000032503 001__ 32503
000032503 020__ $$a978 92 9115 445 6 (printed) 978 92 9115 446 3 (electronic)
000032503 037__ $$aICIMOD-BOOK-2017-007
000032503 041__ $$aEnglish
000032503 100__ $$aRavindranath, N. H.
000032503 100__ $$aBala, G.
000032503 245__ $$aProjected Impacts of Climate Change on Forests in the Brahmaputra, Koshi, and Upper Indus River Basins
000032503 245__ $$bICIMOD Research Report 2017/1
000032503 246__ $$aProjected Impacts of Climate Change on Forests in the Brahmaputra, Koshi, and Upper Indus River Basins
000032503 262__ $$bIndian Institute of Science (INSA)
000032503 260__ $$bInternational Centre for Integrated Mountain Development (ICIMOD)
000032503 260__ $$c2017
000032503 260__ $$aKathmandu, Nepal
000032503 300__ $$a36
000032503 340__ $$ayes
000032503 491__ $$aResearch Report
000032503 491__ $$b2017/1
000032503 508__ $$aBooks and Booklets
000032503 507__ $$aHICAP, hicapproject, ICIMODpublications, ResilenceHKH
000032503 511__ $$aIndus, IndusICIMOD, Rbasins, RPindus
000032503 520__ $$aTwo dynamic global vegetation models (DGVMs), IBIS and LPJ, were used to assess the projected impacts of climate change on forests in terms of the shifts in vegetation types and changes in NPP (net primary productivity) in the mid Brahmaputra, Koshi, and upper Indus river basins. Changes were assessed for the mid-term (2021–2050) and longterm (2071–2100) periods with respect to the baseline (1961–1990) under the RCP4.5 and RCP8.5 scenarios using precipitation and temperature as the key climate variables. The DGVMs were driven by the ensemble mean climate projections from five CMIP5 climate models. While both DGVMs projected vegetation shifts in the forest areas of the basins, there were differences in the area projected to be affected by the shifts. This can be attributed mainly to differences in the representation of land surface processes and in the number of vegetation types (plant functional types) defined and simulated in the two models. There was some agreement in the changes in NPP projected by the two models under the high emission RCP8.5 scenario, but with differences in degree.
000032503 655__ $$aclimate change impact
000032503 655__ $$aforest ecosystem
000032503 655__ $$ariver basins
000032503 655__ $$aBrahmaputra
000032503 655__ $$aKoshi
000032503 655__ $$aIndus
000032503 655__ $$avegetation models
000032503 653__ $$aclimate change impact
000032503 653__ $$aforest ecosystem
000032503 653__ $$ariver basins
000032503 653__ $$aBrahmaputra
000032503 653__ $$aKoshi
000032503 653__ $$aIndus
000032503 653__ $$avegetation models
000032503 650__ $$aClimate change
000032503 650__ $$aForests and forestry
000032503 650__ $$aWater management
000032503 690__ $$aClimate change
000032503 690__ $$aForests and forestry
000032503 690__ $$aWater management
000032503 8560_ $$fanil.jha@icimod.org
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.pdf
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.ps.gz
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.png?subformat=icon$$xicon
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.png?subformat=icon-180$$xicon-180
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.png?subformat=icon-210$$xicon-210
000032503 8564_ $$uhttp://lib.icimod.org/record/32503/files/icimodRR2017-1.png?subformat=icon-600$$xicon-600
000032503 970__ $$aICIMOD-BOOK-2017-007
000032503 980__ $$aICIMODBOOKS