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Abstract: East and south coastal China is made up of a cluster of six developed provinces whose
CO2 emissions account for one third of the total CO2 emissions in China. As such, it is meaningful
to predict carbon emissions in this region to assess whether China can achieve emission reduction
targets. This paper employed STIRPAT to analyze the factors impacting the carbon emissions of this
area from 2000 to 2015, including population (POP), urbanization (UR), GDP per capita (GDP), energy
intensity (EI), and industrial structure (IS). The results showed that GDP was mainly responsible
for increasing carbon emissions while EI played a significant role in reducing it. Considering the
importance of GDP, EI, and IS obtained from regression analysis, basic, highest-rate, middle, and
advanced scenarios were set to predict carbon emissions according to different change rates. In the
basic scenario, carbon intensity was reduced by 48.5% in 2020 compared to 2005, which was slightly
higher than the national target of 40–45%, and was reduced by 59.7% in 2030, which was close to
a 60–65% reduction. Nevertheless, in the advanced scenario, carbon intensity was reduced by 51.7%
in 2020 and 69.1% in 2030 compared to 2005, which were higher than the national targets. Therefore,
improving energy efficiency, optimizing energy structure, and adjusting industrial structure were
suggested to be major strategies for carbon intensity mitigation.

Keywords: carbon emissions; east and south coastal China; STIRPAT model; environmental Kuznets
curve; scenario analysis

1. Introduction

The world economy is developing rapidly, and China’s enormous role cannot be ignored.
At present, China has become the second-largest economy worldwide. However, economic growth is
always accompanied by a large amount of energy consumption, especially fossil fuels consumption.
It is clear that Chinese carbon emissions are closely linked to the consumption of fossil fuels,
which makes China the world’s largest carbon emitter, accounting for 23.4% of carbon emissions
in the world [1,2]. Consequently, mitigation of the greenhouse effect has become an urgent issue
in China. Several targets have been set by the government for conserving energy and reducing
emissions. In December 2009, a CO2 reduction target of 40–45% by 2020, compared to 2005 levels,
was set by the government [3]. In the “13th Five-Year Plan” (2016–2020), the government put forward
specific indicators of National Economic and Social Development, in which energy efficiency and
carbon intensity were proposed to be reduced by 15% and 18% in 2020 respectively, compared to 2016.
In addition, in 2015, the Chinese government promised that carbon emissions would not rise no later
than 2030, and carbon intensity would be reduced by 60–65% compared to 2005 [4].

East and south coastal China, including Shandong, Zhejiang, Jiangsu, Shanghai, Fujian, and
Guangdong (hereinafter referred to as “the Region” according to the research in Reference [5]),
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is a cluster of the country’s most economically developed provinces. The Region contains the Yangtze
River Delta, including Zhejiang, Jiangsu, Shanghai [6], and the Pearl River Delta, including most areas
of Guangdong [7]. Because of its location along the coast, import and export trade promotes the growth
of the regional GDP [8]. In 2015, the Region’s GDP was 217610.8 BY, accounting for more than one
half of the country’s total GDP. It was not only the first region to implement the reform and opening
up policies, but also served as an experimental base for important national plans [5]. Although the
Region accounts for only a small portion of the country’s land, its population was 406.5 million and
carbon emissions were 3252.2 Mt in 2015, which accounted for approximately one third of the national
total [9]. Therefore, the Region is extremely vital for estimating whether the country can achieve
emission reduction targets.

For all that, there is little research on the Region for in-depth study. In this paper, six provinces in
east and south coastal China were taken into consideration for analysis. We used the STIRPAT model to
study the factors impacting carbon emissions. For the sake of developing a better understanding of the
current state of development, this paper explored the Environmental Kuznets Curve (EKC) relationship
of per capita GDP/urbanization and carbon emissions in the Region. In addition, according to the
“13th Five-Year Plan”, four different scenarios were set up to predict the Region’s contribution to the
national 2020 and 2030 emission reduction targets. In the light of the scenario analysis, this paper
proposed several corresponding effective policy suggestions. In conclusion, this study was conducted
to resolve following issues: firstly, to analyze the factors influencing carbon emissions, further verifying
the existence of the EKC relationship; secondly, to predict the Region’s contribution to the national
emission reduction targets; and thirdly, to put forward related policy recommendations.

The rest of this paper is structured as follows. Section 2 provides the literature review. Section 3
introduces the methodology and data sources. Section 4 reports the results and discussions. Section 5
gives the conclusions and policy implications.

2. Literature Review

For the choice of the research object, different studies have different emphases. Some studies
selected diverse industries as research objects. Zhang et al. [10] studied the factors impacting CO2

emissions in the transportation sector. They found that the traffic activity effect was the main factor
increasing energy consumption, while adjusting energy intensity effects could effectively reduce it.
Wang et al. [4] studied carbon emissions in high, mid, and low energy consumption sectors from 1996
to 2012, setting three scenarios to estimate whether 2020 and 2030 carbon emission targets could be
reached, and corresponding policy recommendations were given to the sub-sectors. Meng et al. [11]
researched the relationship between CO2 emissions and its influencing factors in the power industry
from 2001 to 2013. They concluded that the government should optimize the industrial export structure
and raise the awareness of household electricity saving to alleviate the carbon dioxide emissions of the
electricity industry in the future. In addition, some studies selected different areas as research objects.
For example, some studies concentrated on national carbon emissions (e.g., [12,13]). Wang et al. [14]
and Wang and Zhao [15] studied the differences in the impact factors on carbon emissions in eastern,
central, and western China. Song et al. [6] and Yu et al. [7] selected the Yangtze River Delta and the
Pearl River Delta as the object of study, respectively. In detail, Song et al. [6] used the LMDI model to
analyze the driving effects of economic scale, population size, energy intensity, and energy structure
on carbon emissions in the Yangtze River Delta. The implementation of targeted carbon reduction
measures was found to help greatly reduce the national carbon emissions. Meanwhile, to a certain
extent, the research method was also applicable to other specific regions in China. Yu et al. [7] studied
the impact of traffic control policies on O3 emissions in the Pearl River Delta. The results of this study
provided some basic information to help understand the impact of control policies on ambient O3 in
highly developed areas in China. In addition, some studies selected a single province as the object of
study. Wang et al. [16] conducted an econometric model to investigate carbons emission in Guangdong
Province from 1980–2010. Xu et al. [17] used the input-output relationship of the SDA model to discuss
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carbon emissions in Jiangsu. At present, only Gao et al. [5] chose the Region as the research object,
using the LMDI model to analyze the influencing factors of carbon emissions from 2000–2012.

Various methods were used by the existing studies on the impact factors of carbon emissions,
among which logarithmic mean Divisia index (LMDI) and STIRPAT are two of the most commonly
applied due to their strong applicability. Wang et al. [4], Xu et al. [18], and Yan et al. [19] examined
the affecting factors of national greenhouse gas emissions using the LMDI model. Guo et al. [20],
Liu et al. [21], and Xin [22] employed the LMDI model and the research objects they selected
were Shanghai, Jiangsu, and Beijing, respectively. They all decomposed factors into the following
categories: carbon emission coefficient, energy structure, energy efficiency, industry share, GDP.
Liu et al. [23], Lin and Long [24], and Xie et al. [25] applied LMDI and focused on the carbon emission
indexes of different industries, including industrial, chemical, and petroleum coking industries,
which decomposed factors into CO2 emission coefficient, industry share, energy efficiency, average
output, and industry size. However, the number of impact factors that the LMDI model can consider
is limited, so this method does not allow multivariate analysis [16]. The STIRPAT model, however,
has fewer constraints on the selection factors than LMDI. Zhang and Tan [12] employed the STIRPAT
model to study the demographic factors influencing China’s carbon emissions, and these factors
included adult illiteracy rate, higher education proportion, population intensity, population share, and
the like. Salahuddin et al. [26] used the STIRPAT model to analyze the impact factors of Internet use
on carbon emissions in Organization for Economic Cooperation and Development (OECD) countries,
and creatively selected the number of Internet users per 100 people as a technical factor. Tan et al. [27]
applied the STIRPAT model to predict the carbon emissions of 2020 and 2030 in Chongqing, in which
the energy structure, industrial structure, and technological advancement were chosen to replace the
technical factors (T) in the model. Compared to LMDI, the STIRPAT model has a wider range of factors
selection, so the results are more comprehensive and convincing [16].

Additionally, the EKC hypothesis for income and pollution can be traced back to the pioneering
work of Grossman and Krueger [28], who reported that pollution index and GDP had an inverted
U-shaped relation. It is worth noting that the EKC has significant merits. Its inverted U-shape reflects
that economic growth can promote environmental improvement. The prerequisite for this result is to
implement effective environmental policies while raising the economic level [29]. EKC has been widely
used to estimate the current stage of development in the region. York et al. [30] found that STIRPAT
can accurately represent the functional form of the relation between emissions and economic growth.
After that, a number of studies used STIRPAT to study the EKC relationship between GDP and carbon
emissions. Diao et al. [31] verified the EKC hypothesis concerning the economic level and carbon
emissions of Zhejiang. Later, the research direction was related to the trend of urbanization and carbon
emission, and further confirmed the development level of the researched region. Ouyang and Lin [32]
employed the STIRPAT model to compare the impact of urbanization on CO2 emissions in China and
Japan. He et al. [33] found the inverted U-shape curve relation between urbanization and carbon
emissions in different development level regions. Zhao et al. [29] studied the EKC relationship and
coupling analysis of urbanization and CO2 emissions in the Yangtze River Delta. Therefore, in order to
gain a better understanding of the development level, this paper explored the EKC hypothesis of per
capita GDP/urbanization and carbon emissions in the Region.

According to the abovementioned research findings, this paper filled in three aspects of the
research gap that have not been considered in the existing literature. Firstly, the study selected six
provinces in the east and south coastal area as the research object, which played an important role in
estimating national carbon emission reduction targets. Only one other article selected this Region as
a research object, although it used LMDI to analyze the influence indexes of CO2 emissions. Because
the selected factors of LMDI are limited, the analysis of factors impacting carbon emissions is not
comprehensive. In this study, the STIRPAT method was used to study the factors influencing carbon
dioxide emissions in the Region, which made up for the limited selection of factors. Also, we verified
the EKC hypothesis between per capita GDP/urbanization and carbon emissions in order to further



Sustainability 2018, 10, 1836 4 of 18

understand the current development stage. Furthermore, taking into account the importance of the
Region, this study predicted the contribution of this Region to the national 2020 and 2030 emission
reduction targets. Based on the three ordinary scenarios, the highest-rate scenario was innovatively
added, based on the highest growth rate of historical data. This scenario served as a basis for reality.
Finally, more applicable and effective policy recommendations for reducing CO2 emissions in the
Region were proposed.

3. Methods and Data Description

3.1. Estimation of CO2 Emissions

Following the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC),
CO2 emissions calculated from energy consumption, emission coefficients, and the fraction of oxidized
carbon by fuel are as follows [34]:

COt
2i = ∑

j
COt

2ij = ∑
j

Et
ij×EFj×Oj ×

44
12

(1)

where COt
2i denotes the total CO2 emissions of province i in year t; COt

2ij is the CO2 emissions for fuel
type j of province i in year t; Et

ij refers to the energy consumption of fuel type j in province i in year t;
EFj is the CO2 emission coefficient of fuel type j; and Oj means the fraction of the carbon oxidized of
fuel type j.

Because the amount of electricity generated from nuclear power and hydroenergy is rapidly rising,
the contribution of nuclear energy and water power to generate electricity cannot be ignored. [35].
The carbon emissions ratios (ef) of heat and electricity can be computed as follows:

eft =
∑j CO2j,t

Efossil,t+Enuclear,t+Ehydro,t
(2)

where eft refers to the average emission coefficient in year t; CO2j,t indicates the CO2 for fossil fuel
type j in year t; and Efossil,t, Enuclear,t, Ehydro,t denote fossil fuel consumption, nuclear energy, and
hydropower in year t.

3.2. Empirical Model

Ehrlich and Holdren [36] first proposed the IPAT model to quantify the impact of human activities
on the environment.

I = P × A × T (3)

where I refers to the environmental impact, P represents population size, A means affluence,
and T denotes technological progress. This accounting equation only contains some key factors,
which assumes unified elasticity of population, affluence, and technology. Based on IPAT,
Dietz and Rosa [37] proposed the STIRPAT model to overcome these limitations:

I = aPb
i Ac

i Td
i ei (4)

where i = 1, 2, 3, . . . , N represents the cross-section dimension; a denotes the constant term; b, c, and
d denote the explanatory variable coefficients based on P, A, and T, respectively; e is the random error
term. When a = b = c = d = 1, the IPAT framework is a special form of the STARPAT model [16]. Taking
the logarithms of the equation, the model can be represented as follows:

lnIi = ai + blnPi + clnAi + dlnTi + ei (5)
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In the STIRPAT model, P, A, and T can be decomposed into a number of factors that affect the
environment. For example, T can be replaced by energy structure, energy intensity, and technical
progress coefficient [30,38]. Therefore, the STIRPAT model has few constraints on the selection factors.
For example, some studies have innovatively selected urbanization factors to study the relationship
between urbanization and energy utilization or CO2 emissions [13,39,40]. In order to research the
impact factors of CO2 emissions more comprehensively, we choose the factors of energy efficiency,
industry share, and urbanization to extend the STIRPAT model [13]. The logarithm form of the
integrated pattern we adopted is:

lnCEit= α+ β1lnPOPit+β2lnGDPit+β3lnURit+β4lnEIit+β5lnISit+eit (6)

where i and t represent province and time, respectively; CE means energy-related carbon emissions;
POP denotes population; GDP is per capita GDP; EI means energy efficiency, calculated by dividing
energy consumption by GDP; UR represents the proportion of urban population to the total population;
and IS indicates industrial structure, which is calculated by the proportion of the value of the secondary
industry to the GDP.

In order to test the EKC hypothesis, Kang et al. [41] and Sinha and Bhattacharya [42] focused on
the relationship between CO2 emissions and wealth factor, and a quadratic term of per capita GDP
was added to the formula. The results showed that there existed an inverted U-shaped Kuznets curve
relation between per capita GDP and carbon dioxide emissions. In addition, some scholars studied
the EKC hypothesis of CO2 emissions and demographic variables, which were represented by the
urbanization rate [14,33]. Based on the research progress in this field, we obtained two extended
STIRPAT models to test inverted U-shape relations between economic growth/urbanization and
carbon emissions. Based on the framework of the ECK hypothesis, we transformed the variables into
natural logarithm form, and the formula is as follows:

lnCEit= α+ β1lnPOPit+β2lnGDPit+β3 (lnGDP it)
2+β4lnURit+β5lnEIit+β6lnISit+eit (7)

lnCEit= α+ β1lnPOPit+β2lnGDPit+β3lnURit+β4 (lnUR it)
2+β5lnEIit+β6lnISit+eit (8)

3.3. Data Sources and Description

3.3.1. Data Sources

In the study, we applied the panel data of six provinces from 2000 to 2015. The expenditure of
energy was acquired from the China Energy Statistic Yearbook [9]. This study considered 18 types of
fuel, including raw coal, cleaned coal, washed coal, coke, coke oven gas, other gas, crude oil, gasoline,
kerosene, diesel oil, fuel oil, liquefied petroleum gas (LPG), refinery gas, natural gas, other petroleum,
other coking products, electricity, and heat.

The provincial population, per capita GDP, urbanization, and the proportion of the value of the
secondary industry to the GDP were obtained from the China Statistical Yearbook [8]. GDP data were
converted to 2000 constant price, calculated with provincial GDP deflation factors. Variable definitions
and units are listed in Table 1.

Table 1. Description of variables used in the analysis for the period of 2000–2015 [43].

Variables Definition Unit of Measurement

CO2 Emissions (CE) Energy-related CO2 emissions Million tons
Population (POP) Population at the end of the year 104 units
Urbanization (UR) The percentage of the urban population in the total population %

GDP Per Capita (GDP) GDP divided by population at the end of the year Yuan in 2000 constant price
Energy Intensity (EI) Total energy use divided by GDP Tce per 104 yuan

Industrial Structure (IS) The percentage of the secondary industry GDP in the total industry GDP %
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3.3.2. Data Description

Figure 1 illustrates the changing rate of the variables, with 2000 as the base year. As can be seen
from the figure, most of the variables were non-stationary. During the study period, they continued
to rise, fall, or exhibit horizontal fluctuations. Among these variables, per capita GDP rose almost to
three times the original amount with the fastest growth rate, followed by carbon emissions, which
increased by two times the original amount. As the energy intensity was reduced by less than 50%,
we can see that energy consumption rose to almost twice the original amount. Although the growth
rate of industrial structure was not significant, the Region’s second industry GDP accounted for half
of the country; thus, the influence of this factor cannot be ignored [8]. According to the trend of CO2

emissions, it can be seen that the growth rate has increased dramatically since 2001. This was because
China acceded to the World Trade Organization in 2001, which led a substantial rise in consumption
and exports, in turn resulting in a comprehensive rise in carbon emissions [44]. The growth rate then
began to slow in 2005, mainly due to the world economic crisis and the effective implementation of
energy-saving and emission-reduction policies in the “11th Five-Year Plan” [5,45].
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Figure 1. Changing rate of CO2 emissions, population, urbanization, GDP per capita, energy intensity
and industrial structure in six provinces between 2000 and 2015. CE is carbon dioxide emissions,
POP is population size, UR is urbanization level, GDP is gross domestic product per capita, EI is energy
intensity, and IS is industrial structure.

4. Results and Discussion

4.1. Panel Unit Root and Co-Integration Tests

Ordinarily, most economic variable sequences are not stationary. If non-stationary variable
sequences were brought into the economic model, the result of regression was not reliable. Therefore,
we needed use the unit root test to estimate the robustness of variable sequences. We employed the
first-order differencing method to transform non-stationary sequences into stationary sequences [43].
Based on panel data, the econometric theory provides many unit root tests. As IPS, Fisher-ADF, and
Fisher-PP tests have been widely used, in this study we also chose these methods to test the panel
unit root [43,46]. Unit root test results for the explanatory and dependent variables are shown in
Table 2. The results showed that most of the variables were non-stationary. However, the results of
their first-order difference strongly rejected the null hypothesis. It was shown that the first-order
difference sequences were stationary. Next, we performed the co-integration test.
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Table 2. Results of panel unit root tests using the IPS test, Fisher-ADF test, and Fisher-PP test in 1st
difference [47].

Variable IPS Fisher-ADF Fisher-PP

Carbon Dioxide
Emissions −0.784 ** 14.331 ** 24.460 ***

Population −1.228 *** 20.151 *** 27.974 ***
Urbanization −1.838 *** 20.963 *** 58.609 ***

Urbanization-Square −1.547 *** 19.759 *** 51.622 ***
GDP Per Capita −1.840 *** 21.848 *** 49.989 ***

GDP Per Capita-Square −2.751 *** 28.217 *** 51.337 ***
Energy Intensity −1.828 ** 21.910 ** 48.306 ***

Industrial Structure −1.375 *** 18.727 *** 30.135 ***

Note: ** and *** donate that the variable is significant at the 5% and 1% level, respectively.

We used bivariate and residual-based co-integration tests to examine the relation. Outcomes are
listed in Table 3. The bivariate co-integration test presented here was a co-integration relation between
CO2 emissions and its explanatory variables. The residual-based co-integration test was developed by
Reference [48]. The results showed that the ADF statistic was −1.137, which strongly rejected the null
hypothesis that there was no co-integration among all variables. Therefore, a co-integration relation
was identified between the CO2 emissions level and its driving factors.

Table 3. Testing for bivariate co-integration between the CO2 emissions level and its influencing
factors [43].

Test Statistics POP UR UR2 GDP GDP2 EI IS

Panel v-Statistic 0.569 *** 1.941 *** 1.851 *** 0.486 ** 6.608 *** 73.483 *** 16.679 ***
Panel rho-Statistic −0.351 *** −1.008 *** −0.597 *** 0.929 * 1.053 * 0.983 * 1.583 *
Panel PP-Statistic −0.868 *** −1.312 *** −0.691 *** −0.474 ** −1.425 *** −0.806 ** −0.017 **

Panel ADF-Statistic −0.621 *** −2.454 *** −2.180 *** −2.603 *** −2.892 *** −3.551 *** −1.597 ***
Group rho-Statistic 1.278 * 1.092 * 1.386 * 1.646 * 1.599 * 2.361 * 1.901 **
Group PP-Statistic 0.104 ** 0.198 ** 0.719 * 0.018 ** −1.088 *** 1.412 * 0.152 **

Group ADF-Statistic −0.441 *** −2.404 *** −2.256 *** −3.458 *** −3.686 *** −1.884 *** −0.380 ***

Residual-Based Tests for Co-integration [48]

Variable Coefficient Std. Error T-Statistic Prob.

RESID(−1) −0.183 0.076 −2.396 0.019
D(RESID(−1)) 0.263 0.128 2.053 0.044
D(RESID(−2)) 0.221 0.132 1.685 0.001

ADF −1.137 ***

Note: Lags are all selected automatically by AIC and SC standard. ADF is the test statistics developed by Kao [48];
***, **, and * represent a significance of 1%, 5%, and 10%, respectively.

4.2. Multicollinearity Testing

In the multivariate regression model, the regression results are not reliable if there is a strong
linear correlation between variables. Thus, it is necessary to verify the multicollinearity of independent
variables before the regression model is calculated [49]. We used the variance inflation factor (VIF)
method to test the multicollinearity of variables. Generally speaking, if the VIF value is greater than 10,
serious multicollinearity among variables is indicated [16]. The multicollinearity test results are shown
in Table 4. In our study, the large VIF values of urbanization and squared urbanization, GDP per capita
and squared GDP per capita were inevitable. The results showed that there was no multicollinearity
among independent variables except the quadratic term.

Table 4. Multicollinearity test of the variables used in the study [49].

Variable VIF VIF VIF

LnPOP 4.390 4.632 4.991
LnUR 4.215 205.540 4.240

(LnUR)2 212.730
LnGDP 5.258 7.302 255.306

(LnGDP)2 242.975
LnEI 1.331 1.532 1.383
LnIS 5.638 8.369 7.668
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4.3. Heteroscedasticity and Robust Regression

The multiple regression model assumes that random errors have the same variance as independent
variables. If the assumption is not satisfied, the multiple regression model has heteroscedasticity.
If heteroscedasticity exists, the ordinary least squares model cannot be effectively estimated. The White
test was applied to examine heteroscedasticity. If the null hypothesis is that the error term has
heteroscedasticity, and if the p value is less than 0.1, it is shown that heteroscedasticity can affect the
validity of the orthogonal least squares (OLS) results [49].

Generally speaking, we can use the robust regression to solve the heteroscedasticity problem.
According to the results of OLS, robust regression removes the extreme observations and calculates
the weights based on the residual observations. These weights are used to compute the robust least
squares regression. Through repeating this procedure, the weight of the extreme value is reduced to
the minimum. That is, after extreme values are removed, the results of the robust regression and OLS
are most similar [50].

4.4. Estimation Results

In order to avoid multicollinearity, we employed three regression models in Table 5 [43].
After a STIRPAT model was established, robust regression and OLS regression were conducted
to analyze and compare the results. Model A was used to examine five major carbon emission drivers,
while models B and C were used to verify the EKC relation about economic growth/urbanization and
CO2 emissions. Due to the regression models with heteroscedasticity, the elasticities of various factors
in the robust regression were more significant, compared to OLS. Therefore, robust regression was
more reliable. The results showed that all of the coefficients were positive, which indicated that the
five main factors were positively correlated with carbon emissions. Among them, population size
had the most positive influence on CO2 emissions [49]. The coefficients of per capita GDP and energy
efficiency were relatively higher. The elasticities were 0.824 and 0.865, respectively, which meant that if
per capita GDP experienced a growth of 1%, carbon emissions would increase by 0.824%, and every
1% growth of energy intensity would result in an increase in carbon emissions of 0.865%. The positive
impact of industry share on CO2 emissions was relatively small, followed by the effect of urbanization.

According to the result of model B, the coefficient of ln(GDP) was positive, while the square
coefficient of ln(GDP) was remarkably less than zero, confirming the inverse U-shaped relation between
per capita GDP and CO2 emissions. According to Figure 2, the six provinces have substantially
exceeded the critical inflection point. The logical support to the EKC theory is that environmental
quality is expensive and the rich can afford it; that is, the impact of GDP growth on the environment
shows a significant scale effect. In addition to this effect, once the society becomes rich enough, people
pay more attention to the environment, so they can put money into new Research and Development
(R&D) technology and efficient low-carbon technology. The society can thus effectively use related
approaches that greatly improve environmental issues [14,51–53].
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Figure 2. The fitting curve between CE and GDP in the Region [33].

According to the results of model C, the coefficient of urbanization was positive, and its square
terms were significantly negative, indicating that there also existed an inverted U-shape Kuznets
curve relation between urbanization and carbon emissions. Figure 3 shows that the six provinces
have substantially reached this critical inflection point. The reason for this phenomenon is that the six
provinces in the Region are developed provinces with a high economic development level; therefore,
they have funds invested in the research and development of low-carbon technology, so as to achieve
the purpose of energy conservation and emission reduction. When past a turning point, the growth of
urbanization rate will play a role in inhibiting carbon emissions. This contradicted many previous
studies, although it is consistent with the theory of ecological modernization [33,54–56].
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Table 5. The results of Robust Regression A, B, C, and OLS Regression [49].

Variables Robust Regression A OLS Regression Robust Regression B Robust Regression C

C −12.219 *** −12.202 ** −13.970 *** −15.748 ***
LnPOP 0.945 *** 0.946 *** 0.950 *** 0.949 ***
LnUR 0.076 *** 0.073 * −0.076 *** 1.849 ***

(LnUR)2 −0.219 ***
LnGDP 0.824 *** 0.825 ** 1.179 *** 0.845 ***

(LnGDP)2 −0.017 ***
LnEI 0.865 *** 0.868 * 0.860 *** 0.877 ***
LnIS 0.368 *** 0.361 ** 0.339 *** 0.295 ***

Heteroscedasticity Yes Yes Yes Yes
R-squared 0.876 0.897 0.894 0.865

Observations 90 90 90 90

The symbol * represents p < 0.1; ** represents p < 0.05; *** represents p < 0.01.

4.5. Scenario Analysis

4.5.1. Scenario Setting

Figure 4 shows that the trends of the real value and the estimated value were basically the same,
indicating that the results of the curve fitting were very satisfactory. According to the relationship
between variables, four scenarios were set up to predict the contribution of the Region to the national
2020 and 2030 reduction targets.
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Figure 4. Curve fitting of the true values and estimated values in carbon emissions in the Region
(2000–2015) [27].

In the business as usual (BAU) scenario, the average growth rate of all variables can be derived
from historical data. Under these circumstances, this study assumed that the variables growth rate,
technical and policy factors do not change.

In the highest-rate scenario (HS), the optimal rates of GDP per capita, energy efficiency, and
industrial structure were selected, as obtained from the data of 2000–2015. Considering the necessity
of controlling variables, the growth rates of the remaining variables were the same as those in the BAU
scenario. The advanced scenario (AS) referred to the optimal situation of carbon emission reduction.
Considering the significant role of per capita GDP and energy efficiency, in this context, the growth
rates of the two factors were set according to national policy. According to the “13th Five-Year Plan”,
the annual GDP growth rate was expected to be 6.5%, and energy intensity would be reduced by
15% in 2020, compared to 2015 [4]. This study designed the annual growth rate of the industrial
structure according to Reference [27]. The annual growth rates of other factors were calculated from
historical data.
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For the middle scenario (MS), the changing trend of three variables was within the thresholds
of the BAU and advanced scenarios. The change rates of variables in different scenarios are shown
in Table 6.

Table 6. Assumptions of the growth rate of each variable under different scenarios in 2020 and 2030 (%).

Variables Year GDP EI IS

BAU(Business As Usual)
2020 10.2 −1.94 2.13
2030 10.2 −1.94 2.13

MS(Middle Scenario)
2020 8.5 −2 1.26
2030 7.5 −3 1.09

AS(Advanced Scenario)
2020 6.5 −3 0.40
2030 6 −4 0.13

HS(Highest-rate Scenario) 2020 7.7 −9.3 −4.5
2030 7.7 −9.3 −4.5

4.5.2. Result Analysis in BAU

In the BAU, carbon emissions, overall GDP, and carbon intensity are shown in Table 7. According
to the trend of variables from 2000 to 2015, we learned that CO2 emissions and GDP continued to rise,
while the carbon intensity began to decline in 2005, because the growth rate of GDP was higher than
that of carbon emissions. According to the relationship between the variables in the robust regression
results, we calculated that carbon emissions would reach 5009.989 Mt in 2020 and 11,915.639 Mt in
2030, which were five times and 12 times that in 2000, respectively. The carbon intensities for 2020 and
2030 would be 0.0132 Mt/BY and 0.0103 Mt/BY, respectively, which were 48.5% and 59.7% lower than
that in 2005.

Table 7. The carbon emissions, GDP, and carbon intensity under the basic scenario [8,9].

Year Carbon Emissions (Mt) Total GDP (BY, 2000 Constant Price) Carbon Intensity (Mt/BY)

2005 1930.863 75,286.657 0.0256
2010 2695.567 136,938.718 0.0197
2015 3252.213 217,610.824 0.0149
2020 5009.989 379,141.086 0.0132
2025 7723.648 660,954.555 0.0117
2030 11,915.639 1,152,883.379 0.0103

Although this scenario barely reached the national emission reduction targets, the degree of
carbon emission reduction was not enough for developed provinces in China. However, although the
Region’s CO2 emissions accounted for one third of the total CO2 emissions of China, considering its
higher proportion of the GDP, the carbon intensity of this Region was not too high. On the contrary,
some less-developed provinces in China exhibited high carbon emissions and low economic levels,
resulting in high carbon intensity, such as Qinghai, Ningxia, Shanxi, Xinjiang, etc. [8,9]. These provinces
face more obstacles to reducing carbon emissions, so we should make greater efforts to reduce carbon
emissions in developed areas.

In Figure 5, showing the comparison of GDP and carbon emissions in the provinces in 2000 and
2015, it is clearly indicated that obvious differences exist between the development degrees of the
provinces. Shanghai and Guangdong were in the best condition; although carbon emissions grew in
these areas, but the growth of the GDP was more significant. Shandong was in the worst state; during
the study period, this province saw the largest increase in carbon emissions, but its GDP was lower
than that of Jiangsu. Jiangsu, Zhejiang, and Fujian were at the medium level, and there was still room
for carbon reductions. The development level of the six provinces was consistent at a certain level,
but slight differences existed among them. Therefore, a better strategy was to implement different
emission reduction strategies after classifying each province [5,16,17,57–59].
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Figure 5. The level of carbon emissions and total GDP at the provincial level in 2000 and 2015 [8,9,12].

4.5.3. Results Analysis in Alternative Scenarios

Carbon emissions, total GDP, and energy intensity in four scenarios are presented in Table 8.
In general, with the implementation of targeted measures, CO2 emissions would be substantially
decreased. In the middle scenario, emissions mitigation was not significant in 2020, as it was only
decreased by 568.476 Mt compared to the BAU scenario, and the carbon intensity was reduced by
49.11% compared to 2005. Carbon emissions in 2030 decreased significantly by 4629.45 Mt, compared
with the basic scenario, and carbon intensity decreased by 64.02% compared to 2005. As a result,
carbon intensity had greater contribution to carbon emission reduction in 2030.

Table 8. The carbon emissions, GDP, and carbon intensity in 2005, 2020, and 2030 under the basic and
alternative scenarios.

Year Scenarios Carbon Emissions (Mt) Total GDP (BY, 2000 Constant Price) Carbon Intensity (Mt/BY)

2005 1930.863 75,286.657 0.0256

2020

BAU 5009.989 379,141.086 0.0132
MS 4441.513 340,303.909 0.0131
AS 3769.352 304,359.004 0.0124
HS 2820.229 326,171.816 0.0086

2030

BAU 11,915.640 1,152,883.379 0.0103
MS 7286.190 789,614.567 0.0092
AS 4861.695 613,632.537 0.0079
HS 3413.714 771,345.297 0.0044

In the advanced scenario, carbon emissions in 2020 were expected to reach 3769.352 Mt,
which would respectively reduce by 1240.637 Mt and 672.161 Mt compared to the BAU and middle
scenarios. Based on the growth rate shown in Table 6, the large gap between the advanced scenario
and the BAU scenario was mainly due to a decline in the proportion of the secondary industry GDP.
In addition, the carbon intensity in 2020 decreased by 51.71% compared to 2005. Carbon emissions
in the advanced scenario in 2030 was significantly lower than those in the middle scenario and basic
scenario, and carbon intensity in 2030 decreased by 69.11% compared to 2005. This showed that the
expected growth rates of the total GDP, energy intensity, and industrial structure to achieve carbon
intensity reduction targets were effective, and would contribute greatly to the national emission
reduction targets. In the highest-rate scenario, based on the historical optimal rate of factors, the total
carbon emissions were only 2820.229 Mt and 3413.714 Mt in 2020 and 2030, respectively, and the carbon
intensity in the Region was expected to reduce by 66.29% in 2020 and 82.74% in 2030. The carbon
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intensity was effectively mitigated in this scenario, mainly due to a significant reduction in energy
intensity and industrial structure. The result far exceeded the expected results in the advanced scenario
and provided a realistic basis for the region to overfulfil the national carbon emission reduction targets.

Figure 6 illustrates the carbon emissions of the Region. It shows that in the four scenarios, carbon
emissions continued to decrease with the severity of the predictive factors. Further, it was clearly
shown that in the advanced scenario, the greatest degree of carbon reduction was achieved compared
to the BAU scenario. In addition, emission reduction potential in the Region was represented by the
gap of carbon emissions.
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Figure 6. The carbon emissions of six provinces from 2000 to 2030 under the BAU, highest-rate, middle,
and advanced scenarios.

4.6. Discussion

As in previous studies, the population was the most prominent factor in the Region. However,
because the population size was stable, it had little effect on carbon emissions [13,49]. Similarly,
the impact of urbanization on carbon emissions was also very small. As China recently underwent
an important period of industrialization and urbanization, in the studied Region representing the
country’s cluster of most developed provinces, the impact of economic factors on carbon emissions
was obvious. The degree of influence of the per capita GDP was great; moreover, it increased by
almost three times during the study period, mainly due to its unique geographical advantages
with a high proportion of foreign trade. Therefore, GDP growth was the major driving index of
carbon emissions [5,12,13]. Industrial structure also had a great role in increasing carbon emissions.
The Region’s manufacturing output accounted for 70% of the country’s total output. Because the
manufacturing industry is a high energy consumption and high pollution industry, it was necessary
to adjust the industrial structure according to a series of existing policies, such as the Guidance
Catalogue of Industrial Structure Adjustment [60,61]. Energy intensity and economic growth had
the same importance for carbon emissions, but carbon emissions were inhibited because energy
intensity was at a reduced stage. Although energy intensity continued to decline, the total energy
consumption still grew rapidly. It is worth noting that thermal power accounts for 20% of the total
energy consumption [9]. New energy generation can effectively reduce the consumption of fossil fuels.

For the study of the EKC hypothesis, some studies conducted in-depth investigation of the
curve trend between GDP/urbanization and carbon emissions across the country [31,33]. This study
confirmed that per capita GDP and CO2 emissions had an inverted U-shaped relation, which met
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the logic support EKC hypothesis, and the development period was found to be over the vertex in
the decline stage [14]. Also, urbanization and carbon emissions had an inverted U-shaped Kuznets
relationship, which met the ecological modernization theory, and the development period was found
to be at the peak of the curve [33]. The increase in the level of economy and urbanization has provided
conditions for the introduction and effective implementation of environmental policies.

A large number of previous research studies focused on predicting the national carbon emission
reduction potential [4,62], though few predicted regional carbon emissions. The Region contains six of
the most developed provinces of the country, and it was very meaningful to predict its contribution to
the country’s 2020 and 2030 emission reduction targets. This indicated the possibility that China can
achieve its emission reduction targets. For the basic scenario, the Region was barely able to complete
the carbon emission reduction targets. However, in the advanced scenario, it clearly achieved its goals
and contributed greatly to the country’s emission reduction. Also, the result in the highest-rate scenario
provided a realistic basis for the region to overfulfil the national carbon emission reduction targets.
According to the result, it is necessary to take steps to reduce CO2 emissions, such as through new
energy generation and the adjustment of industrial structure. Due to differences in the development
level among provinces, different strategies should be adopted for different provinces [5,58].

5. Conclusions and Policy Implications

This paper conducted a multivariate analysis of carbon emissions in east and south coastal
China from 2000–2015, an area that includes six provinces named Shandong, Zhejiang, Jiangsu,
Fujian, Shanghai, and Guangdong. We used the extended STIRPAT model to study impact indexes of
carbon emissions. The factors included population, per capita GDP, urbanization, energy efficiency,
and industrial structure. What is more, in order to understand the development status more
comprehensively, we further verified the EKC hypothesis between per capita GDP/urbanization and
carbon emissions. Finally, we forecasted carbon intensity in this area and identified its contribution to
the national emission reduction targets in 2020 and 2030. Considering the significance of per capita
GDP, energy intensity, and industrial structure obtained from regression results, four scenarios were
set to predict the carbon emissions of the area according to the respective growth rates of three factors.

The regression results showed that the population was the most prominent factor. Its change
trend was steady, so it had little impact on carbon emissions. Economic growth played a significant
role in increasing carbon emissions, while energy intensity was mainly responsible for reducing it.
The negative effect of industrial structure was not obvious, so there was a much room for improvement.
As for the EKC hypothesis, the relationship between per capita GDP/urbanization and carbon
emissions exhibited an inverted U-shape, which can satisfy the logical support EKC hypothesis
and ecological modernization theory. Analysis results showed that, in the BAU scenario, the carbon
intensity was reduced by 48.5% in 2020 and 59.7% in 2030 compared to 2005, but in the advanced
scenario, the carbon intensity was reduced by 51.7% in 2020 and 69.1% in 2030 compared to 2005,
which contributed greatly to the national carbon emission reduction targets. From the highest-rate
scenario, it can be seen that improving energy efficiency, optimizing energy structure, and adjusting
industrial structure can effectively reduce carbon intensity.

Based on the results mentioned above, the future strategies of carbon emission mitigation for
policymakers are provided below:

(1) Increasing the emission reduction effect of energy efficiency. Looking to the future, the Region’s
GDP will maintain fast growth. It was unreasonable to decrease CO2 emissions by decreasing the GDP
growth rate. Admitting this fundamental problem meant we need to take other measures to reduce
CO2 emissions. Energy efficiency and per capita GDP were the significant factors affecting carbon
emissions, but the reduction of energy intensity had yet to be strengthened. Technological progress
and innovation can greatly improve energy efficiency, and we should be committed to developing and
introducing advanced technology.
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(2) Optimizing the energy structure is imminently needed. The energy structure of the Region is
dominated by coal. In order to reduce environmental pollution, the Region can continue to optimize
the energy structure. It should minimize the proportion of coal in energy use, and speed up the
innovation of coal-utilization technology, such as clean coal technology, as well as increase the use of
oil, natural gas, and other clean energy. In addition, the Region should vigorously encourage new
energy power generation methods, such as solar, hydro, wind, nuclear, and biomass energy generation.
As the Region’s main generating power is thermal, the fuel consumption of thermal power accounted
for 50% of total fuel consumption; this should be considered as a serious issue.

(3) Encouraging the optimization of industrial structure. It was found that industrial structure
remarkably decreased CO2 emissions in the MS and AS. Although the Region includes the six most
developed provinces in the whole country, the proportion of secondary industry GDP is still rising
year by year. The Region’s secondary industry accounted for 50% of the national secondary industry
GDP, while the manufacturing industry output accounted for more than 70% of the country’s GDP.
Enterprises with high consumption, pollution, and carbon emissions were the major sources of CO2

emissions. Hence, in order to create green ecological cities, it is very important to transform and
upgrade industrial structure. Innovative technologies should be advocated in existing industries,
while green energy-saving industries could energetically advance the effectiveness of resource
distribution and improve fuel utilization. What is more, many Chinese companies do not realize the
mutual benefit of decreasing emissions by cooperation with other companies. Especially for high
energy-consuming industries, enterprises should realize that energy conservation and environmental
protection can be achieved by industrial symbiosis. In addition, due to the different development
levels of the six provinces in the Region, different strategies should be adopted for different provinces.

This paper provided a new avenue through which researchers can further explore carbon
emissions in specific areas. The EKC curve combined with the econometric model was used to
explore the relationship between per capita GDP/urbanization and carbon emissions in specific areas.
Based on the traditional scenario settings, the highest-rate scenario was added to predict carbon
emissions more comprehensively. However, there are some limitations in this study. Although our
current research results are encouraging, we tend to be cautious. In the respect, we look forward to
further study, including new indexes and different angles, to conduct a more in-depth investigation
of the carbon impact factors in the Region. Meanwhile, there are certain limitations to the study of
specific areas to assess whether the national carbon reduction targets can be achieved.
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