|
Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Kinne, S.; Prospero, J.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; Diehl, T.; Easter, R.; Fillmore, D.; Ghan, S.; Ginoux, P.; Grini, A.; Horowitz, L.; Koch, D.; Krol, M. C.; Landing, W.; Liu, X.; Mahowald, N.; Miller, R.; Morcrette, J. J.; Myhre, G.; Penner, J. E.; Perlwitz, J.; Stier, P.; Takemura, T.; Zender, C.
|
|
Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming
. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and OC. To represent the climate impact, we estimate consistent region-specific values of direct and indirect global warming potential (GWP) and global temperature potential (GTP). The indirect GWP has been estimated using a physical approach and includes the effect of change in albedo from BC deposited on snow. The indirect GWP is highest in the Middle East followed by Russia, Europe and North America, while the total GWP is highest in the Middle East, Africa and South Asia. We conclude that prioritizing emission reductions in Asia represents the most cost-efficient global abatement strategy for BC because Asia is (1) responsible for a large share of total emissions, (2) has lower abatement costs compared to Europe and North America and (3) has large health cobenefits from reduced PM10 emissions
Read More
|
|
Although the transport sector is responsible for a large and growing share of global emissions affecting climate, its overall contribution has not been quantified
. We provide a comprehensive analysis of radiative forcing from the road transport, shipping, aviation, and rail subsectors, using both past- and forward-looking perspectives. We find that, since preindustrial times, transport has contributed approximately 15% and 31% of the total man-made CO2 and O3 forcing, respectively. A forward-looking perspective shows that the current emissions from transport are responsible for approximately 16% of the integrated net forcing over 100 years from all current man-made emissions. The dominating contributor to positive forcing (warming) is CO2, followed by tropospheric O3. By subsector, road transport is the largest contributor to warming. The transport sector also exerts cooling through reduced methane lifetime and atmospheric aerosol effects. Shipping causes net cooling, except on future time scales of several centuries. Much of the forcing from transport comes from emissions not covered by the Kyoto Protocol
Read More
|