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Summary

1.

 

Models for predicting the distribution of organisms from environmental data are
widespread in ecology and conservation biology. Their performance is invariably evalu-
ated from the percentage success at predicting occurrence at test locations.

 

2.

 

Using logistic regression with real data from 34 families of aquatic invertebrates in
180 Himalayan streams, we illustrate how this widespread measure of predictive accuracy
is affected systematically by the prevalence (i.e. the frequency of occurrence) of the target
organism. Many evaluations of presence–absence models by ecologists are inherently
misleading.

 

3.

 

With the same invertebrate models, we examined alternative performance measures
used in remote sensing and medical diagnostics. We particularly explored receiver-
operating characteristic (ROC) plots, from which were derived (i) the area under each
curve (AUC), considered an effective indicator of model performance independent of
the threshold probability at which the presence of the target organism is accepted, and
(ii) optimized probability thresholds that maximize the percentage of true absences and
presences that are correctly identified. We also evaluated Cohen’s kappa, a measure of
the proportion of all possible cases of presence or absence that are predicted correctly
after accounting for chance effects.

 

4.

 

AUC measures from ROC plots were independent of prevalence, but highly signific

 

-

 

antly correlated with the much more easily computed kappa. Moreover, when applied
in predictive mode to test data, models with thresholds optimized by ROC erroneously
overestimated true occurrence among scarcer organisms, often those of greatest con-
servation interest. We advocate caution in using ROC methods to optimize thresholds
required for real prediction.

 

5.

 

Our strongest recommendation is that ecologists reduce their reliance on prediction
success as a performance measure in presence–absence modelling. Cohen’s kappa provides
a simple, effective, standardized and appropriate statistic for evaluating or comparing
presence–absence models, even those based on different statistical algorithms. None of
the performance measures we examined tests the statistical significance of predictive
accuracy, and we identify this as a priority area for research and development.
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Introduction

 

Knowledge about factors influencing the distribution
of organisms is among the most important in ecology

(Gaston & Blackburn 1995, 1999; Lawton 1996). The
potential applications are many (Table 1), particularly
at large spatial scales (Ormerod, Pienkowski & Watkin-
son 1999; Caldow & Racey 2000). For example, in the
ecology of  nuisance species or disease, there is a need
to identify other sites or species that might be at risk
from attack (Venier 

 

et al

 

. 1998; Ferreras & Macdonald
1999; Buchan & Padilla 2000). In bio-assessment, the
use of biological indicators depends on being able to
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discriminate the effects of habitat structure and pollution
on distribution (Utzinger, Roth & Peter 1998). Perhaps
most important of all, in conservation biology, there is
a need to assess from environmental data those sites
that might support important taxa. This need arises
because the presence or range of key species is increas-
ingly modelled from remote data (Verlinden & Masogo
1997; Wright, Fielding & Wheater 2000) and because
changes in climate or land use may require us to predict
how target species might respond (Buckland & Elston
1993). Alternatively, prediction can sometimes reveal
additional populations of threatened species (Pfab &
Witowski 1997) or, in contrast, reveal unexpected gaps
in their range (Wiser, Peet & White 1998). Equally,
knowledge of the environmental factors that favour
key biota can guide the management of protected areas
or other environments (Li 

 

et al

 

. 1999; Bradbury 

 

et al

 

.
2000). Increasingly, there is a need to identify, from
environmental data, those areas that might be can-
didate locations for species reintroductions (Yanez &
Floater 2000) or that have a high risk of species extinc-
tion (Araujo & Williams 2000; Gates & Donald 2000).

In all these cases, quantitative distribution models
are important (Collingham 

 

et al

 

. 2000; Cowley 

 

et al

 

.
2000; Milsom 

 

et al

 

. 2000; Suarez, Balbontin & Ferrer
2000; Wadsworth 

 

et al

 

. 2000). Typically, they use abi-
otic or biotic variables to predict the abundance, pres-
ence or absence of the target organism(s) (Jongman, ter

Braak & van Tongeren 1995). At the large spatial scales
typical of conservation biology, empirical presence–
absence models are often derived from survey data
using correlative univariate or multivariate techniques
such as discriminant analysis, logistic regression and
artificial neural networks (Manel 

 

et al

 

. 1999). Ideally,
such models should be tested with independent data
(Fielding & Bell 1997). Our evaluation of a sample of
published ecological literature shows that many users
of presence–absence models make no evaluation at all,
even in leading ecological journals (Table 2). Where
performance is assessed, invariably it involves calculat-
ing the percentage of locations at which presence or
absence is correctly predicted, in other words the pre-
diction success or matching coefficient (Buckland &
Elston 1993). However, there are indications that this
measure might be affected by the frequency or preva-
lence of the test organism(s) being modelled (Fielding
& Bell 1997; Manel 

 

et al

 

. 1999). If  this is true, current
widespread practice in ecology would be at fault,
comparison between models would be misleading, and
investigators might wrongly judge poorly performing
models as adequate.

Predicting the presence or absence of organisms in
ecology has parallels in other fields. For example, in
remote sensing investigators assess whether remote
images predict true categories of ground vegetation
(Helmer, Brown & Cohen 2000). Even more widespread

Table 1. Areas of applied ecology aided by the ability to predict species occurrence (see the Introduction for referenced examples)

Field of application Use of species prediction

Conservation biology Identify sites expected to hold important species using environmental data
Identify sites for species reintroductions
Guide site management by manipulating features known to favour species occurrence
Identify gaps in distribution and diagnose their cause
Identify locations at risk of species extinction

Biological indication Identify major influences on species distribution, hence revealing indicator value
Discriminate effects of habitat and pollution on species distribution to diagnose 

which is responsible for absence
Predict site value for important species using other biota as predictors

Nuisance species Predict sites at risk from outbreaks
Guide site management by manipulating features known to reduce species occurrence

Invasion ecology Predict sites sensitive to alien invasion
Model negative effects of non-indigenous species on native biota

All areas of applied ecology Predict distributional change in response to changing climate or land use

Table 2. Methods used to evaluate the performance of presence–absence models in a sample of ecological publications (1989–99).
All the values are percentages

Source No evaluation Prediction success Kappa Odds ratio ROC

Key journals (n = 33 papers) 55 36 6 0 3
All others (n = 54 papers) 50 46 2 2 0
All journals (n = 87 papers) 52 43 3 1 1

Taxonomic groups most frequently involved in presence–absence models were birds (33%), mammals (20%), invertebrates (18%), 
trees and other angiosperms (11%), fish (9%), amphibians (3%) and reptiles (2%). Less frequent applications were from bacteria, 
plankton and fungi. Modelling techniques used included logistic regression (79%), discriminant analysis (22%), artificial neural 
networks (4%) and other methods (3%).

Key journals were Ecology, Ecological Applications, Oikos, Journal of Ecology, Journal of Applied Ecology, Journal of Animal 
Ecology, Functional Ecology and Biological Conservation.
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examples arise in medical diagnostics, where invest-
igators detect or predict the likely presence of  dis-
ease from test procedures or predisposing conditions
(Fig. 1; Albert & Harris 1987; Walker, Cross & Harrison
1999). In these instances, several statistical methods
have been developed to evaluate model performance
(Robertson & Zweig 1981; Van Steirteghem 

 

et al

 

. 1982;
Zweig & Robertson 1982; Robertson, Zweig & Van
Steirteghem 1983; Zweig, Broste & Reinhart 1992;
Zweig & Campbell 1993). Among them are Cohen’s
kappa, a simply derived statistic that measures the
proportion of all possible cases of presence or absence
that are predicted correctly by a model after account-
ing for chance. They also include plots based on
receiver-operating characteristics (ROC plots), which
are believed to indicate model performance inde-
pendently of the apparently arbitrary probability
threshold required in presence–absence models at which
the presence of a target feature is accepted. Fielding &
Bell (1997) suggested such methods might be used to
assess the performance of ecological models, but few
examples are available (Titus, Mosher & Williams 1984;
Monserud & Leemans 1992; Murtaugh 1996; Zimmer-
mann & Kienast 1999; Collingham 

 

et al

 

. 2000; Guisan
& Zimmermann 2000; Hallgren & Pitman 2000). We
know of no systematic evaluation of these alternative
measures under real modelling conditions.

In this paper, we provide such a field evaluation using
real data. Using logistic regression, we derived models
to predict the presence and absence of 34 families of
stream invertebrate families in the Himalayan moun-
tains, and then evaluated their performance in pre-
dicting new cases. We aimed to identify performance
measures that would be unaffected by the prevalence
of the test organism, and would allow comparison
between models from different organisms or locations.
We included both conventional performance measures
and also many of the alternative procedures proposed
by Fielding & Bell (1997). The work forms part of a
series of papers evaluating modelling procedures in
ecology at coarse spatial scales (Manel, Dias &
Ormerod 1999; Manel 

 

et al

 

. 1999; Manel, Buckton &
Ormerod 2000).

 

Data sources, study area and methods

 

The source data describe the distribution of 39 families
of aquatic invertebrates in 180 Himalayan streams. All
were in independent catchments spread over 4300 m
of altitude and 1000 km of latitude in seven distinct
regions between northern Uttar Pradesh and eastern
Nepal (Manel 

 

et al

 

. 1999). They form part of  a data
set collected to appraise systematically Himalayan
aquatic biodiversity during surveys in winter (October–
November) 1994–96. Chemical data were available
from a full ionic analysis (Collins & Jenkins 1996)
and habitat data from detailed river habitat surveys
(RHS; Manel 

 

et al

 

. 1999; Manel, Buckton & Ormerod
2000). The latter records 120 variables that reflect the
complex physical structure of rivers. A parallel set of
invertebrate and physicochemical data, collected using
identical methods, was also available from 103 streams
in Wales, and all the patterns assessed in this paper
were checked simultaneously using this second data set
(S. J. Ormerod, unpublished data).

At each site, we recorded the presence and absence of
all families from the orders Plecoptera, Ephemeroptera
and Trichoptera using timed kick-samples in riffles (1-
min duration, net mesh size 400 

 

µ

 

m; Manel, Buckton
& Ormerod 2000). All specimens were preserved on-
site and removed for identification. Although the
models that follow involve family level identification,
the results were also apparent at the species level as
shown by the Welsh data. Samples obtained by these
methods collect in excess of 70% of the families present
at any site, so that the models include realistic errors in
the measurement of presence–absence.

 

    

 

In all our modelling exercises, environmental predic-
tors of presence–absence were derived from the hab-
itat and chemical data using principal components
analysis (PCA) on the correlation matrix. Because stream
environments embody complex variations in hydro-
dynamics, hydrochemistry, geomorphology and catch-
ment character, we separated sets of 10–40 variables,

 

Fig. 1.

 

The objectives of presence–absence prediction in ecology and medical diagnostics.
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respectively, describing chemistry (ChemistryPC1–
5), flow character (FlowPC1–5), channel structure
(ChanPC1–5) bank structure (BankPC1–5) and ripar-
ian character (RiparPC1–5); altitude and slope were
also possible predictors (

 

x

 

i

 

, 

 

i

 

 = 1, 27 predictor vari-
ables). While this categorized selection of variables
removed some of the guaranteed orthogonality from
PCA, we wished to mimic model operations where
investigators aim to identify those aspects of environ-
mental variation that best predict presence–absence
(for example, chemistry, stream structure, land use).
The use of so many principal components in each case
is also unusual, but it was necessary in these exercises
because (i) sequential variance explained by each prin-
cipal component was small relative to the total eigen-
values for each predictor set and (ii) initial explorations
revealed that principal components ranked as high as
PC5 were sometimes highly significant predictors of
presence–absence. Further exploration revealed that the
number of principal components involved in modelling
had no effect on our final conclusions with respect to
performance measures.

We next used multiple logistic regression, involving a
logit link and binomial error distribution (McCullagh
& Nelder 1989; Jongman, ter Braak & van Tongeren
1995), to model the presence–absence of each family.
Previous comparisons with discriminant analysis and
artificial neural networks showed that logistic regres-
sion has several advantages for these purposes (Manel

 

et al

 

. 1999) but the results will apply equally to any
presence–absence procedure. The logit transformation
of the probability of presence–absence (

 

p

 

) produced
linear function according to the equation:

in which 

 

b

 

0

 

 and 

 

b

 

i

 

 are the regression constants. Models
were fitted using a maximum likelihood method
(McCullagh & Nelder 1989). We used backwards elim-
ination to select the variables in the final models
(Green, Osborne & Sears 1994; Austin & Meyers 1996;
Manel, Dias & Ormerod 1999) using Akaike’s informa-
tion criterion (AIC) and changes in scaled deviance.
The latter is approximately distributed like 

 

χ

 

2

 

 (McCul-
lagh & Nelder 1989; Collett 1991). The output vari-
ables (predicted values) in each case have a value
between 0 and 1, and presence for all families was ini-
tially accepted at a threshold probability of 0·5 (i.e. a
fixed cut-off  of  

 

p 

 

= 0·5). We have investigated else-
where the effects of varying this probability threshold
on the performance of presence–absence modelling
(Manel, Dias & Ormerod 1999) and below we evalu-
ate one possible method for selecting alternative
threshold values. Other suggested methods have been
explored previously (Buckland & Elston 1993; Huntley

 

et al

 

. 1995).
Performance in each model was assessed both with

the calibration data (i.e. 180 sites) and through a jack-
knife procedure that isolated calibration sites (179)

from independent test sites (

 

n

 

 = 1), the latter iterated
for each separate observation (i.e. 180 times; Manel

 

et al

 

. 1999; Manel, Dias & Ormerod 1999). Model tests
with this jack-knife procedure provided results consist-
ent with more rigorous procedures where calibration
and test data were in geographically separate regions
(Manel 

 

et al

 

. 1999; Manel, Dias & Ormerod 1999).

 

     
  

 

The evaluation of performance measures for each fam-
ily first required the derivation of matrices of confusion
that identified true positive (

 

a

 

), false positive (

 

b

 

), false
negative (

 

c

 

) and true negative (

 

d

 

) cases predicted by
each model (Table 3; Fielding & Bell 1997). Conven-
tional statistics of association on these 2 

 

×

 

 2 tables are
inappropriate for assessing model performance, for
example because highly significant values of 

 

χ

 

2

 

 would
arise just as strongly from wholly inaccurate models
(high values of b and c) as from accurate models (high
values of a and d). Nor would any individual value
from the matrix give a synoptic view of overall model
performance. From the values in the matrix of confu-
sion, we therefore calculated alternative performance
measures including overall prediction success (match-
ing coefficient; Buckland & Elston 1993), sensitivity,
specificity, the odds ratio, the normalized mutual infor-
mation statistic (NMI) and Cohen’s kappa (Table 4;
Fielding 1999). The latter three measures share the
proposed advantage of allowing an assessment of the
extent to which models correctly predict occurrence at
rates that are better than chance expectation (Forbes
1995; Fielding & Bell 1997). For the NMI, values range
from 0 where models are completely inaccurate, to 1
where presence–absence is perfectly predicted (Forbes
1995). However, the NMI cannot be applied directly
where any value in the matrix of confusion is 0 due to
the dependence on logarithmic data; the NMI could
not be applied to some families in our data set. The
odds ratio is also affected by zero values. For kappa,
values of 0·0–0·4 are considered in medical applica-
tions to indicate slight to fair model performance,
values of 0·4–0·6 moderate, 0·6–0·8 substantial and
0·8–1·0 almost perfect (after Landis & Koch 1977). In
each set of applications, we plotted values for each per-
formance measure against prevalence.

it p( )log
p

1 − p
-----------log b0 b1ixi

i 1=

27

∑+= =

Table 3.  The derivation of the confusion matrix used as a
basis for performance measures in presence–absence models.
The table cross-tabulates observed (actual) presence/absence
patterns against those predicted: a, true positive values;
b, false positives; c, false negatives; d, true negatives

Actual

+ –

Predicted + a b
– c d
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Methods involving ROC curves have so far been
infrequently applied to ecological data (Murtaugh 1996;
Manel, Dias & Ormerod 1999; Guisan & Zimmermann
2000; Pearce & Ferrier 2000). They assess performance
from model output at all possible probability thresh-
olds at which family presence might be accepted (i.e.

 

p 

 

> 0 to 

 

p 

 

< 1). They were developed from signal-
detection theory (Kraemer 1988) but have been adapted
for several areas of medical diagnostics (Robertson &
Zweig 1981; Van Steirteghem 

 

et al

 

. 1982; Zweig & Rob-
ertson 1982; Robertson, Zweig & Van Steirteghem
1983; Zweig, Broste & Reinhart 1992; Zweig & Camp-
bell 1993). The curve is obtained by plotting sensitivity
vs. (1 – specificity) for varying probability thresholds.
Good model performance is characterized by a curve
that maximizes sensitivity for low values of  (1 –
specificity), in other words when the curve passes close
to the upper left corner of the plot (Robertson, Zweig &
Van Steirteghem 1983). High performance models are
indicated by large areas under the ROC curves (i.e.
large areas under the curve; AUC). Usually AUC
values of 0·5–0·7 are taken to indicate low accuracy,
values of  0·7–0·9 indicate useful applications and
values of > 0·9 indicate high accuracy (Swets 1988).
The approach does not place restrictive assumptions
on the distribution of response variables (Kraemer
1988). It is possible to weight the probability threshold
at which presence is accepted to favour sensitivity or
specificity (Kraemer 1988; Forbes 1995), but in our
application both were given equal weight 

 

a priori

 

 to
simulate a case aiming to predict both presence and
absence with equal success.

We produced ROC plots for each family using S-plus
software (B. Atkinson, personal communication; Fig. 2)
based in turn on the non-parametric method of DeLong,
DeLong & Clarke-Pearson (1988). For each ROC curve
we calculated the AUC, with bootstrapped confidence
intervals, as a measure of model performance in its own
right (Zweig & Robertson 1982). We assessed whether
the AUC values were independent of invertebrate prev-
alence, and also assessed whether AUC correlated with

0·0 0·2 0·4 0·6 0·8 1·0

1-Specificity
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Fig. 2. An example of a receiver-operating characteristic
(ROC) curve for the Hydropsychidae.
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the other more straightforward and easily computed
measures of model performance derived above.

While the AUC measure from an ROC curve is
considered useful for comparing the performance of
presence–absence models in a threshold-independent
fashion (Fielding & Bell 1997), truly predictive model-
ling might require some probability at which to accept
the presence of the target organism. The ROC proce-
dure offers a way of identifying an optimum probabil-
ity threshold by simply reading the point on the curve
at which the sum of sensitivity and specificity is maxi-
mized (Albert & Harris 1987; Zweig & Campbell
1993). Ecologists sometimes use threshold optimiza-
tion procedures (Collingham et al. 2000). We therefore
wished to assess whether markedly increasing or reduc-
ing probability thresholds for accepting presence, as
optimized from the ROC plots in this way, had any
effects on the predicted frequency of occurrence of
organisms during real model applications. Thus, we
calibrated logistic models for predicting presence using
the five western-most regions in the data set and applied
them to the geographically distinct regions to the east.
We have used this procedure previously as a recom-
mended method for testing any presence–absence model
on fully independent data (Manel et al. 1999; Guisan &
Zimmermann 2000). We carried out this analysis on 20
families representing a wide range of prevalence from

scarce to widespread. In each case, we compared the
actual occurrence of the target invertebrate family at
the test sites with occurrence predicted by the models.

Results

Thirty-nine families formed the data, with prevalence
ranging from 1 to 176 out of 180 possible streams. Ini-
tial applications using all the sites gave significant logis-
tic regression models for 34 families, four others being
too scarce for meaningful prediction (Prosopistomati-
dae, Ecnomidae, Beraeididae and Calanoceratidae,
all at one to three sites) and one being too common
(Baetidae, at 176 sites). Significant effects of stream
chemistry, riparian habitat character, flow character,
bank character, channel structure, altitude and slope
were all involved in prediction, but in different com-
binations between families.

    
  

Overall success at predicting presence and absence
always exceeded 50%, but varied curvi-linearly and highly
systematically with prevalence (Fig. 3a). This reflected
the composite effects of prevalence on sensitivity and
specificity, positive occurrences being more effectively
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Fig. 3. The overall prediction success (a), sensitivity (b; rs = 0·82, P < 0·001 in jack-knife data), specificity (c; rs = −0·95,
P < 0·001), kappa (d; rs = 0·38, P < 0·03), NMI (e; rs = −0·23 NS, n = 21) and odds ratio (f; rs = −0·47, P < 0·007) of presence–
absence models for 34 aquatic invertebrate families in relation to their occurrence in 180 streams in the Indian and Nepali
Himalaya. Results are shown for all calibration data (open symbols) and during a jack-knife application (solid symbols).

JPE647.fm  Page 926  Thursday, September 20, 2001  2:05 PM



927
Presence–absence 
modelling

© 2001 British 
Ecological Society, 
Journal of Applied 
Ecology, 38, 
921–931

predicted as prevalence increased (Fig. 3b) and negat-
ive occurrences as prevalence declined (Fig. 3b).

The effects of prevalence on the odds ratio were also
highly significant (P < 0·01; Fig. 3f), with patterns sim-
ilar in the calibration and jack-knife data. In contrast,
the NMI was unaffected by prevalence, but was incal-
culable in 13 families due to the occurrence of zero values
in the confusion matrix. Kappa was always calculable,
was only marginally affected by prevalence, and was
more informative than the odds ratio in providing a
range of performance values (Fig. 3d). Presence–absence
models for 26/34 families gave kappa values of less than
0·4 when applied to the jack-knife data, and hence
would be considered weak. Only 2/34 families (Perlidae
and Taeniopterygidae) gave excellent values, while models
for 6/34 families gave moderate agreement between
observed and expected data (Limnephilidae, Lepidos-
tamatidae, Helicopsychiae, Ephemerellidae, Capniidae
and Hydropsychiae). This apparently poor modelling
performance contrasted with the indications from overall
prediction success, in which values were always > 50%,
with an overall mean of 84·5% (± 10·6% SD; Table 5).

     
    


Application of  the ROC procedure produced AUC
values that were wholly independent of prevalence
(Fig. 4). Six families had values typical for low accu-
racy models (AUC < 0·7), five (Perlidae, Capniidae,
Hydropsychidae, Helicopsychiae and Taenioptery-
gidae) had values typical for accurate models
(AUC ≥ 0·9), and the remaining 23 had values between
these extremes (AUC 0·7–0·9). Overall, sensitivity and
specificity derived from optimized probability thresh-
olds gave the impression that model accuracy was

markedly increased over models derived at the con-
ventional probability threshold of p = 0·5. Moreover,
sensitivity and specificity values produced using the
ROC were independent of prevalence (Fig. 5). AUC,

Table 5. The mean performance of 34 significant logistic regression models for predicting the presence–absence of aquatic
invertebrate families in Himalayan streams. All values are means (with SD) resulting from applications to jack-knife data

Sensitivity Specificity Odds ratio Kappa NMI Overall percentage success

0·365 0·833 18·42 0·221 1·20 0·845
(0·365) (0·247) (27·96) (0·222) (0·32) (0·106)
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Fig. 4. Areas under the curve (AUC ± boot-strapped 95% confidence interval) from logistic regression models applied using
receiver-operating characteristic (ROC) curve procedures to 34 aquatic invertebrate families in relation to their occurrence in 180
streams in the Indian and Nepali Himalaya.
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Fig. 5. Optimized probability cut-off  (a), sensitivity (b) and
specificity (c) for presence–absence models for 34 aquatic
invertebrate families in relation to their occurrence in 180
streams in the Indian and Nepali Himalaya. In each case the
models have been derived using receiver-operating characteristic
(ROC) procedures and applied with the optimized threshold
for accepting presence shown in (a) (see text for the methods).
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and increases in sensitivity relative to the mean, both
correlated highly significantly with values of kappa
derived at p = 0·5 (Fig. 6). Kappa thus provided a
robust indicator of model performance when com-
pared with the more sophisticated ROC procedure.

There were some drawbacks with the ROC proce-
dure, however, when the models were required to pre-
dict occurrence in independent data: the derivation of
optimum probability thresholds in ROC was strongly
dependent on prevalence. Thus, scarce organisms were
allocated low thresholds for accepting presence (some-
times p < 0·05) by ROC plots, while large thresholds
( p > 0·9) resulted where organisms were widespread
(Fig. 5). Scarce organisms might therefore be predicted
erroneously as being widespread in test data when their

true prevalence was low. This problem was confirmed
when we applied models with optimized probability
thresholds to real data from different Himalayan
regions, and example data are given in full in Table 6:
in widespread families, simulated prevalence in ROC
model outputs underestimated true values by com-
parison with real data but substantially inflated the
presence of scarcer families (Fig. 7). Results of this
type would clearly be misleading in real model use.

Discussion

At geographical scales beyond experimentation,
empirical models provide one of the only ways to
develop and test hypotheses about ecological features
affecting distribution (Gaston & Blackburn 1999;
Manel, Buckton & Ormerod 2000; Ormerod & Wat-
kinson 2000). Effective and correct model assessment
therefore has real significance to fundamental ecology.
In addition, models for predicting presence–absence
are used increasingly in applied ecology and particu-
larly in conservation biology as the numbers of threat-
ened species rise (Table 1). However, the frequency of
occurrence of organisms inevitably varies between the
data sets used to produce models, and in turn there are
major effects on some measures of model perform-
ance. Overall prediction success, for example, is in
widespread use in ecology, even in the world’s leading
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Fig. 6. The relationship between area under the curve (AUC)
(a) and normalized sensitivity (b) models derived using receiver-
operating characteristic (ROC) procedures and kappa (i.e.
derived at a presence–absence threshold of p = 0·5) for 34
families of aquatic invertebrates. Correlations were highly
statistically significant in both cases.

Table 6. The performance of logistic regression models with conventional thresholds for accepting presence (i.e. p = 0·5, left-
hand columns) and with thresholds optimized using ROC curves to maximize the sum of sensitivity and specificity (right-hand
columns). The values are the prevalence of each example family in reality, and in modelling predictions at all sites or at a subset
of 61 test sites from geographically separate regions (see also Fig. 7 for all 20 families included in this analysis)

All sites (n = 180) Test regions only (n = 61 sites)

Family True prevalence
Model prevalence 
( jack-knife at p = 0·5) True prevalence

Model prevalence 
( p threshold optimized by ROC)

Ephemerellidae 56 41 43 46
Leptophlebiidae 14 4 20 43
Nemouridae 77 89 82 57
Chloroperlidae 12 3 3 26
Peltoperlidae 15 8 5 38
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Fig. 7. The performance of logistic regression models with
thresholds for accepting presence optimized using ROC
curves. The value for each family is the difference between true
prevalence and that apparent when models from calibration
sites were applied to a subset of 61 test sites from geographic-
ally separate regions (see also Table 6 for example data).
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ecological journals (Table 2). Our illustration reveals
that this measure is inherently misleading in failing to
take account of prevalence effects (Fielding & Bell
1997; Manel et al. 1999). This effect is well known to
statisticians but apparently not to ecologists (Fielding
& Bell 1997): many users of ecological models are
assuming good performance because their data are
well fitted statistically, and because they can predict
many occurrences correctly. More valuable are meas-
ures of performance and accuracy that account for
chance success in correctly predicting cases.

Fields such as vegetation classification in remote
sensing and medical diagnostics, where there are par-
allels with the prediction of species occurrence, have a
long history of performance measures that account for
prevalence. Among the suggested measures, the odds
ratio and NMI are limited by difficulties with zero
values in any category of the confusion matrix (Table 3),
a problem that characterized almost one-third of the
models we derived. Correction procedures are possible
but were not explored here. The ROC method has
had some application in ecology (Manel et al. 1999)
because of assumed advantages in either assessing
model performance in a threshold-independent fash-
ion, or because it allows variation in the probability at
which presence is accepted (Fielding & Bell 1997). Our
analysis indicates that the AUC of an ROC plot will be
independent of the prevalence of the organism being
measured, and as such is a useful measure of how well
a model is parameterized and calibrated. However,
clear problems arose when ROC-optimized models
were used to make true predictions. In this mode,
model operation is no longer threshold independent,
and in our evaluation the thresholds that maximized
sensitivity and specificity were linearly related to the
occurrence of the target organism. Scarce organisms
were thus erroneously predicted to be widespread in
test data. In addition to the complex procedures
involved in calculation, ROC model accuracy will
therefore be poor if  used in this way for exactly those
organisms where conservation interest is often greatest
(Wiser, Peet & White 1998; Manel et al. 1999; Strayer
1999). The occurrence of scarce organisms might be
overestimated in locations that are not surveyed, or
candidate locations for reintroduction might be falsely
identified. Both these errors would be costly in conser-
vation management. Methods for setting probability
thresholds that aim to recreate true prevalence in
model output are almost certainly superior, while there
are also advantages in specifying output as expected
probabilities of  species occurrence (Buckland &
Elston 1993). Nevertheless, by virtue of their restricted
occurrence, and the difficulty of calibrating suitable
models where occupied sites are few, scarce organisms
are likely to continue to pose problems in presence–
absence modelling using any algorithm.

Another widespread statistic in other fields, kappa,
had some advantages as a model performance measure
in our application. Despite its simplicity, values corre-

lated with performance measures derived from the
more sophisticated and computationally demanding
ROC procedures (i.e. the AUC). Kappa is also less
affected by zero values in the confusion matrix than
the NMI or odds ratio. Evidence about the effects of
prevalence in our application was slightly less clear. In
other biological fields there are concerns that kappa is
affected by low prevalence (Ridenour & Heath 1999),
and there was some weak evidence of this in our Hima-
layan data. However, we could find no similar effect in
parallel studies undertaken in Wales at either species or
family levels. The effects of prevalence on kappa there-
fore appear to be negligible, and certainly not sufficient
to discourage widespread use in medicine.

As a measure of the proportion of all possible cases
of presence or absence that are predicted by a model
after accounting for chance effects, values of kappa
offer a meaningful numerical variable for intercompar-
ison between models. For example, in other work we
have used kappa to assess the comparative power of
stream chemistry, habitat structure and altitudinal
relief  for predicting invertebrate distribution in moun-
tain streams (S. Manel & S. J. Ormerod unpublished
data). At the same time, however, the categorization of
performance indicated by kappa into fair, moderate,
substantial and almost perfect, as suggested by Landis
& Koch (1977), is clearly arbitrary. Such categories
offer a useful way of benchmarking model perform-
ance and are used still in medical diagnostics. However,
they are not defined on statistical criteria and offer
no option for testing the statistical significance of
predictive accuracy. Moreover, some commentators
suggest that Kappa overestimates the degree of chance
agreement (Foody 1992). We suggest that the devel-
opment of test statistics for application in ecological
presence–absence modelling is a priority research
area, for example by bootstrapping variance estimates
around predicted probabilities of occurrence. As a first
step, however, our strongest recommendation is that
ecologists reduce their reliance on prediction success as
an indicator of model performance in favour of meas-
ures unaffected by the prevalence of target organisms,
such as kappa.

One other interesting aspect of these data stems from
the effectiveness of the models we derived to predict the
distribution of organisms. Marked environmental var-
iation and altitudinal range in the Himalayan moun-
tains would suggest, intuitively, that ecological effects
on organisms should be strong, and hence the potential
for effective modelling should be large. We have shown
this to be the case with Himalayan river birds (Manel
et al. 1999). An examination of prediction success, and
of the number of significant effects detected by regres-
sion, would lead to the view that presence–absence
modelling was also effective for invertebrates. How-
ever, values of kappa in test performances indicated
that models were excellent in only 3% of cases, good in
21% and poor in 76%. This outcome illustrates the
importance of testing properly the predictive accuracy
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of models with independent data. It also illustrates
that presence–absence models will sometimes provide
a challenge to ecologists. This is despite the detailed
and exhaustive environmental data used in modelling,
which in this case should have captured many of the
important physicochemical influences on aquatic
invertebrates.
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