|
Brun, F.; Buri, P.; Miles, E. S.; Wagnon, P.; Steiner, J.; Berthier, E.; Ragettli, S.; Kraaijenbrink, P.; Immerzeel, W. W.; Pellicciotti, F.
Mass losses originating from supraglacial ice cliffs at the lower tongues of debris-covered glaciers are a potentially large component of the mass balance, but have rarely been quantified
. In this study, we develop a method to estimate ice cliff volume losses based on high-resolution topographic data derived from terrestrial and aerial photogrammetry. We apply our method to six cliffs monitored in May and October 2013 and 2014 using four different topographic datasets collected over the debris-covered Lirung Glacier of the Nepalese Himalayas. During the monsoon, the cliff mean backwasting rate was relatively consistent in 2013 (3.8 ± 0.3 cm w.e. d −1 ) and more heterogeneous among cliffs in 2014 (3.1 ± 0.7 cm w.e. d −1 ), and the geometric variations between cliffs are larger. Their mean backwasting rate is significantly lower in winter (October 2013–May 2014), at 1.0 ± 0.3 cm w.e. d −1 . These results are consistent with estimates of cliff ablation from an energy-balance model developed in a previous study. The ice cliffs lose mass at rates six times higher than estimates of glacier-wide melt under debris, which seems to confirm that ice cliffs provide a large contribution to total glacier melt
Read More
|
|
This study presents volume and mass changes of seven (five partially debris-covered, two debris-free) glaciers in the upper Langtang catchment in Nepal
. We use a digital elevation model (DEM) from 1974 stereo Hexagon satellite data and seven DEMs derived from 2006–2015 stereo or tri-stereo satellite imagery (e.g., SPOT6/7). The availability of multiple independent DEM differences allows the identification of a robust signal and narrowing down of the uncertainty about recent volume changes. The volume changes calculated over several multiyear periods between 2006 and 2015 consistently indicate that glacier thinning has accelerated with respect to the period 1974–2006. We calculate an ensemble-mean elevation change rate of –0.45 ± 0.18 m a−1 for 2006–2015, while for the period 1974–2006 we compute a rate of −0.24 ± 0.08 m a−1. However, the behavior of glaciers in the study area is heterogeneous, and the presence or absence of debris does not seem to be a good predictor for mass balance trends. Debris-covered tongues have nonlinear thinning profiles, and we show that recent accelerations in thinning correlate with the presence of supraglacial cliffs and lakes. At stagnating glacier areas near the glacier front, however, thinning rates decreased with time or remained constant. The April 2015 Nepal earthquake triggered large avalanches in the study catchment. Analysis of two post-earthquake DEMs revealed that the avalanche deposit volumes remaining 6 months after the earthquake are negligible in comparison to 2006–2015 elevation changes. However, the deposits compensate about 40 % the mass loss of debris-covered tongues of 1 average year
Read More
|
|
Ragettli, S.; Pellicciotti, F.; Immerzeel, W. W.; Miles, E. S.; Petersen, L.; Heynen, M.; Shea, J. M.; Stumm, D.; Joshi, S.; Shrestha, A.
The hydrology of high-elevation watersheds of the Hindu Kush-Himalaya region (HKH) is poorly known
. The correct representation of internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in situ measurements. We use a new set of detailed ground data from the upper Langtang valley in Nepal to systematically guide a state-of-the art glacio-hydrological model through a parameter assigning process with the aim to understand the hydrology of the catchment and contribution of snow and ice processes to runoff. 14 parameters are directly calculated on the basis of local data, and 13 parameters are calibrated against 5 different datasets of in situ or remote sensing data. Spatial fields of debris thickness are reconstructed through a novel approach that employs data from an Unmanned Aerial Vehicle (UAV), energy balance modeling and statistical techniques. The model is validated against measured catchment runoff (Nash-Sutcliffe efficiency 0.87) and modeled snow cover is compared to Landsat snow cover. The advanced representation of processes allowed assessing the role played by avalanching for runoff for the first time for a Himalayan catchment (5% of annual water inputs to the hydrological system are due to snow redistribution) and to quantify the hydrological significance of sub-debris ice melt (9% of annual water inputs). Snowmelt is the most important contributor to total runoff during the hydrological year 2012/2013 (representing 40% of all sources), followed by rainfall (34%) and ice melt (26%). A sensitivity analysis is used to assess the efficiency of the monitoring network and identify the timing and location of field measurements that constrain model uncertainty. The methodology to set up a glacio-hydrological model in high-elevation regions presented in this study can be regarded as a benchmark for modelers in the HKH seeking to evaluate their calibration approach, their experimental setup and thus to reduce the predictive model uncertainty
Read More
|
|
The performance of glaciohydrological models which simulate catchment response to climate variability depends to a large degree on the data used to force the models
. The forcing data become increasingly important in high-elevation, glacierized catchments where the interplay between extreme topography, climate, and the cryosphere is complex. It is challenging to generate a reliable forcing data set that captures this spatial heterogeneity. In this paper, we analyze the results of a 1 year field campaign focusing on air temperature and precipitation observations in the Langtang valley in the Nepalese Himalayas. We use the observed time series to characterize both temperature lapse rates (LRs) and precipitation gradients (PGs). We study their spatial and temporal variability, and we attempt to identify possible controlling factors. We show that very clear LRs exist in the valley and that there are strong seasonal differences related to the water vapor content in the atmosphere. Results also show that the LRs are generally shallower than the commonly used environmental lapse rates. The analysis of the precipitation observations reveals that there is great variability in precipitation over short horizontal distances. A uniform valley wide PG cannot be established, and several scale-dependent mechanisms may explain our observations. We complete our analysis by showing the impact of the observed LRs and PGs on the outputs of the TOPKAPI-ETH glaciohydrological model. We conclude that LRs and PGs have a very large impact on the water balance composition and that short-term monitoring campaigns have the potential to improve model quality considerably
Read More
|