|
Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Roy, P. S.; Joshi, P. K.; Gilani, H.; Murthy, M. S. R.; Jin, C.; Wang, J.; Zhang, Y.; Chen, B.; Menarguez, M. A.; Biradar, C. M.; Bajgain, R.; Li, X.; Dai, S.; Hou, Y.; Xin, F.; Moore III, B.
Extensive forest changes have occurred in monsoon Asia, substantially affecting climate, carbon cycle and biodiversity
. Accurate forest cover maps at fine spatial resolutions are required to qualify and quantify these effects. In this study, an algorithm was developed to map forests in 2010, with the use of structure and biomass information from the Advanced Land Observation System (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset and the phenological information from MODerate Resolution Imaging Spectroradiometer (MOD13Q1 and MOD09A1) products. Our forest map (PALSARMOD50 m F/NF) was assessed through randomly selected ground truth samples from high spatial resolution images and had an overall accuracy of 95%. Total area of forests in monsoon Asia in 2010 was estimated to be ~6.3 × 106 km2. The distribution of evergreen and deciduous forests agreed reasonably well with the median Normalized Difference Vegetation Index (NDVI) in winter. PALSARMOD50 m F/NF map showed good spatial and areal agreements with selected forest maps generated by the Japan Aerospace Exploration Agency (JAXA F/NF), European Space Agency (ESA F/NF), Boston University (MCD12Q1 F/NF), Food and Agricultural Organization (FAO FRA), and University of Maryland (Landsat forests), but relatively large differences and uncertainties in tropical forests and evergreen and deciduous forests
Read More
|
|
Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, A.; Singh, S.; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, C. S.; Gupta, S.; Pujar, G.; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, P.; Singh, J. S.; Chitale, V.; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, D.; Karnataka, H.; Saran, S.; Giriraj, A.; Padalia, H.; Kale, M.; Nandy, S.; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, C.; Singh, D. K.; Devagiri, G. M.; Talukdar, G.; Panigrahy, R. K.; Singh, H.; Sharma, J. R.; Haridasan, K.; Trivedi, S.; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, M.; Nagbhatla, N.; Prasad, N.; Tripathi, O. P.; Prasad, P. R. C.; Dash, P.; Qureshi, Q.; Tripathi, S. K.; Ramesh, B. R.; Gowda, B.; Tomar, S.; Romshoo, S.; Giriraj, S.; Ravan, S. A.; Behera, S. K.; Paul, S.; Das, A. K.; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, U.; Menon, A. R. R.; Srivastava, G.; Neeti; Sharma, S.; Mohapatra, U. B.; Peddi, A.; Rashid, H.; Salroo, I.; Krishna, P. H.; Hajra, P. K.; Vergheese, A. O.; Matin, S.; Chaudhary, S. A.; Ghosh, S.; Lakshmi, U.; Rawat, D.; Ambastha, K.; Kalpana, P.; Devi, B. S. S.; Gowda, B.; Sharma, K. C.; Mukharjee, P.; Sharma, A.; Davidar, P.; Raju, R. R. V.; Ketewa, S. S.; Kant, S.; Raju, V. S.; Uniyal, B. P.; Debnath, B.; Rout, D. K.; Thapa, R.; Joseph, S.; Chhetri, P.; Ramchandran, R.
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented
. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (Error! Hyperlink reference not valid. Typ
Read More
|
|
Roy, P. S.; Behera, M. D.; Murthy, M. S. R.; Roy, A.; Singh, S.; Kushwaha, S. P. S.; Jha, C. S.; Sudhakar, S.; Joshi, P. K.; Reddy, C. S.; Gupta, S.; Pujar, G.; Dutt, C. B. S.; Srivastava, V. K.; Porwal, M. C.; Tripathi, P.; Singh, J. S.; Chitale, V.; Skidmore, A. K.; Rajshekhar, G.; Kushwaha, D.; Karnataka, H.; Saran, S.; Giriraj, A.; Padalia, H.; Kale, M.; Nandy, S.; Jeganathan, C.; Singh, C. P.; Biradar, C. M.; Pattanaik, C.; Singh, D. K.; Devagiri, G. M.; Talukdar, G.; Panigrahy, R. K.; Singh, H.; Sharma, J. R.; Haridasan, K.; Trivedi, S.; Singh, K. P.; Kannan, L.; Daniel, M.; Misra, M. K.; Niphadkar, M.; Nagbhatla, N.; Prasad, N.; Tripathi, O. P.; Prasad, P. R. C.; Dash, P.; Qureshi, Q.; Tripathi, S. K.; Ramesh, B. R.; Gowda, B.; Tomar, S.; Romshoo, S.; Giriraj, S.; Ravan, S. A.; Behera, S. K.; Paul, S.; Das, A. K.; Ranganath, B. K.; Singh, T. P.; Sahu, T. R.; Shankar, U.; Menon, A. R. R.; Srivastava, G.; Neeti; Sharma, S.; Mohapatra, U. B.; Peddi, A.; Rashid, H.; Salroo, I.; Krishna, P. H.; Hajra, P. K.; Vergheese, A. O.; Matin, S.; Chaudhary, S. A.; Ghosh, S.; Lakshmi, U.; Rawat, D.; Ambastha, K.; Kalpana, P.; Devi, B. S. S.; Gowda, B.; Sharma, K. C.; Mukharjee, P.; Sharma, A.; Davidar, P.; Raju, R. R. V.; Ketewa, S. S.; Kant, S.; Raju, V. S.; Uniyal, B. P.; Debnath, B.; Rout, D. K.; Thapa, R.; Joseph, S.; Chhetri, P.; Ramchandran, R.
A seamless vegetation type map of India (scale 1: 50,000) prepared using medium-resolution IRS LISS-III images is presented
. The map was created using an on-screen visual interpretation technique and has an accuracy of 90%, as assessed using 15,565 ground control points. India has hitherto been using potential vegetation/forest type map prepared by Champion and Seth in 1968. We characterized and mapped further the vegetation type distribution in the country in terms of occurrence and distribution, area occupancy, percentage of protected area (PA) covered by each vegetation type, range of elevation, mean annual temperature and precipitation over the past 100 years. A remote sensing-amenable hierarchical classification scheme that accommodates natural and semi-natural systems was conceptualized, and the natural vegetation was classified into forests, scrub/shrub lands and grasslands on the basis of extent of vegetation cover. We discuss the distribution and potential utility of the vegetation type map in a broad range of ecological, climatic and conservation applications from global, national and local perspectives. We used 15,565 ground control points to assess the accuracy of products available globally (i.e., GlobCover, Holdridge’s life zone map and potential natural vegetation (PNV) maps). Hence we recommend that the map prepared herein be used widely. This vegetation type map is the most comprehensive one developed for India so far. It was prepared using 23.5 m seasonal satellite remote sensing data, field samples and information relating to the biogeography, climate and soil. The digital map is now available through a web portal (Error! Hyperlink reference not valid. Typ
Read More
|
|
|
|
India is one of the 12 mega biodiversity countries of the world, which represents 11% of world's flora in about 2
.4% of global land mass. Approximately 28% of the total Indian flora and 33% of angiosperms occurring in India are endemic. Higher human population density in biodiversity hotspots in India puts undue pressure on these sensitive eco-regions. In the present study, we predict the future distribution of 637 endemic plant species from three biodiversity hotspots in India; Himalaya, Western Ghats, Indo-Burma, based on A1B scenario for year 2050 and 2080. We develop individual variable based models as well as mixed models in MaxEnt by combining ten least co-related bioclimatic variables, two disturbance variables and one physiography variable as predictor variables. The projected changes suggest that the endemic flora will be adversely impacted, even under such a moderate climate scenario. The future distribution is predicted to shift in northern and north-eastern direction in Himalaya and Indo-Burma, while in southern and south-western direction in Western Ghats, due to cooler climatic conditions in these regions. In the future distribution of endemic plants, we observe a significant shift and reduction in the distribution range compared to the present distribution. The model predicts a 23.99% range reduction and a 7.70% range expansion in future distribution by 2050, while a 41.34% range reduction and a 24.10% range expansion by 2080. Integration of disturbance and physiography variables along with bioclimatic variables in the models improved the prediction accuracy. Mixed models provide most accurate results for most of the combinations of climatic and non-climatic variables as compared to individual variable based models. We conclude that a) regions with cooler climates and higher moisture availability could serve as refugia for endemic plants in future climatic conditions; b) mixed models provide more accurate results, compared to single variable based models
Read More
|
|
Estimation of snowmelt runoff is very important in the Western Himalayan rivers in India where it is required to plan for hydropower generation and the water management during the non-monsoon season
. An attempt has been made to estimate snowmelt runoff on a 10 day average basis in Beas Basin up to Pandoh Dam during May, 1998 and November, 1999 using a Snowmelt Runoff Model (SRM), which is a degree day method. The input parameters for the model are derived from existing maps, satellite data, metrological and hydrological data. The relief of the basin is divided into 12 elevation zones of 500 m each. The temperature was extrapolated to these elevation zones using temperature lapse rate calculated using the observed temperature at seven stations within the basin. Snow covered area in the basin was determined using Indian Remote Sensing Satellites IRS -1C/1D Wide Field Sensor (WIFS). The runoff from the snow covered area and snow free area was separately calculated in each elevation zone. The model parameter degree-day factor is taken from literature and runoff coefficients for snow and rain are derived using the observed data. The total discharge at the dam site is computed by a weighted sum of runoff components from all the elevation zones. There is a good agreement between the observed and computed runoff with a coefficient of determination of 0.854 and the difference in volume is + 4.6 %
Read More
|
|
|
|
|