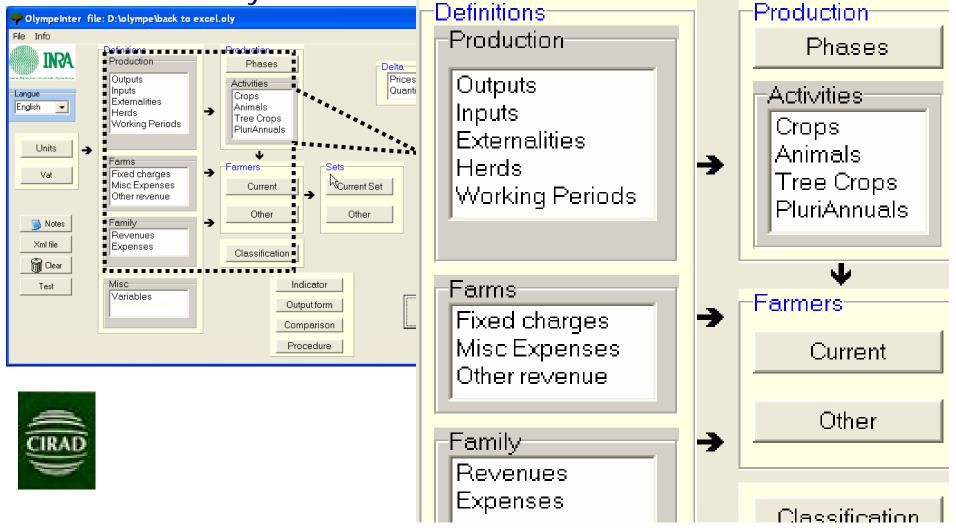
RAS-3: Shrubs, cover crops or fast growing trees between rubber rows to shade out *Imperata*

Socio-economic data – analysis

- 1. characterize socio-economic background of RAS trial participants and compare with non-partiicpants
- 2. To assess the economic performance of RAS technology and compare with alternatives

3. farm budget analysis - to assess impact of technology intervention and price and policy changes (aid decision making in selection of appropriate technology)

Data

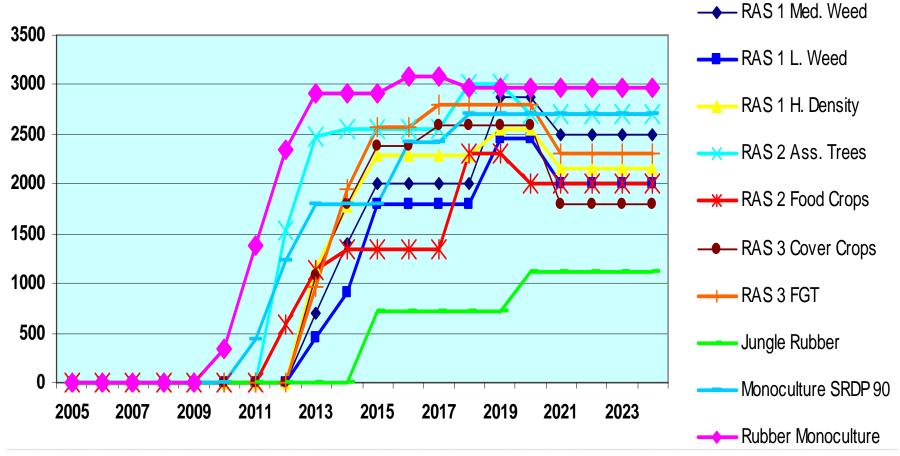

- 1. Origin of different sources of income
- 2. Cost of production (farm inputs fertilizer, agrochemicals and labour)
- 3. Outputs and yields
- 4. Commodity price time series

Sources:

- $\checkmark\,$ On-farm trial-cum-demo plots of RAS
- ✓ Farmer interviews RAS (60) + non-RAS (20)
- ✓ Secondary sources and literature

Olympe farming system modeling software developed by INRA/CIRAD/ IAMM for constructing farm budget and economic analysis

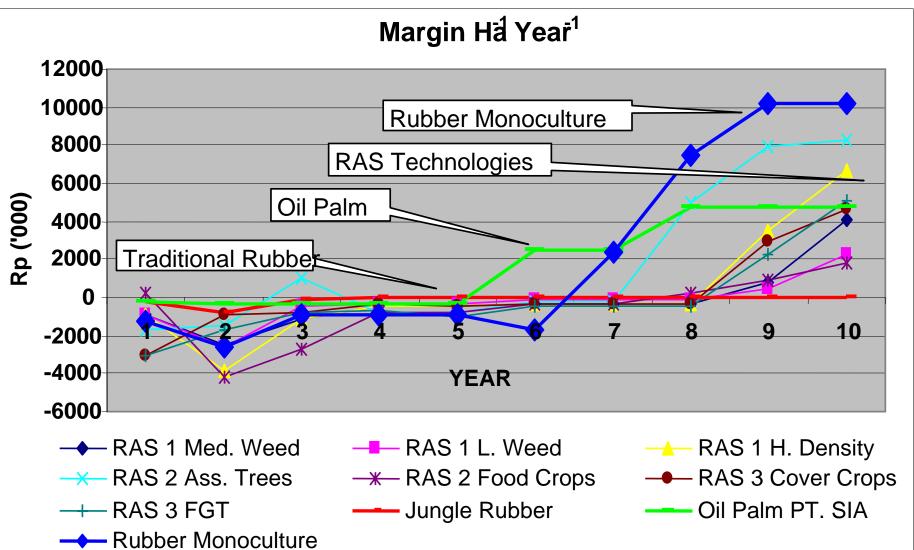
OLYMPE farming systems modelling


- 1. Enables modeling of farming systems in order to characterize them and to identify typologies.
- 2. Provides features for prospective analysis according to price and yield evolution.
- 3. Permits the analysis at the level of farmer groups.
- 4. Helps build scenarios according to price, climatic events or various types of risks.
- 5. Assesses impact of technical choices at the farming systems level both economical and environmental

Results: Attributes of RAS Farmers

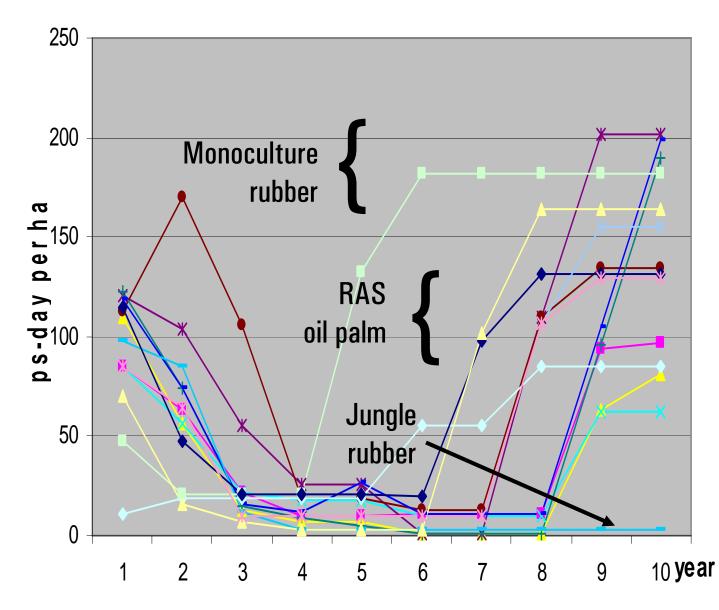
- 1. Average land holding: 5.74 ha/household
- 2. Rubber area covers about 55% of total farm area
- 3. Average household size was 4.7 individuals
- 4. Average family labour used on the farm: 2.7 individuals (709 person-days/year).

Landuca	Area (ha)		
Land use –	Max	Min	Average
Irrigated field (sawah)	2.00	0.00	0.32
Upland field (ladang)	2.50	0.00	0.52
Rubber area non-RAS	16.50	0.00	2.34
RAS area	1.50	0.27	0.52
Oil palm	6.00	0.00	1.04
Tembawang/mixed fruit garden	3.00	0.00	0.16


Simulated rubber yield (fresh weight) from different rubber systems

- 1. Farmers normally tap 200-300 trees a day, 6 days a week
- 2. Tapping intensity decreases when household labour is needed elsewhere (paddy harvest, off-farm work, social events)
- 3. Non-rubber products from RAS and traditional systems

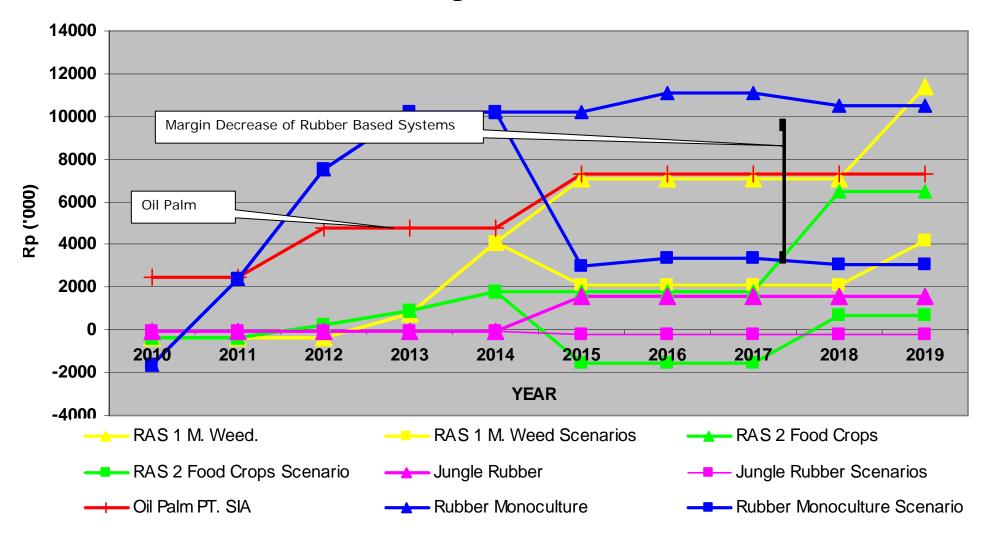
Margin: monoculture<RAS<traditional system.</p>


RAS technologies require lower capital and inputs.

Net Present Value (NPV) and 'discount factor' in long-term investment. [1 US\$=IDR 9000; daily wage rate=IDR 20,000]

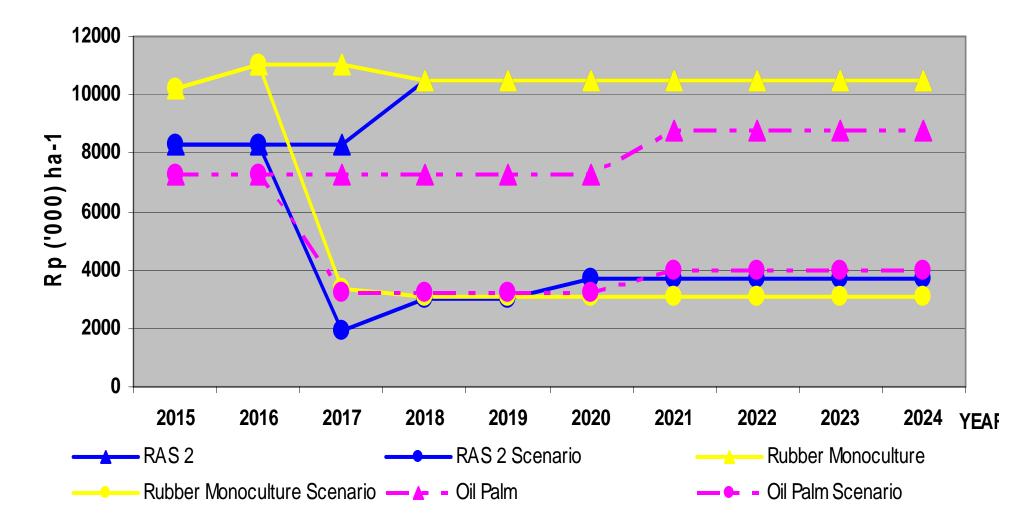
FARMING SYSTEMS	NPV (Rp'000/ha)	YPC (years)	EST. COST (Rp'000/ha)	Return to Labor (Rp/Ps-days)
Jungle Rubber	(1,073)	-	13,629	17,907
RAS 1 Low mgmt	10,087	13	10,874	40,838
RAS 1 Med mgmt	11,197	14	14,318	47,629
RAS 1 High density	13,496	12	12,657	47,629
RAS 2 Food crops	4,116	18	21,834	25,113
RAS 2 Ass. trees	18,316	10	15,373	42,749
RAS 3 Cover crops	2,864	13	19,427	23,189
RAS 3 FGT	7,127	14	18,513	27,683
Rubber monoculture	18,567	10	19,035	35,683
Monoculture SRDP	8,045	14	20,192	29,477

Labor input in different rubber systems



RAS 1 Medium Weeding RAS1 Low Weeding \rightarrow RAS 1 High Density - RAS 3 With FGT Local Jungle Rubber Oil Palm PT. SIA Ideal Monoculture — Monoculture Private Monoculture SRDP **Clonal Agroforest Private** $- \times$ **Clonal Agroforest Disbun**

Prospecting commodity price change


Scenario A: 50% reduction in rubber price between 2015 to 2019, other factors remain constant

Margin Ha-1 Year-1

Prospecting commodity price change

Scenario B: prices of rubber and oil palm drop by 50% and 40% respectively starting 2018

CONCLUSIONS

- Compared to traditional jungle rubber, RAS technology requires more capital input, but both returns to labour and return to land are higher.
- Intensive monoculture rubber offers better rubber productivity (yield and profitability), but requires much higher capital and input than alternatives.
- RAS technology, can provide smallholder farmers with diversified income and range of NTFPs.
- Simulating possible changes (e.g. commodity price) important aspect for informed decisions.
- Olympe software is informative and useful for farm budget analysis - customisable outputs.
- Olympe potential decision support tool for choosing between land use alternatives and intensification

