2022
No Cover Photo

Share

181 Views
Generated with Avocode. icon 1 Mask color swatch
0 Downloads

How Rising Water Levels Altered Ecosystem Provisioning Services of the Area around Qinghai Lake from 2000 to 2020: An InVEST-RF-GTWR Combined Method

  • Wang L.; Mao X.; Song X.; Tang W.; Wang W.; Yu H.; Deng Y.; Zhang Z.; Zhang Z.; Zhou H.
  • Summary

The water level of Qinghai Lake, the largest saltwater lake in China, has been rising consistently, which has altered the lake’s ecosystem service patterns and produced an unpredictable impact on local ecological security and sustainable development. To explore the changes in the area around Qinghai Lake’s ecosystem provisioning services that respond to the rise in water level, the spatial and temporal changes of three ecosystem services (water yield, soil conservation, and habitat quality) from 2000 to 2020 were calculated by the InVEST model. Then, the ecosystem service transformation of the rise in Qinghai Lake’s underwater level was evaluated, and the trade-off and synchrony among the three ecosystem services were discussed. Finally, Random Forest and Geographically and Temporally Weighted Regression models were used, to reveal the driving factors and spatial differentiation of ecosystem service change. Results showed that: (1) Although three ecosystem provisioning services were increased by 3.21%, 31.67%, and 6.19%, respectively, in 2000–2020, an overall change trend was observed that they increased first and then decreased. After reaching their peak values in 2005 (444.68 mm), 2015 (341.89 t·hm−2·a−1) and 2015 (0.67), three ecosystem provisioning services decreased to 349.27 mm, 271.82 t·hm−2·a−1, and 0.66 in 2020, respectively. (2) Three ecosystem provisioning services, as well as ecosystem services among different land use types, presented a synchronous relationship during the research periods. (3) Natural factors, such as precipitation and NDVI (Normalized Difference Vegetation Index), accounted for 30.0% of ecosystem services changes, and Social-economic factors, such as GDP (Gross Domestic Product) and population accounted for 28.0% of three ecosystem provisioning services changes. These driving factors exhibited significant spatial heterogeneity (adjusted R2 > 0.6). There were limitations in the scope of ecosystem services evaluation and insufficient consideration of the value of aquatic habitats, which deserved further exploration. This study may provide a scientific basis for the evaluation and management of the plateau lake ecosystem under the background of climate change. © 2022 by the authors.