|
Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i
.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest
Read More
|
|
Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, A.; Singh, S.; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, C. S.; Gupta, S.; Pujar, G.; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, P.; Singh, J. S.; Chitale, V.; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, D.; Karnataka, H.; Saran, S.; Giriraj, A.; Padalia, H.; Kale, M.; Nandy, S.; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, C.; Singh, D. K.; Devagiri, G. M.; Talukdar, G.; Panigrahy, R. K.; Singh, H.; Sharma, J. R.; Haridasan, K.; Trivedi, S.; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, M.; Nagbhatla, N.; Prasad, N.; Tripathi, O. P.; Prasad, P. R. C.; Dash, P.; Qureshi, Q.; Tripathi, S. K.; Ramesh, B. R.; Gowda, B.; Tomar, S.; Romshoo, S.; Giriraj, S.; Ravan, S. A.; Behera, S. K.; Paul, S.; Das, A. K.; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, U.; Menon, A. R. R.; Srivastava, G.; Neeti; Sharma, S.; Mohapatra, U. B.; Peddi, A.; Rashid, H.; Salroo, I.; Krishna, P. H.; Hajra, P. K.; Vergheese, A. O.; Matin, S.; Chaudhary, S. A.; Ghosh, S.; Lakshmi, U.; Rawat, D.; Ambastha, K.; Kalpana, P.; Devi, B. S. S.; Gowda, B.; Sharma, K. C.; Mukharjee, P.; Sharma, A.; Davidar, P.; Raju, R. R. V.; Ketewa, S. S.; Kant, S.; Raju, V. S.; Uniyal, B. P.; Debnath, B.; Rout, D. K.; Thapa, R.; Joseph, S.; Chhetri, P.; Ramchandran, R.
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented
. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (Error! Hyperlink reference not valid. Typ
Read More
|
|
Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, A.; Singh, S.; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, C. S.; Gupta, S.; Pujar, G.; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, P.; Singh, J. S.; Chitale, V.; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, D.; Karnataka, H.; Saran, S.; Giriraj, A.; Padalia, H.; Kale, M.; Nandy, S.; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, C.; Singh, D. K.; Devagiri, G. M.; Talukdar, G.; Panigrahy, R. K.; Singh, H.; Sharma, J. R.; Haridasan, K.; Trivedi, S.; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, M.; Nagbhatla, N.; Prasad, N.; Tripathi, O. P.; Prasad, P. R. C.; Dash, P.; Qureshi, Q.; Tripathi, S. K.; Ramesh, B. R.; Gowda, B.; Tomar, S.; Romshoo, S.; Giriraj, S.; Ravan, S. A.; Behera, S. K.; Paul, S.; Das, A. K.; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, U.; Menon, A. R. R.; Srivastava, G.; Neeti; Sharma, S.; Mohapatra, U. B.; Peddi, A.; Rashid, H.; Salroo, I.; Krishna, P. H.; Hajra, P. K.; Vergheese, A. O.; Matin, S.; Chaudhary, S. A.; Ghosh, S.; Lakshmi, U.; Rawat, D.; Ambastha, K.; Kalpana, P.; Devi, B. S. S.; Gowda, B.; Sharma, K. C.; Mukharjee, P.; Sharma, A.; Davidar, P.; Raju, R. R. V.; Ketewa, S. S.; Kant, S.; Raju, V. S.; Uniyal, B. P.; Debnath, B.; Rout, D. K.; Thapa, R.; Joseph, S.; Chhetri, P.; Ramchandran, R.
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented
. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (Error! Hyperlink reference not valid. Typ
Read More
|
|
|
|
India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2
.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models
Read More
|
|
The change in the tropical forests could be clearly linked to the expansion of the human population and economies
. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975–2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary
Read More
|