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Abstract: Gynaephora alpherakii (G. alpherakii) is one of the dominant pests in the alpine meadow;
its outbreak has substantial impacts on grass vegetation production and carrying capacity. The
increasing frequency of G. alpherakii outbreaks will take place with global warming and human
activities. Therefore, it is crucial to identify inhabitable areas to apply prevention measures efficiently
and facilitate sustainable grassland management. In this study, field measurements of G. alpherakii
(from 2010 to 2021) were used to explore the relationships between its density and environmental
factors in the National Park of Qilian Mountain, China. Then, the inhabitability area was mapped.
The results showed that (1) eight of the twenty-five factors studied (average and maximum value of
solar radiation; minimum, standard deviation, and average value of normalized difference vegetation
index (NDVI); maximum precipitation; and digital elevation model) had a greater influence on
G. alpherakii density. (2) Among all of the estimation models, models based on the average of
solar radiation, the minimum of NDVI, and the maximum precipitation were better than other
factors, with a higher determination coefficient (R2) of 0.53–0.66 and a lower root mean square error
(RMSE) of 40.54–47.32 head/m2. Models based on rest factors had a lower accuracy, with R2 within
0.38–0.49 and an RMSE of 50.91–58.68 head/m2. (3) The inhabitable area which was most suited
for G. alpherakii growth, development, and frequent outbreaks was located in the northeast of the
research area (24.72%), with inhabitability decreasing from southeast to northwest. This method is
helpful for clarifying the distribution regions and occurrence dynamics of the G. alpherakii in the
alpine meadow. The spatial distribution of G. alpherakii in the National Park of Qilian Mountain
can also be clearly defined by using this method, which can provide data support for its prevention
and control.

Keywords: Gynaephora alpherakii; inhabitable areas; environmental factors; spatial distribution

1. Introduction

Grassland is a major part of the global terrestrial ecosystem that accounts for nearly
40% of Earth’s terrestrial area, and plays a key role in regulating climate change by balancing
greenhouse gases [1–3]. Alpine grassland is one of the most important grassland types,
and more than 48% is distributed on the Qinghai–Tibetan Plateau (QTP) [4]. The outbreaks
of rodents and insects, as well as snow and drought, are the main natural disasters in
QTP [5], which pose a great threat to the grassland carrying capacity and husbandry [6].
The grassland caterpillar, pika (Ochotona curzoniae), zokor (Myospalax baileyi), and locust
are the major driving forces for the degradation in grassland. For example, in the Source
Region of the Yellow River (lies in the northeast of the QTP, with an area of 1.2 × 105 km2),
the damaged area caused by rodents and insects is 3.25 × 104 km2, accounting for 34.66% of
the available grassland area (25.29% and 9.38% for the rodent and insect, respectively) [5].
However, studies on the behavior, influencing factors, and regular outbreaks are focused on
pika, zokor, and locust [7–10]; our knowledge of grassland caterpillars is still lacking [11,12].
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There are 15 species of grassland caterpillars recorded, of which eight species are
distributed in alpine grassland, and all of them are endemic species of the QTP [13,14].
The Gynaephora alpherakii (G. alpherakii), also known as the red or black head caterpillar,
belongs to Gynaephora, Lymantriidae, and Lepidoptera. Previous research has indicated
that G. alpherakii was present in the alpine meadow grassland. The G. alpherakii had strong
preferences for Poaceae and Cyperaceae plants (including Kobresia myosuroides, Kobresia
humilis, Festuca rubra, and Elymus nutans) [15]. The outbreak of G. alpherakii can make food
shortages for the livestock. The structure of the plant community has also been changed,
because G. alpherakii ingests the young plant branches and leaves first, which affects the
grass’ flowering period and development, resulting in a rise in noxious weeds and the
grassland degradation intensifying [16]. Moreover, G. alpherakii is high in toxins, and is
poisonous to livestock and humans via grazing and touching the skin [17].

The G. alpherakii is widely distributed on the QTP (more than 2 million hectares) with
high density (usually 200–500 head/m2, the highest density reaching 3000 head/m2) [18].
Since the 1960s, tremendous efforts, time, and cost have been invested in its prevention,
particularly in the study and production of chemical and biological insecticides [19,20].
However, this has still failed to mitigate the harm fundamentally and effectively. With
global climate change and human activities, the frequent outbreaks of G. alpherakii in recent
years have been recorded and have seriously harmed the animal husbandry on the QTP.
Therefore, it is crucial to identify inhabitable areas to prevent G. alpherakii outbreaks and
take measures accordingly.

The division of the inhabitable areas has been used for predicting the outbreak of the
pika [21] and locust [22]. The spatial distribution can be clearly defined using this method,
which can provide the data support and the decision basis for its control. However, the
inhabitable area of G. alpherakii has still been unknown. This study aimed to investigate
the influencing factors and inhabitability area of G. alpherakii in the National Park of
Qilian Mountain. We provide a database for the forecasting, warning, and prevention
of G. alpherakii, and it is hoped that this study will be helpful for the restoration and
management of degraded grassland.

2. Data and Methods
2.1. Study Area

The study area (36.8926◦–39.2110◦ N; 96.1380◦–102.6405◦ E) is located in the National
Park of Qilian Mountain, including Delingha City, Tianjun County, Qilian County, Gangcha
County, and Menyuan County of Qinghai Province. Grassland is the most important land
use type, accounting for 90% of the whole study area. The grassland types mainly include
alpine meadow, mountain meadow, lowland meadow, temperate steppe, alpine steppe,
alpine desert steppe, temperate desert, and alpine desert (Figure 1). The average annual
precipitation is 232.4 mm, which has increased from northwest to southeast, and the higher
precipitation was distributed in the central and eastern regions of the study area [23]. The
mean annual temperature is 4 ◦C, and the spatial distribution form is relatively stable
with little inter-annual variation. The temperature contour is consistent with the terrain
profile [24]. The average elevation is 4000 m (Figure 1). It is an important ecological security
barrier in western China, and it is also an important water source of the Yellow River and a
priority area for biodiversity conservation.

2.2. Field Observation

The field survey plots were established throughout the study area, according to
grassland type, terrain conditions, and the distribution of G. alpherakii, and a total of
125 plots were established during the grassland growth season (June to July) from 2010 to
2021 (Figure 1). Field survey plots were chosen to ensure a 5 km horizontal distance between
plots and homogeneity of both vegetation and land use, and the geographical locations of
the plots were selected to ensure that similar grassland types and geomorphology existed
within a 250 m range around the plots, considering that moderate resolution imaging
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spectroradiometer (MODIS) pixels are 250 m × 250 m in size. In each sample plot, three
to five quadrats with an area of 1 m × 1 m were randomly set up for ground observation.
The sampling record in each quadrat included latitude, longitude, elevation, grassland
types, and density of G. alpherakii (Figure 2). Previous field investigations and research
have indicated that G. alpherakii is mainly distributed in alpine meadow grassland. Hence,
the field observation was performed in the alpine meadow grassland of the National Park
of Qilian Mountain.
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2.3. Remote Sensing and Environmental Data Preprocess

NDVI data were selected from MODIS 16 d maximum value synthesis vegetation
index product MOD13Q1, and the data were downloaded from the United States Geo-
logical Survey (USGS; https://e4ftl01.cr.usgs.gov/ (accessed on 31 December 2021). The
images from May to September in 2000-2021, with a spatial resolution of 250 m (h25v05 and
h26v05), were selected. Then, the ArcGIS Raster Calculator tool was used to transfer and
reprocess the formation and the projection. The maximum (NDVImax), minimum (ND-
VImin), medium (NDVImed), average (NDVIave), range (NDVIrange), standard deviation
(NDVIstd), and sum (NDVIsum) of MODIS NDVI vegetation index were calculated during
the annual growing season (May to September) from 2010 to 2021.

Other environmental factors included grassland types, meteorology (temperature,
precipitation, and solar radiation), soil (soil type, soil sand, and clay content) and topog-
raphy (DEM) (Figure 3). The daily temperature, precipitation, and solar data used in this
study were obtained from 23 official meteorological stations in the National Park of Qilian
Mountain and surrounding areas, and covered the period from 2000 to 2021 (Figure 1). The
growing season (May to September) data were calculated for each station. Meteorological
data from outside stations were acquired using thin-plate smoothing spline (ANUSPLIN)
interpolation. The data mainly include the temperature, precipitation, and solar radiation
from 2000~2021 with a spatial resolution of 5 km. Maximum, minimum, average, and
sum values of temperature (TEMmax, TEMmin, TEMave, and TEMsum), precipitation
(PREmax, PREmin, PREave, and PREsum), and solar radiation (SRAmax, SRAmin, SRAave,
and SRAsum) in the growing season (May to September) from 2011 to 2021 were calculated
using the ArcGIS Raster Calculator (Figure 3). The soil type data were downloaded from
the vectorized dataset 1:1,000,000 Soil Map of the People’s Republic of China, compiled and
published by the National Soil Census Office in 1995 (https://www.resdc.cn/data (accessed
on 20 December 2021). Grassland-type data were collected using the 1:100,000 China Grass-
land Resource map (1:100,000 China Grassland Resource Atlas, 1993) [25]. Soil clay and
sand content data were downloaded from the northwest ecological environment resources
of the Chinese Academy of Sciences Institute of Cold and Arid Regions of the Science Data
Center (http://westdc.westgis.ac.cn/data/ (accessed on 12 December 2020). Terrain data
were obtained from the spatial information alliance website (http://srtm.csi.cgiar.org/
(accessed on 12 December 2020).
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The above data were uniformly transformed into Albers in ArcGIS software, and
resampled into raster images with a resolution of 250 m (each raster datum has the same
number of rows and columns), so as to be used as an input in the later construction and
prediction of G. alpherakii.
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2.4. The Inhabitable Index of Each Variable
2.4.1. Environmental Factors Selection

In order to reduce the influence of the autocorrelation and information redundancy
among the environmental factors, the Pearson coefficients, calculated using the R package
“rcorr”, were used to screen factors first, and only one factor was retained if |r| > 0.7 be-
tween two factors. Then, the boosted regression tree (BRT) analysis [26,27], created using
the R packages “gbm” [28,29] and “dismo” [30], was used to examine the relationship
between potential predictors and environmental factors. Additionally, the relative con-
tribution (RC) was used to assess the relevance of each factor in BRT models [31]. This
metric measures how often the predictor was selected for partitioning, weighted by the
squared model improvement resulting from successive partitions [32]. Finally, cumulative
RC factors greater than 85% were retained for further analysis.

2.4.2. Division of the Inhabitable Index of G. alpherakii

The average density in all quadrats of each plot was estimated as the G. alpherakii
density for that observation plot. The G. alpherakii density of different sample plots was
taken as the dependent variable and environmental factors (selected via autocorrelation and
BRT) were taken as the independent variables. The polynomial models were employed for
calculating their correlations with G. alpherakii density in this study [33,34]. Additionally,
the leave-one-out cross validation (LOOCV) method, root mean square error (RMSE),
and determination coefficient (R2) were used to evaluate the accuracy of the regression
models [35].

Combing the density estimation models and grassland damage caused by G. alpherakii,
each factor’s inhabitable index (IH) was divided into five classes (Table 1). When the
inhabitable index was 1, it had the main conditions for the growth and development of
pests, and it showed a potentially harmful area for pests. However, when the inhabitable
index was 5, it was very suitable for the growth and development of pests and grassland
was often damaged by pests.

Table 1. Inhabitable index of Gynaephora alpherakii.

Inhabitable Index Degree of Damage Degree of
Inhabitation Density (Head/m2)

1 No damage Potential area 0–30
2 Mild Suitable 31–80
3 Moderate More suitable 81–130
4 Severe Very suitable 131–180
5 Serious Extremely suitable 181–230

Note: derived from prevention and treatment measures of pika and insects in the grassland of Qinghai Province.

2.5. Division of the Inhabitable Area of G. alpherakii

The IH distribution patterns were mapped based on G. alpherakii density estimation
models and Table 1; the inhabitable area was calculated by the weight of each selected
factor (calculated in Section 2.4.1) and Equation (1).

IH(x, y) =
n

∑
n=1

Ei(x, y)Wi (1)

where IH (x, y) represented the pixel inhabitable index with coordinate (x, y); n represented
the number of environmental factors; Ei (x, y) represented the pixel value of i-th factor in
coordinate (x, y); Wi represented the weight of i-th factor; Wi was calculated by the boosted
regression tree algorithm in Section 2.4.1; and i = 1, 2, 3, . . . . . . n.

Finally, the inhabitable areas were mapped based on Table 2.
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Table 2. Inhabitable areas of Gynaephora alpherakii.

Inhabitable
Area

Classification
Standard Description

1 4 ≤ IH It is very suitable for the growth and development of
G. alpherakii and is often damaged by G. alpherakii.

2 3 ≤ IH < 4 It is more suitable for the growth and development of
G. alpherakii, and it is the area that G. alpherakii often harms.

3 2 ≤ IH < 3 It is suitable for the growth and development of
G. alpherakii, and is sometimes harmed by G. alpherakii.

4 IH ≤ 2 It has the main conditions for the growth and development
of G. alpherakii, and is the potential harm area of G. alpherakii.

Note: IH represented the inhabitable index.

3. Results
3.1. The Autocorrelation and Boosted Regression Tree Analysis of Environmental Factors

The results of the autocorrelation analysis are shown in Figure 4; according to the
Pearson coefficient between any two factors, a total of twelve factors were selected for
further boosted regression tree analysis (including NDVIave, NDVImin, NDVIstd, PREave,
PREmax, SRAave, SRAmax, Clay 1 (clay concentration of surface soil), Clay 2 (clay concen-
tration of bottom soil), Sand 2 (the sand concentration of bottom soil), soil type, and DEM).
The Pearson coefficient was higher than 0.7, and each of the correlations is shown in the
Supplementary Figures (Figures S1–S3).
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Figure 4. The correlation of Pearson coefficient among factors. NDVIave, NDVImin, NDVIstd,
PREave, PREmax, SRAave, SRAmax, Clay 1, Clay 2, Sand 2, Soil, and DEM refer to average NDVI,
minimum NDVI, standard deviation of NDVI, average precipitation, maximum precipitation, av-
erage solar radiation, maximum solar radiation, clay concentration of surface/bottom soil, sand
concentration of bottom soil, soil type, and digital elevation mode, respectively. * denotes p < 0.05;
** denotes p < 0.01; *** denotes p < 0.001.
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The relative contribution of each environmental factor is exhibited in Figure 5. SRAave
and NDVImin had relative contribution values higher than 10%. The total contribution
reached 36.17% (22.6% and 13.5% for the SRAave and NDVImin, respectively). There were
seven parameters with a relative contribution of 5% to 10%, including PREmax, NDVIstd,
Sand 2, DEM, SRAmax, NDVIave, and PREave. The relative contribution values for the
other components, which mostly included soil type, Clay 1, and Clay 2, were lower than 5%.
The overall contribution of the first eight components approached 85% among all indices.

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 5. Relative contribution of each factor from 2000 to 2021: (a)–(l) refers to the average solar 

radiation (SRAave), minimum NDVI (NDVImin), maximum precipitation (PREmax), standard 

deviation of NDVI (NDVIstd), clay concentration of bottom soil (Clay 2), digital elevation model 

(DEM), maximum solar radiation (SRAmax), average NDVI (NDVIave), average precipitation 

(PREave), clay concentration of bottom soil (Clay 1), sand concentration of bottom soil (Sand 2), 

and soil type (Soil), respectively. X is the value of each environmental factor. 

3.2. Relationship between Environmental Factors and G. alpherakii Density  

The polynomial models were used to develop the estimating model in conjunction 

with the environmental parameters (filtered in Section 3.1) and the observed G. alpherakii 

density. Figure 6 and Table 3 depict the estimation models and the accuracy examination. 
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radiation (SRAave), minimum NDVI (NDVImin), maximum precipitation (PREmax), standard devia-
tion of NDVI (NDVIstd), clay concentration of bottom soil (Clay 2), digital elevation model (DEM),
maximum solar radiation (SRAmax), average NDVI (NDVIave), average precipitation (PREave), clay
concentration of bottom soil (Clay 1), sand concentration of bottom soil (Sand 2), and soil type (Soil),
respectively. X is the value of each environmental factor.
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3.2. Relationship between Environmental Factors and G. alpherakii Density

The polynomial models were used to develop the estimating model in conjunction with
the environmental parameters (filtered in Section 3.1) and the observed G. alpherakii density.
Figure 6 and Table 3 depict the estimation models and the accuracy examination. Among
all estimating models, models based on SRAave, NDVImin, and PREmax performed better
than others, with a higher R2 within 0.53–0.66 and a lower RMSE of 40.54–47.32 head/m2.
While Clay 2 models are the most accurate, SRAmax and NDVIave come in second, with R2

within 0.41–0.49 and an RMSE of 50.91–58.68 head/m2. The accuracy of the model based on
NDVIstd is worse, with an R2 of 0.38 and a greater RMSE of 55.29 head/m2, respectively.
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Figure 6. Relationship between environmental factors and Gynaephora alpheraki density: (a–h) refer to
the average solar radiation (SRAave), minimum NDVI (NDVImin), maximum precipitation (PREmax),
standard deviation of NDVI (NDVIstd), clay concentration of bottom soil (Clay 2), digital elevation
model (DEM), maximum solar radiation (SRAmax), and average NDVI (NDVIave), respectively. The
dash area presents a 95% confidence interval.

Table 3. Fitted models based on SRAave, NDVImin, PREmax, NDVIstd, Clay 2, DEM, SRAmax,
and NDVIave.

Factors Models R2 RMSE (Head/m2)

SRAave y = Exp(7.47618 − 3.7811x − 0.108/x2) 0.54 ** 45.57
NDVImin y = Exp(2.27319 + 13.15692x − 13.81686x2) 0.66 ** 40.54
PREmax y = Exp(8.78282 − 0.22318x − 118.28301/x2) 0.53 ** 47.32
NDVIstd y = 0.89164 + 45.77443x − 126.80326x2 0.38 * 55.29

Clay 2 y = −2405.81133 + 44.04946x + 41153.48634/x − 193652.51082/x2 0.41 * 53.18
DEM y = −3345.77169x − 2.47865×10 − 4x2 0.41 * 53.37

SRAmax y = 972994.0304 − 738248.15298x + 186490.90176x2 − 15683.83293x3 0.42 * 58.68
NDVIave y = Exp(−21.99 + 95.78044x − 84.40237x2) 0.49 ** 50.91

Note: R2 and RMSE refer to the determination coefficient and root mean square error, respectively. SRAave,
NDVImin, PREmax, NDVIstd, Clay 2, DEM, SRAmax, and NDVIave refer to the average solar radiation, minimum
NDVI, maximum precipitation, standard deviation of NDVI, clay concentration of bottom soil, DEM, maximum
solar radiation, and average NDVI, respectively. * and ** denote p < 0.05 and p < 0.01, respectively.
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3.3. Spatial Variation in the Inhabitable Index for Different Factors

The distribution of the inhabitable index (IH) for each variable was mapped using
estimating models based on chosen factors (Figure 7) and the rule of the IH division
(Table 1). The IH of SRAave, NDVImin, PREmax, NDVIstd, DEM, and NDVIave all
revealed a similar variation pattern, decreasing from southeast to northwest of the research
region. Nevertheless, the IH of Clay 2 and SRAmax exhibited a contrasting variance pattern,
increasing from the southeast to the northwest of the research region. The IH value of 4 had
the highest area percentage in NDVIstd, DEM, and SRAmax, accounting for 40%, 53%, and
51% of the study area, respectively. The factors of SRAave, Clay 2, and NDVIave had a
higher proportion in IH 3, IH 2, and IH 1, respectively. For PREmax, the majority of the
region falls within the IH of 5, accounting for 87% of the research area.
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Figure 7. Spatial variation in the inhabitable index for different factors: 1–5 represent the inhabitable
index; the degree of damage ranged from no damage to mild, moderate, severe, and serious, respec-
tively. (a–h) refer to the average solar radiation (SRAave), minimum NDVI (NDVImin), maximum
precipitation (PREmax), standard deviation of NDVI (NDVIstd), clay concentration of bottom soil
(Clay 2), digital elevation model (DEM), maximum solar radiation (SRAmax), and average NDVI
(NDVIave), respectively.
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3.4. Classification of Inhabitable Area

The inhabitable area referred to the area suited for the growth and development
of G. alpherakii. In this study, Inhabitable Area 1 was very suitable for the growth and
development of pests and was often damaged by G. alpherakii, and the inhabitability was
decreased to Inhabitable 4. As shown in Figure 8, the Inhabitable Areas 1 and 2 were mostly
dispersed in the northeast of the research region, accounting for 24.72% and 37.88% of the
study area, respectively. The Inhabitable Areas 3 and 4 were mostly distributed in the north
and west of the research region. The area of Inhabitable Area 3 accounted for 30.09% of the
whole research area, while the area of Inhabitable Area 4 was the smallest, accounting for
7.30% of the total study area.
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4. Discussion
4.1. Implications of G. alpherakii’s Inhabitable Area

The G. alpherakii was widely distributed in the alpine meadow grassland and its
outbreak severely destroyed the grassland vegetation [36]. As a result, the grassland pro-
ductivity and carrying capacity were significantly jeopardized. The preventative measures
were implemented following G. alpherakii outbreaks (usually distinguished by G. alpherakii
density). The limitations are clear: (1) existing preventions were mainly conducted after the
G. alpherakii outbreak, and early prediction and warning were inadequate [37]. There was
still a challenge to organize the labors and chemical insecticides immediately in the widely
distributed pasture area. (2) The G. alpherakii was mainly prevented through spraying
the chemical insecticides manually or mechanically, which could be easily affected by
the climate conditions (such as wind and rain), leading to poor efficiency or outbreaks
again; (3) although the excessive chemical insecticides effectively prevented the outbreak of
G. alpherakii, the pollution to grass vegetation (pesticides affect grasslands by affecting soil
fauna and microbial organisms) and soil was increased, which destroyed the biodiversity in
the original habitat and caused a huge threat to the ecological environment [38]. Therefore,
early warning prediction before its outbreak was a vital strategy for G. alpherakii prevention.

As we know, the inhabitable area referred to the areas suited for the establishment
and development of grassland biology, and it provided early warning signals [39]. In this
study, G. alpherakii’s inhabitable area was explored based on its density and environmental
conditions. The most favorable areas for G. alpherakii outbreak and development lied in the
northeast (Inhabitable Area 1, with an area proportion of 24.72%), and the inhabitability
declined from southeast to northwest (Figure 8). As a result, Inhabitable Area 1 needs to
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enhance management. On the contrary, labor and costs should be reduced to the northwest
of the research area (Inhabitable Area 4, with an area percentage of 7.3%).

4.2. Environmental Factors and Influence

Because G. alpherakii outbreaks were caused by specific environmental circumstances,
understanding their biological properties, outbreak regularity, quantitative fluctuation,
and major influencing factors was critical for forecasting, warning, and prevention. In
our study, the SRAave had the most effect in this research, with a relative value of 22.6%
(Figure 5). This may be connected to their preferences for warm, sunny climates, especially
as the larvae enter a stage of rapid growth and the solar radiation was required to sustain
themselves for the growth requirements [40,41]. The NDVI has a high-value relative effect
(NDVImin, NDVIstd, and NDVIave were 13.5%, 9.2%, and 6.9%, respectively) (Figure 5).
This phenomenon can be explained in that grassland flora in alpine meadows was a
significant influence parameter on G. alpherakii food limitation. The G. alpherakii favored
the Kobresia species, which were the dominating plants in the alpine meadow. Wang and
Liu (2022) used a random sample approach to evaluate the density and its relationships with
vegetation in 10 plots and discovered a negative association between both [42]. However,
Yu and Shi (2010) discovered that whereas aboveground biomass has a substantial positive
association with density, subsurface biomass and the grassland vegetation height have a
non-significant link with total vegetation coverage [43]. When the density reaches a severe
level, the grassland vegetation cover may decline drastically.

The DEM also has a strong relative correlation; the altitude influences the distribution
of the G. alpherakii. According to studies, the majority of G. alpherakii is found above
4000 m [13,36]. The adaptation to this severe environment may be connected to its own
genetic mechanism [14,36] and can change its fundamental metabolism to compensate
for the low oxygen pressure [21]. Due to the high auto-correlation between the DEM and
temperature, the relative correlation between the temperature and G. alpherakii density has
not been investigated in our study. However, temperature is also an essential component.
G. alpherakii showed high adaptability to the extremely cold ecological environment during
its evolution [44]. The optimum temperature for G. alpherakii growth was 20 ◦C [45].

In this study, both SRA, NDVI, and DEM were crucial to G. alpherakii with a relative
effect of more than 50% (Figure 5). The optimum SRA, NDVI, and DEM ranged from
0.80 J/h.m2 to 0.89 J/h.m2, 0.54 to 0.63, and 3470 m to 4040 m, respectively. Additionally,
these were mainly located in the northeastern part of the study area. On the contrary, the
SRA and DEM were higher than 0.89 J/h.m2 and 4040 m, and NDVI was lower than 0.54.

4.3. Limitations and Prospects of G. alpherakii Monitoring

This study investigated the inhabitable area of G. alpherakii and provided a basis for its
control; nevertheless, there are certain limitations: (1) With the exception of MODIS remote
sensing and topography data, the other dataset was primarily interpolated by limited
observations and coarse spatial resolution. The classification of G. alpherakii’s inhabitable
area still has some errors and uncertainties. The higher resolution of the climate dataset,
derived by remote sensing, should be considered to reduce the errors and uncertainties
in future work. (2) The density of G. alpherakii was the foundation for classifying the
inhabitable area. In our study, the data were mostly gathered through field observation
using traditional methods, which were time-consuming, labor-intensive, and expensive.
It was still a challenge to carry out large-scale survey work in a restricted period, since
most of the G. alpherakii were distributed in a harsh environment [13], making it difficult to
carry out the field research work. (3) There were no regular observation locations, and the
measuring standards were not uniform [37]. The data collected by various approaches vary
greatly, and there are significant uncertainties in acquiring field observations in large-scale
locations. Although the remote sensing satellite can acquire large-scale data, limited by the
resolution it cannot be applied in G. alpherakii monitoring. Therefore, new methods should
be developed to acquire fixed, repeated, large-area, and longtime data.
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Recently, small unmanned aerial vehicle (UAV) technology has been used in G. alpherakii
monitoring [46]. The Mavic 2 UAV has a resolution of 0.09 cm, which ensures the identifi-
cation of G. alpherakii from an aerial photograph [47]. Furthermore, the development of the
FragMap system realized long-term, repeated, and large-scale monitoring [48], which had
easy operation and was time-saving (Figure S4. Unmanned aerial vehicle field observation).
The aerial photograph can provide primary data for the G. alpherakii field observation on a
large scale, and enables the inhabitable area to be more accurate [49]. However, G. alpherakii is
currently recognized artificially from the photograph and it is still time-consuming. Therefore,
automatic image recognition should be developed in further studies.

5. Conclusions

Based on field observation and multi-source environmental factors, this study explored
the relationship between G. alpherakii density and the main influencing factors. Our results
showed that the average and maximum of solar radiation, minimum, standard deviation,
and average of NDVI, maximum of precipitation, and DEM are the main influencing factors
of G. alpherakii inhabitability. The polynomial models can estimate the G. alpherakii density
effectively. The inhabitable area most suitable for G. alpherakii growth, development, and
outbreak lies in the northeast of the study area (24.72%), and inhabitability decreased from
northwest to southeast. In future work, UAV technology realizing long-term, repeated, and
large-scale monitoring and automatic image recognition should be developed.
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auto-correlation among the SRAave, SRAmax, SRAsum, Clay1, Clay2, Sand1, Sand 2, Soil, DEM;
Figure S4. Unmanned aerial vehicle field observation.
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