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V10m-SDM has better performance in the spatial–temporal 
changes than does V10m-ERA with respect to V10m-OBV. 
The impact of LUCC on the SWS was pronounced, the 
SWSD was −0.24 m s−1 in 1993, and the SWSD reached 
−0.56  m  s−1 in 2011. LUCC could induce a 0.17  m  s−1 
wind speed decrease per 10 year in the ECP region during 
1993–2011. Furthermore, each 10 % rise of the urbaniza-
tion rate could cause an approximately 0.12 m s−1 decrease 
in wind speed. Additionally, pressure-gradient force was 
eliminated as the primary cause of the observed long-
term decrease of SWS in ECP by composite analysis and 
temporal serial analysis, and the rise of the surface drag 
force caused by LUCC was identified as an important fac-
tor inducing the SWS decrease during 1993–2011 in ECP 
region. Moreover, the results from different time lengths 
used to construct SDM were compared, and the uncertain-
ties in SWSD were evaluated by different SDMs estab-
lished by different time periods.

Keywords  Surface wind speed · Statistical downscaling 
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1  Introduction

The distinct decrease of the surface wind speed (SWS) has 
been reported by several studies in different regions, such 
as in the Mediterranean and Adriatic areas (Pirazzoli and 
Tomasin 2003), the Black Sea region (Garmsshov and 
Polonskii 2011), Europe (Najac et  al. 2009; Smits et  al. 
2005), North America (Greene et al. 2012; He et al. 2010; 
Pryor et  al. 2007; Tuller 2004; Enloe 2003; Klink 2002), 
East Asia (Vautard et al. 2010), and China (Hu et al. 2011; 
McVicar et al. 2010; Jiang et al. 2010; Xu et al. 2006). The 
causes of these observed decreases in SWS remain unclear. 

Abstract  The long-term decrease of surface wind speed 
(SWS) has been revealed by previous studies in China 
in recent decades, but the reasons for the SWS decrease 
remain uncertain. In this paper, we evaluated the effects of 
land use and cover change (LUCC) on the SWS decrease 
during 1980–2011 over the Eastern China Plain (ECP) 
region using a combined method of statistical downscal-
ing and observation minus reanalysis data, which was used 
to improve the climate prediction of general circulation 
models and to evaluate the influence of LUCC on climate 
change. To exclude the potential influence of LUCC on 
SWS observation, a statistical downscaling model (SDM) 
was established during 1980–1992 because a lower extent 
of LUCC occurred during this period than in later peri-
ods. The skill of the SDM was checked by comparing the 
results of different predictor combinations. Then, SDM 
was used to improve the wind speed data at 10  m above 
the surface in the ERA-Interim reanalysis data (V10m-
ERA) during 1993–2011, which decreased the error in the 
reanalysis wind speed as far as possible. Then, the differ-
ence between the station observed SWS (V10m-OBV) and 
the downscaled SWS (V10m-SDM) during 1993–2011 
(SWSD) was considered the quantitative estimation of the 
influence of the LUCC on SWS in this period. The V10m-
SDM can capture both the large-scale and local character-
istics in the observation, and their patterns are very similar. 
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Possible reasons for the SWS change include the influences 
of large-scale circulation and local changes in land use and 
cover change (LUCC). Some studies relate the decrease 
of the SWS with the weakening of large-scale circulation, 
Niño–Southern Oscillation (ENSO), and climate change. 
Pryor and Ledolter (2010), Pryor et  al. (2005) and Enloe 
(2003) found some relations between the SWS change and 
ENSO, and Klink (2007) emphasized the importance of 
the pressure-gradient force (PGF) in the change of SWS, 
which means that the PGF should be a major cause of SWS 
change. Sušelj et al. (2010) showed that decreases in SWS 
were determined by the weakening of large-scale circula-
tion. Xu et al. (2006) reported links between the weaken-
ing of the monsoon driving force and the SWS decrease 
in China, and Jiang et al. (2010) revealed a strong correla-
tion between the changes in large-scale circulation and the 
SWS. Guo et al. (2011) reported a decreasing trend of the 
geostrophic current on the 850  hPa level in China; there-
fore, they noted that the decrease of SWS was caused by 
the weakening of circulation at high altitude.

Other studies found the cause of the SWS decrease to 
be anthropogenic activities (Gao et  al. 2015; Pere et  al. 
2011), including the increase of surface roughness, which 
is induced by anthropogenic LUCC. Vautard et  al. (2010) 
addressed the decreases in SWS could be determined by 
increases in surface roughness. Li et  al. (2008) used the 
observation minus reanalysis (OMR) method to investigate 
the impact of the LUCC on the SWS, and their results sug-
gest that the observed significant decrease of mean wind 
speeds was due to urbanization and other land-use changes 
in the last 40 years. In addition, SWS in urban areas was 
found to be lower than that in suburban regions in Shang-
hai (Zhou and Yu 1988) and Beijing (Li et  al. 2011; Xu 
et  al. 2009), two of China’s megacities, which linked 
the decrease of SWS to the increase in building area and 
height. Wu et  al. (2016) used the frictional wind model 
(FWM), in which a balance among PGF, the Coriolis force, 
and the drag force was reached, to separate the effects of 
the PGF and LUCC on the SWS change and to quantita-
tively estimate the influence of the LUCC on the SWS 
change over the Eastern China Plain (ECP) region during 
the period of 1980–2011. Their results show that the drag 
coefficient induced by the LUCC has an increasing trend, 
which is consistent with the 30  % increase in the rate of 
urbanization. In addition, the long-term decrease of the 
SWS cannot be interpreted by the change of PGF alone 
because the PGF has an insignificant long-term increas-
ing trend. The increase in the drag coefficient induced by 
the LUCC should account for the long-term decrease in the 
SWS. Furthermore, the long-term changes in East Asian 
monsoons may not completely account for the observed 
wind speed decrease near the surface, but the changes are 
an important factor in the SWS (Wu et al. 2016).

LUCC can affect SWS, especially in rapidly developing 
economic regions, but the issue is how to assess this influ-
ence quantitatively. Wu et al. (2016) established a reference 
SWS dataset without the influence from LUCC using the 
FWM to separate the influence of LUCC from other fac-
tors. At the same time, the reanalysis data include good 
long-term natural climate change signals and some impor-
tant anthropogenic signals, such as the increase of green-
house gases and aerosol (National Research Council 2005; 
Lim et al. 2005), but the reanalysis data do not include the 
impact of the regional and local surface processes associ-
ated with different land types (Li et  al. 2008; Lim et  al. 
2005). Therefore, the OMR method has been used to inves-
tigate the influence of the LUCC on the regional and local 
climate (Wu et al. 2016; Kalnay and Cai 2003). Zhou et al. 
(2004) and Kalnay et  al. (2006) investigated the effect of 
the LUCC on near-surface climate change by comparing 
observations and NCEP/NCAR reanalysis data. Frauenfeld 
et al. (2005) and Lim et al. (2005) also explored a similar 
subject based on the comparison between the meteorologi-
cal station observations and the ERA-40 reanalysis data. 
Therefore, the wind speed difference between the observa-
tion and reanalysis data should reflect the influence of the 
LUCC on SWS. However, the reanalysis data include some 
kinds of error, despite the improvement of assimilation 
systems and numerical models in recent years. The suc-
cessful use of reanalysis data in climate research indicates 
that the influence of LUCC on large-scale climate change 
may be smaller than other important factors, so the impact 
of LUCC on SWS may not be as distinct as other factors. 
Therefore, the quantitative assessment results of the SWS 
decrease induced by LUCC when using the traditional 
OMR method may include error from the reanalysis data, 
which are considered the reference data without effects 
from the LUCC in this assessment process. Hence, further 
improvement of the OMR method should focus on how to 
diminish the error included in the reanalysis data.

Statistical downscaling is a valid method to diminish 
the error in climate prediction versus observation that was 
induced by the local characteristics missing in the general 
circulation models or regional climate models (Busuioc 
et  al. 1999; Murphy 1999; Wilby et  al. 1999; Schubert 
1998; Winkler et  al. 1997). A wide range of wind vari-
ables have been predicted (Kirchmeier et al. 2014), includ-
ing wind speed (De Rooy and Kok 2004), u and v com-
ponents (Monahan 2012), wind gusts (Cheng et al. 2012), 
maximum wind speed (Yan et al. 2002), and energy density 
(Pryor et  al. 2005), and some SDMs include neural net-
works (Sailor et al. 2000), probability methods (Kirchmeier 
et al. 2014), multivariable linear regression methods (Curry 
et  al. 2012), the combined statistical-dynamical methods 
(Najac et  al. 2011), and multiple linear regression mod-
els (Haas and Pinto 2012; Goubanova et  al. 2010). These 
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studies show that statistical downscaling can accurately 
capture large-scale information and regional climatic char-
acteristic based on long-term observation data (predictand) 
and reanalysis data (predictor). The SDM can be used to 
revise the bias of the model results in climate prediction 
(Kazmi et  al. 2015; Fan et  al. 2007, 2010, 2013; Hans-
sen-Bauer et al. 2005; Mo and Straus 2002; Bergant et al. 
2001). In addition, the reanalysis data are an assimilation 
result using the general circulation model and some obser-
vations, so they can be considered an approximation of cli-
mate variables. The statistical downscaling method can be 
used to optimize the reanalysis data to reduce the bias to a 
minimum. Then, the OMR method can be used to compare 
the difference between the observation and the downscaled 
reanalysis data, which should improve the result of the 
original OMR method.

This study performs a quantitative estimation of the 
influence of the LUCC on the SWS in China, using the 
difference between V10m-OBV and V10m-SDM. The 
data and methods used for the study are shown in Sect. 2. 
Section  3 describes the SDM and its validation, and the 
results and analysis are presented in Sect. 4. A discussion 
is given in Sect. 5, and the conclusions are summarized in 
Sect. 6.

2 � Data and methods

2.1 � Data

The ECP region is selected as the research region. The 
region spans from 21°N to 34.5°N and from 112°E to 
123°E. The total number of meteorological stations in 
the ECP region is 153, but after the selection, 93 sta-
tions remained. The 93 stations used in this research were 
selected according to the following criteria: (1) the eleva-
tion of the station is below 200 m above sea level; (2) it is a 
national ground meteorological station; and (3) the missing 
data account for less than 1 % of the total period. Detailed 
information about the 93 stations can be found in the study 
by Wu et al. (2016). The wind speed is observed by the cup 
anemometer at the 10  m standard exposure height above 
ground according to the China Meteorological Adminis-
tration (CMA) on the Observing System and Technical 
Regulations on Weather Observations (CMA 2003). The 93 
stations are located in the ECP region, so the influence of 
typhoons on the wind speed is observed at all 93 stations. 
However, the impact of typhoons on the observed wind 
speed accounts for less than 1 % of the total period stud-
ied. The effect of typhoons on the SWS should be excluded 
because the typhoons can cause the observed wind speed 
to rise instantaneously. Typhoon track data from the Joint 
Typhoon Warning Center (JTWC) for 1980–2011 were 

used to remove wind speed observation data influenced by 
typhoons at stations located within a circle with a radius of 
2° in latitude and longitude centered on the middle of each 
typhoon (Wu et  al. 2013, 2016). In addition, to maintain 
the continuity of the wind speed data and compare these 
data with the reanalysis data, the missing day of data due 
to typhoons are interpolated by the adjacent 2 days in our 
research.

A homogeneity test of the annual wind speed at 347 sta-
tions selected from all of the stations in China has been 
conducted (Liu 2000), which included the 93 stations used 
in this research. All of the discontinuity points in the annual 
SWS dataset from 347 stations were found, and the rea-
sons for the discontinuity points were analyzed using the 
historic records of these stations. There were 70 stations 
including discontinuity points in the SWS data, of which 
47 stations were caused by the wind instrument replace-
ment. Therefore, instrument replacement was the main fac-
tor leading to discontinuity points in the wind speed time 
series. Another factor resulting in discontinuity points was 
an observation height change, which was found in 14 sta-
tions. The last factor was station moving, which occurred 
at 11 stations (Liu 2000). All of the discontinuity points 
existing in the SWS dataset found by the homogeneous test 
and by both the extreme test and the temporal consistent 
test conducted by the National Meteorological Information 
Center (NMIC) of the CMA have been calibrated (CMA 
2003); therefore, the SWS data are considered to be a cred-
ible dataset (Song et al. 2004; Liu 2000).

The four times per day (at UTC 00, 06, 12, and 18) wind 
speed data at 10 m height above the surface (V10m-ERA) 
and on the 850  hPa level (V850), geopotential height on 
850 hPa (H850), and sea level pressure (SLP) from the lat-
est ERA-Interim reanalysis data at 0.75° × 0.75° resolution 
during 1979–2011 are also used in our research. The ERA-
Interim reanalysis data were produced via a sequential 
four-dimensional variational assimilation scheme and could 
be very beneficial, especially for stations in the topographi-
cally complex and data-sparse area (Dee et al. 2011; Frau-
enfeld et  al. 2005). Compared to its original version, the 
ERA-40 reanalysis data, the representation of the hydro-
logical cycle, the quality of the stratospheric circulation, 
and the consistency in time of the reanalysis fields were 
improved in the ERA-Interim (Dee et al. 2011). Berrisford 
et al. (2011) demonstrated that the ERA-Interim reanalysis 
data were superior in quality to ERA-40 and that the winds 
were improved in ERA-Interim. The land surface observa-
tions assimilated in ERA-Interim only include the 2-m tem-
perature, 2-m humidity, and snow (Poli 2010), which means 
that wind speed observation data was not used in the ERA-
Interim data assimilation process. In addition, Dee et  al. 
(2011) indicated that the near-surface wind observations 
over land were not selected and that all the surface pressure 
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observations over high terrain with elevations higher than 
1500 m were not selected to assimilate in the ERA-Interim 
reanalysis data also. The effect of regional geographical 
distribution is controlled by the standard deviation of the 
small-scale orographic dataset, so the wind speed data in 
the mountainous regions are also reliable (Dee et al. 2011). 
In brief, the ERA-Interim data include self-contained 
large-, meso-, and small-scale characteristics, but the effect 
of the urban underlying surface variability and LUCC on 
the SWS was not explicitly included. The ERA-Interim 
reanalysis data are often used in the analysis of climatic 
change and can capture the inter-annual and inter-decadal 
change very well (Simmons et al. 2007, 2010, 2014). The 
ERA-Interim data were interpolated to the 93 meteorologi-
cal stations over the ECP region using the bilinear interpo-
lation method, which is suitable for converting a grid fore-
cast field to another or discrete observation field (Mastylo 
2013; Accadia et  al. 2003). In addition, the urbanization 
rate is derived from the National Bureau of Statistics of 
China from 1980 to 2011, as the ratio between the urban 
population and the total population, and is considered an 
index of urbanization (Wu et al. 2016; Zhou et al. 2004).

2.2 � Methods

The SDM is used to remove the systematic structural error 
from the reanalysis data and is established through multi-
ple stepwise regressions of predictor principal components 
(PCs). Principal component analysis (PCA), also known as 
empirical orthogonal function (EOF) analysis in the mete-
orological community, has become a widely used tool in 
climate research. Such an approach to establish the SDM 
has been suggested by former studies (Fan et  al. 2011, 
2013; Kamp et  al. 2012; Hanssen-Bauer et  al. 2005; Mo 
and Straus 2002; Renwick and Wallace 1995).

The unique predictand of the SDM in this study is SWS 
at 10  m height, and the predictors include single fields 
of V850, H850, and SLP as well as the combinations of 
V850 + H850, V850 + SLP, and H850 + SLP. Fan et al. 
(2011, 2013) showed that the domain to compute PCs of 
the predictor should not be too big or too small in order to 
include proper large-scale signals. We compared different 
domain choices and chose the proper domain used in cal-
culation PCs of the predictor for each station. The area of 
the predictor spans from 9.75°N to 45°N and from 99.75°E 
to 135°E (Figure not shown). Before using multiple step-
wise regressions, both the predictors and predictand are 
normalized, and PCA is performed as the first step for pre-
dictors to remove noise and reduce the number of degrees 
of freedom. For the combinations of two predictors, such as 
V850 + H850, PCA analysis with the two fields combined 
spatially is used (Fan et al. 2013; Bretherton et al. 1992). 
The downscaling utilizes a stepwise screening procedure 

that aims to minimize the Akaike information criterion to 
obtain the skillful PCs (Wilks 1995). The choices of the 
number of PCs of each predictor variable are made when 
they are put into the stepwise regression equation to obtain 
the optimum linear regression models for each station (Fan 
et  al. 2011, 2013). We set the criterion of explained vari-
ance exceeding 90 % for accumulative PCs; therefore, the 
number of PCs for each predictor can be determined in the 
SDM procedure with this criterion.

To evaluate the predicting skill of the method, the multi-
ple correlation coefficients (MCC), error standard deviation 
(ESD) between the predictand and the predictors (Huang 
2004), and the Brier Skill Score (BSS) (Bustamante et al. 
2012) are used in this work. The MCC is used to measure 
the linear relation between predictand and predictors and is 
defined by Eq. (1).

where yi represents the predictand, ȳ represents the mean 
value of the predictand, and ŷi represents the downscaled 
values, n = 13. The Brier Skill Score is defined by Eq. (2).

where SES
2  represents the variance of the error between dif-

ferent estimations and the observation, and SOB
2  is the vari-

ance of an observation. Provided that the climatology is 
selected as a reference value to evaluate the error, in such 
conditions, BSS = 0 represents a prediction not better than 
climatology. If the estimation error variance is similar to 
that of the observation, a positive BSS is obtained, and the 
better the prediction is, the closer the value will be to 1 
(Bustamante et al. 2012).

Additionally, Von Storch (1999) showed that ŷ have 
smaller variance than the local values y. ŷ = αx(x repre-
sents the PC of predictors, 0 < α < 1), so var(ŷ) = α2

var(x) , 
and var(y) = α2

var(x)+ α2 follows var(ŷ) < var(y). This 
result is important because the predictor x does not com-
pletely specify y. To directly compare with observations to 
estimate the anticipated climate change, the variances of ŷ 
are needed to enlarge (Huth 2004; Von Storch 1999). The 
detailed method can be found in Fan et al. (2007) and Huth 
(2004).

The SDM is established throughout the time period of 
1980–1992 because the economic development in China 
during this period was lower than that in the following 
period and because LUCC was indistinct in this period 
relative to latter periods, which means that there was lit-
tle LUCC influence on the observed SWS relative to the 
following period. The regression coefficients in the SDM, 
estimated by the least-squares fitting between V10m-OBV 
and the PCs in predictors, include the mutual link between 

(1)R =

∑n
i=1

(yi − ȳ)(ŷi − ȳ)
√

∑n
i=1

(yi − ȳ)2
∑n

i=1
(ŷi − ȳ)2

(2)BSS = 1− [S2ES/S
2

OB]
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V10m-OBV and large scale circulation only, so the SDM 
can calibrate the error in V10m-ERA versus the observa-
tion. The normalized V10m-ERA data are decomposed by 
the PCA in the following period of 1993–2011, and the 
downscaled SWS at 10  m height (V10m-SDM) is recon-
structed using the linear combination between PCs of 
V10m-ERA and regression coefficients from the SDM, 
which can reduce error in the V10m-ERA data in maxi-
mum extent. This calibration may not bring the influence of 
LUCC into the V10m-SDM time series during 1993–2011. 
Then, the V10m-SDM data are compared with V10m-OBV 
to isolate the impact of LUCC on the SWS in the period of 
1993–2011, and the surface wind speed difference (SWSD) 
between V10m-OBV and V10m-SDM is analyzed.

In addition, to quantitatively assess the consistency 
of the phase between the time series, the probability of 
extremes appearing at the same time point (represented by 
PEST) in the two time series is calculated. Student’s t test 
is used to determine the significance of the data. The lin-
ear trend coefficient is calculated using the least-squares 
method. The composite analysis is used to discuss the 
influence of PGF on the wind speed. A Gaussian low-pass 
filter is used to determine the interdecadal changes in the 
PGF (Ding et al. 2014; Li et al. 2010).

3 � SDM and validation

The predictors selected to establish the SDM include 
the single fields of V850, H850, and SLP as well as the 
combination fields of V850  +  H850, V850  +  SLP, and 
H850 +  SLP. V850 and H850 include the information of 
the large-scale circulation and pressure distribution over 
the ECP region because the elevation in this region is less 
than 200 m. The large-scale influence is an important back-
ground for SWS; therefore, the wind speed and geopoten-
tial height on 850 hPa are both selected as predictors. SLP 
represents the main characteristics of PGF on the sea level 
in the ECP region, which is the driving force of air motion. 
These predictors and V10m-ERA are decomposed by PCA, 
and the explained variance by accumulative PCs is given 
in Fig. 1. The first 3 PCs of H850, SLP, and their combi-
nation can explain more than 90  % of the variance. The 
lowest explained variance for the same number of PCs is 
V850, and 90  % of the explained variance needs 17 PCs 
of V850. Similar characteristics are found in V10m-ERA. 
The two combination fields involving V850 need the first 
11 PCs to exceed 90 % of the explained variance. There-
fore, we choose the first 17 PCs for all six predictors as 
the maximum PCs in the establishment of the SDM using 
stepwise regression, in which the exact number of PCs that 
are actually used in the SDM for each predictor is deter-
mined gradually in the regression process. In addition, we 

also investigate the seasonal changes in the first three PCs 
for the six predictors and V10m-ERA (figure not shown). 
The results show that the PC1s of all six predictors can 
capture the seasonal characteristics of V10m-ERA. The 
probability of the same sign of the anomaly appearing at 
the same time (represented by PAST) between the PC1s of 
V10m-ERA and V850 is 83 %, but PAST can reach 100 % 
between PC1 of V10m-ERA and the other five predictors. 
The seasonal characteristics of PC2 for V10m-ERA are 
also well-captured by V850 and V850 + SLP, with a PAST 
of 91.7 and 83.3 %, respectively (Table 1). PC2 of the pre-
dictors, other than V850 and V850 +  SLP, shows incon-
sistent seasonal changes with respect to V10m-ERA with 
a lower PAST value, as shown in Table  1. When PC3 is 
considered, V850 + SLP always follow V10m-ERA, with a 
PAST of 75 %. The above-mentioned features indicate that 
the combination of V850 + SLP has the best performance 
in describing the seasonal change of V10m-ERA in all six 
predictors, which means that the combined use of V850 
and SLP favors capturing the large-scale signals exactly. In 
addition, Table 1 also shows the performance of combined 
fields is better than that of single fields.

Six SDMs are constructed using the six predictors dur-
ing 1980–1992, and the multiple correlation coefficients 
(MCC) between V10m-OBV and V10m-SDM, the BSS, 
and the ESD between the observation and estimators for the 
six SDMs during 1980–1992 are computed (Table 2). The 
mean MCC for V850, H850, and SLP is 0.60, 0.59, and 
0.59, respectively, and the average MCC for V850 + SLP, 
H850 +  SLP, and V850 +  H850 is 0.69, 0.60, and 0.64, 
respectively, which is higher than the MCC of the single 
fields. The results of the MCC show that the SDM estab-
lished by V850 + SLP has the best performance in downs-
caling the wind speed data at 10 m height in all six SDMs. 
The average BSS for V850  +  SLP, H850  +  SLP and 
V850 + H850 is higher than the BSS of three single fields. 
In all six SDMs, the highest BSS is reached in V850 + SLP 

Fig. 1   Accumulative explained variances for the first 17 principal 
components of the six predictors and wind speed at 10 m height in 
the ERA-Interim reanalysis data during 1980–1992
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(94 %), and the lowest BSS is reached in H850 (92.4 %). 
The average ESD for three combined fields is lower than 
three single fields. The mean ESD reaches the collective 
maximum value of 0.064 m s−1 in the three SDMs estab-
lished by the single fields of V850, SLP, and H850, and the 
minimum value of 0.059 m s−1 is reached in V850 + SLP. 
Therefore, the maximum value of MCC and BSS and 
the minimum value of ESD are reached in the SDM 

constructed by the combined predictors of V850 + SLP at 
the same time (Table 2). The spatial distribution of MCC, 
BSS, and ESD for V850 +  SLP is shown in Fig.  2. The 
MCC is greater in northeastern ECP, and MCC is smaller 
in the middle and southern part of this region (Fig. 2a). The 
spatial distribution of MCC for the other five predictors 
is consistent with that for V850 +  SLP but is lower than 
that for V850 + SLP, and that the MCC for H850, SLP and 
H850 + SLP is also statistically insignificant in the middle 
reaches of the Yangtze River. Regions with smaller BSS for 
V850 + SLP are located in the middle reaches of the Yang-
tze River and the inshore area of the southeastern ECP, and 
the regions that have greater BSS for V850 + SLP are in 
the northern, central, and southwestern ECP, respectively 
(Fig. 2b). Similarly, the spatial distribution of BSS for the 
other five predictors is consistent with that for V850 + SLP 
but is lower than that for V850 + SLP in the same region. 
The main characteristics of ESD in V850 +  SLP include 
a smaller ESD in the northern and southwestern ECP 
and a greater ESD in the central and southeastern ECP, 
which is opposite to the results of MCC and BSS in gen-
eral (Fig. 2c). The spatial distribution of ESD for the other 

Table 1   The probability of the same sign of the anomaly appearing 
at the same time (represented by PAST) between the first three prin-
cipal components of six predictors and the wind speed at 10 m height 
of the ERA-Interim reanalysis data

PC1 (%) PC2 (%) PC3 (%)

V850 83.0 91.7 50.0

H850 100.0 66.7 50.0

SLP 100.0 75.0 33.3

V850 + SLP 100.0 83.3 75.0

H850 + SLP 100.0 75.0 50.0

V850 + H850 100.0 75.0 75.0

Table 2   Validation indices of 
the SDMs established by the six 
predictors during 1980–1992

Predictor Multiple correlation  
coefficient (MCC)

Brier skill score  
(BSS) (%)

Error standard deviation 
(ESD) (unit: m s−1)

V850 0.60 92.6 0.064

H850 0.59 92.4 0.064

SLP 0.59 92.5 0.064

V850 + SLP 0.69 94.0 0.059

H850 + SLP 0.60 92.6 0.063

V850 + H850 0.64 93.0 0.062

Fig. 2   The spatial distribution of the multiple correlation coef-
ficients (MCC) (a), Brier Skill Score (BSS) (unit: %) (b), and error 
standard deviation (ESD) (unit: m s−1) (c) during 1980–1992 for the 

V850 + SLP statistical downscaling model (the threshold of MCC is 
0.41, which is the criterion of a significant F test at the 95 % signifi-
cance level)
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five predictors is consistent with that for V850 + SLP but 
is higher than that for V850 +  SLP in the same regions. 
Therefore, the combination of V850 +  SLP has the best 
performance in the establishment of the corresponding 
SDM. Therefore, we choose the SDM constructed by the 
predictor of V850 + SLP to downscale SWS during 1993–
2011 in the following sections.

The temporal changes in V10m-OBV, V10m-SDM, 
and V10m-ERA during 1980–1992 are shown in Fig.  3a. 
V10m-ERA and V10m-SDM have a weak increasing trend 
during 1980–1992, and their linear trend coefficients failed 
to pass the statistically significant t test at the 99 % level. 
However, V10m-OBV includes a statistically significant 
decreasing trend in the same period. Additionally, the cor-
relation coefficient between V10m-OBV and V10m-ERA 
is 0.01, but the coefficient increased to 0.10 between the 
observation and V10m-SDM after downscaling. These 
results indicate that the long-term decreasing trend in 

V10m-OBV could not be changed by the downscaling 
method because the downscaling method requires complete 
large-scale information to calibrate V10m-ERA. Thus, the 
local information should account for the observed decreas-
ing trend. The PEST between V10m-OBV and V10m-ERA 
is 80 % during this period, and the value does not change 
after downscaling.

4 � Result and analysis

4.1 � Downscaled SWS during 1993–2011

The SDM used to downscale the V10m-ERA is a multi-
stepwise regression model using stepwise screened skill-
ful PCs of the combination of V850 + SLP during 1980–
1992. The stepwise regression equation is used to choose 
the proper number of PCs decomposed from V850 + SLP 

Fig. 3   Temporal change of 
V10m-OBV (black), V10m-
SDM (red), and V10m-ERA 
(blue) (unit: m s−1) during 
1980–1992 (a) and 1993–2011 
(b). The annual mean values 
are indicated by triangles, 
rectangles, and circles (R is the 
correlation coefficient, Rc is 
the threshold, and P is 99 % the 
significance level)
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when they are put into the SDM to obtain the optimum lin-
ear regression models for each station; then, the regression 
coefficients of the model are used to reconstruct the V10m-
SDM serial for each station using the PCs decomposed 
from V10m-ERA during 1993–2011.

The temporal change of V10m-OBV, V10m-ERA, 
and V10m-SDM during 1993–2011 is shown in Fig.  3b, 
respectively. V10m-OBV shows an obvious decreas-
ing trend, as reported by former, studies with decreasing 
rate of −0.15 m  s−1 (10 year)−1. V10m-ERA and V10m-
SDM have weak increasing trends, whose linear trend 
coefficients do not pass the significant t test at the 99  % 
confidence level. The PEST between V10m-OBV and 
V10m-ERA is 76.9  %, which is lower than that between 
V10m-OBV and V10m-SDM by 8  %. The average value 
of V10m-SDM is between V10m-OBV and V10m-ERA, 
which is greater than V10m-OBV by 0.46 m/s and smaller 
than V10m-ERA by 0.40 m/s during 1993–2011. The cor-
relation coefficient between V10m-SDM and V10m-ERA 
is 0.63, which passed the significant t test at 99 % signifi-
cance level.

The spatial distribution of the V10m-OBV, V10m-SDM, 
and V10m-ERA during 1993–2011, as well as their linear 
trend coefficients and variances, are shown in Fig. 4. The 
average of V10m-OBV is 2.27 m s−1, and V10m-OBV is 
larger in the inshore region than in the inland region. The 
V10m-OBV is stronger in the northern ECP than in the 
southern ECP, with the largest value in the Yangtze River 
Delta Region. In addition, there are some regional fine dif-
ferences in V10m-OBV, especially in the southern ECP 
region (Fig.  4a). V10m-ERA captures the features of 
“big inshore small inland” and “big north small south” in 
V10m-OBV but is distinctly stronger than V10m-OBV, 
with a mean value of 3.13 m s−1. Meanwhile, V10m-ERA 
fails to show the fine local features found in the observa-
tion because it includes obvious large-scale characteris-
tics. The V10m-SDM can capture both the large-scale and 
local characteristics in the observations, and their patterns 
are very similar. In addition, the mean of V10m-SDM is 
2.73  m  s−1, which is closer to the observation data than 
V10m-ERA (Fig. 4b).

The linear trend coefficient of V10m-OBV is negative, 
with an average of −0.19  m  s−1 (10  year)−1, and almost 
all of these coefficients pass the significant t test at the 
90  % level in the ECP region (Fig.  4d). The linear trend 
coefficients range from 0.1 to −0.3 m s−1 (10 year)−1 with 
the most distinct decrease rate of −0.3 m s−1 (10 year)−1 
near 116°E, 29°N. The linear trend coefficients in V10m-
ERA and V10m-SDM are positive, but they fail to pass the 
significant t test at the 90 %. Simultaneously, both V10m-
ERA and V10m-SDM have much smaller absolute values 
of linear trends than that of V10m-OBV (Fig.  4e, f), and 
the trend of V10m-SDM spreads in a very narrow range of 

−0.01 to 0.025 m s−1 (10 year)−1. In addition, the spatial 
pattern of the V10m-SDM linear trend is closer to V10m-
OBV than that of V10m-ERA. The variance of V10m-OBV 
is the biggest among the three wind speeds (Fig. 4g), and 
V10m-SDM has the smallest variance (Fig. 4i). Therefore, 
the main spatial characteristics in the variance of V10m-
OBV are captured by V10m-SDM, despite the small value 
in V10m-SDM. Based on the above-mentioned results, the 
long-term trend of V10m-ERA is maintained in V10m-
SDM, which exhibits a better performance in the time 
points of extreme appearance than does V10m-ERA with 
respect to V10m-OBV.

4.2 � Influence of LUCC on SWS during 1993–2011

The SWSD between V10m-SDM and V10m-OBV during 
1993–2011 and its linear trend coefficient, as well as its 
variance, are displayed in Fig. 5. SWSD shows the pattern 
of “big north small south and big inshore small inland”, 
which is in agreement with the spatial characteristics of 
V10m-SDM (Fig.  4b). The most distinct SWSD in the 
inshore regions is found in Shanghai, Zhejiang, Jiangsu and 
Fujian Provinces, with an average of −0.4 m s−1, and these 
places are the most developed regions in China. There is a 
distinct SWSD belt extending from YRDR northwestward 
to the Huai River plain, with an extremum of −0.5 m s−1, 
and it is the most marked SWSD in the inland region. Simi-
lar results were reported by Li et al. (2008). A ring-shaped 
region is revealed in the southern ECP, which is the weak-
est SWSD in the whole ECP region, with an average of 
−0.26  m  s−1. By comparing SWSD with V10m-SDM, it 
can be seen that the SWSD in regions with a larger V10m-
SDM is more distinct than that in regions with a smaller 
SWS.

The linear trend coefficient of SWSD is negative 
in almost the entire ECP region, with an average of 
−0.19  m  s−1 (10  year)−1, except for a positive region on 
the western border of the ECP, which indicates that SWS 
is decreasing and the effect of LUCC is intensifying. There 
are two regions with the minimum slope of −0.3  m  s−1 
(10 year)−1 in the southern and northern part of the ECP, 
respectively, which are the most distinct regions of the 
SWS decrease. The spatial pattern of the SWSD variance 
has some discrete centers with big values, which shows that 
the linear trend has worse representation in these areas, and 
the average variance of the SWSD is 0.076 m−2 s−2 in the 
ECP region.

The temporal change of the SWSD and its linear regres-
sion with the urbanization rate is shown in Fig.  6. The 
average SWSD in the ECP is negative, and the SWSD 
was −0.24 m s−1 in 1993. A distinct decreasing trend can 
be found during 1993–2011, with a mean decreasing rate 
of −0.17  m  s−1 (10  year)−1, which passed the statistical 
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significance t test at the 99 % level. According to the tem-
poral change of the SWSD, the most pronounced decrease 
of −0.56  m  s−1 induced by LUCC was reached in 2011, 

and the average SWSD during 1993–2011 is −0.45 m s−1. 
In addition, there is a negative correlation between the 
SWSD and the urbanization rate passing the statistical 

Fig. 4   Spatial distribution of V10m-OBV, V10m-SDM, V10m-
ERA (unit: m  s−1), and their linear trend coefficients (unit: m  s−1 
(10  year)−1) and variances (unit: m−2  s−2) averaged during 1993–
2011, respectively (a, d, g for V10m-OBV; b, e, h for V10m-SDM; c, 

f, i for V10m-ERA. Additionally, light blue, yellow, and red in (d–f) 
represent the criterion of the t test at the 90, 95, and 99 % significance 
levels, respectively)
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significance t test at the 99  % confidence level, which 
means that each 10 percent increase of the urbanization 
rate leads to a 0.12  m  s−1 decrease in SWS. In addition, 

the five-year mean SWSD in different scale cities are sum-
marized in Table 3, and all 93 stations were classified into 
large, medium and small cities based on population sizes of 
more than 1,000,000, between 500,000 and 1,000,000, and 
under 500,000, respectively (Wu et al. 2012, 2016). SWSD 
in large cities is more distinct than that in small cities and 
the all stations mean, with values of −0.49, −0.38, and 
−0.45  m  s−1, respectively. Further, a more distinct SWS 
decrease occurred during 1993–2007, and a slower SWS 
decreasing rate is found after 2007. These results indicate 
that LUCC is an important factor in the observed SWS 
decline in the ECP region. 

4.3 � Results comparison of different methods 
to evaluate the influence of LUCC on SWS

There are four methods used to estimate the impact of 
LUCC on SWS: comparison between rural and urban 
wind speed observations (represented by CRU) (Guo et al. 
2011; Xu et  al. 2006), the OMR method (Li et  al. 2008), 
the FWM method (Wu et al. 2016), and the SDM method, 
which is an improvement of the original OMR method.

Due to the following factors, the CRU method may cause 
uncertainties in its results. First, strict rural stations are rare 
in long-term meteorological observation data in China, so 
some small cities and towns were selected as rural stations 
in some previous studies. Second, the influence of urban-
ization on the SWS in large cities can only be estimated 
under the premise that the LUCC in small city stations and 
rural station is ignorable in the CRU method. LUCC and 
urbanization are becoming more distinct in small cities. It 
is difficult to select appropriate rural or small city stations 

Fig. 5   Spatial distribution of the wind speed differences between 
V10m-OBV and V10m-SDM (a)  (unit: m s−1), as well as the linear 
trend coefficient (b) (unit: m s−1 (10 year)−1) and variance (c) (unit: 

m−2 s−2) averaged during 1993–2012 (light blue, yellow, and red in 
(b) represent the criterion of the t test at the 90, 95, and 99 % signifi-
cance levels, respectively)

Fig. 6   Temporal change of the wind speed differences between 
V10m-OBV and V10m-SDM from 1993 to 2011 (a) (unit: m s−1) and 
its linear regression with urbanization rate (b) (R is the correlation 
coefficient, Rc is the threshold, and P is the 99 % significance level)
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in the ECP region as reference stations without influence 
of LUCC because this region is one of fastest economic 
development regions in China, and the LUCC in the ECP 
be wider than that in other regions (Kuang et al. 2016; Liu 
et  al. 2010; Liu and Tian 2010). Furthermore, the CRU 
method cannot be used to assess the LUCC impact on the 
SWS in small cities because the reference is missing under 
this condition. Therefore, we do not compare the results of 
the CRU method in this paper.

Figure 7 shows the average SWSD, the linear trend coef-
ficient of the SWSD, and the variance of the SWSD in the 
ECP during 1993–2011 for the FWM and OMR methods, 
in which the results of FWM come from previous research 
(Wu et al. 2016). The distinct SWSD of the FWM method 
is found to the south of the Yangtze River, with the most 
distinct SWSD of −1.0 m s−1. The weak SWSD lies in the 
Yangtze River Delta Region (YRDR) and to the north of 
the Yangtze River, with representative value of −0.4 m s−1 
(Fig.  7a). The distinct SWSD of the OMR method is 
found in the middle and low reaches of the Yangtze River 
and southern China, with the most distinct SWSD of 
−1.0 m s−1. The weak SWSD lies in southeast China, with 
a representative value of −0.5 m s−1 (Fig. 7b). The SWSD 
of the SDM method reveals a different pattern described 
in Fig. 5a; the most distinct SWSD is found in the YRDR 
and inshore region, which is consistent with the pattern of 

Table 3   SWSD for every 5  years in different scale cities during 
1993–2011 (unit: m s−1)

1993–
1997

1998–
2002

2003–
2007

2008–
2011

1993–
2011

Large cities −0.31 −0.44 −0.58 −0.63 −0.49

Small cities −0.26 −0.38 −0.41 −0.45 −0.38

All stations −0.29 −0.42 −0.51 −0.56 −0.45

Fig. 7   Spatial distribution of the wind speed decrease induced by 
LUCC (unit: m s−1), as well as its linear trend coefficient (unit: m s−1 
(10 year)−1) and variance (unit: m−2 s−2) averaged during 1993–2011 
estimated by FWM and OMR (a, c, e for the FWM method, and b, 

d, f for the OMR method. Additionally, light blue, yellow, and red in 
(c) and (d) represent the criterion of the t test at the 90, 95, and 99 % 
significance levels, respectively)
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economic development and urbanization in this region (Wei 
and Liefner 2012; Lu and Liu 2000). In addition, regional 
differences in economic development and urbanization 
exist in the ECP region, for example, the YRDR region 
and some inshore regions in the southeast of the ECP are 
regarded as rapid development areas (Li and Wei 2010; 
Zhao and Wang 2007), but the OMR method fails to display 
the signal of regional differences. The spatial pattern of the 
SDM method is more reasonable than the OMR and FWM 
methods. Their regional mean SWSD is −0.46, −0.62, and 
−0.83 m s−1 for SDM, FWM, and OMR methods, respec-
tively. The linear trend coefficients of the three methods 
are negative, with regional average values of −0.19 m s−1 
(10  year)−1, −0.43  m  s−1 (10  year)−1, and −0.16  m  s−1 
(10 year)−1 for SDM, FWM, and OMR, respectively. The 
most distinct SWSD induced by LUCC is reported by the 
OMR method, which is more than twice the SDM result, 
and the most rapid decrease of SWS is found by the FWM 
method, which is more than twice the SDM and OMR 
results. The patterns and values of the linear trend in the 
OMR and SDM methods are similar. In addition, the vari-
ances of the three methods have similar patterns, with the 
regional average values of 0.076, 0.13, and 0.065 m−2 s−2 
for the SDM, FWM, and OMR methods, respectively. The 
downscaling method obtains the weakest influence from 
LUCC to SWS and the middle decreasing rate of SWS and 
variance of SWSD in the three methods. The downscaling 
method successfully reveals the fine characteristics in the 
spatial pattern of the SWSD, which is similar to the eco-
nomic level in China in recent decades (Wei and Liefner 
2012). In general, the results from different methods are 
dispersed, although the OMR and SDM methods have 
similar decreasing slopes of SWS and variances of SWSD. 
Additional methods should be used to explore the influence 
of LUCC on SWS to further decrease the uncertainty. The 
causes of these differences are complex. The OMR method 
causes error due to using the reanalysis data in the evalua-
tion result, which may come from the bias of the model and 
assimilation systems used in the production of the reanaly-
sis data, such as the low-resolution used to describe local 
terrain, regional climate, inaccurate land surface parameter, 
and inhomogeneous meteorological data. The SDM method 
belongs to the OMR method, but V10m-ERA is replaced 
by V10m-SDM. Thus, the original error in V10m-ERA 
is depressed to the maximum extent in the SDM method, 
which improves the results of the original OMR method. 
The FWM method only considers dynamic reasons by 
using the frictional wind model, which is one approxima-
tion model to describe surface wind, and the FWM method 
succeeds in isolating dynamic effects. LUCC leads to 
an increase in drag force in the canopy layer, which has 
blocking effects on the SWS, and changes thermodynamic 
characteristics of the surface, which can change the local 

circulation and turbulent flux, causing changes in the SWS. 
Many stations in the ECP region are located in the transi-
tion belt between the downtown and suburbs of a city, so 
urban expansion not only increases surface roughness but 
can also lead to heat island circulation and turbulent flux 
disturbance, which are important to the change of the local 
wind field. Consequently, thermodynamic effects should be 
considered in the analysis of the influence of LUCC on the 
SWS. Thermodynamic has no consideration in the FWM 
method, and some thermodynamic signals from large-scale 
LUCC may be included in the reanalysis data. Meso-scale 
and local thermodynamic signals are omitted in the reanal-
ysis data. Although the quantitative evaluation for the influ-
ence of the thermodynamic factors on the observed SWS 
decrease remains difficult, including some thermodynamic 
information thus favors the objective evaluation of LUCC’s 
effects on the SWS change.

5 � Discussion

5.1 � Analysis of causes of the SWS decrease

The PGF acts as the driving force of air motion, so a pos-
sible relation between the observed long-term decrease of 
the SWS and a change of PGF is an interesting issue. We 
calculated the PGF at near-surface, 925 and 850 hPa using 
the four-order differential scheme of Wu et al. (2016). The 
mean value of the wind speed, linear trend coefficients 
of wind speed, and the variances of wind speed at near-
surface, 925 and 850  hPa are shown in Fig.  8. The wind 
speed at 925 and 850  hPa is larger than V10m-OBV, but 
the linear trend coefficients of the wind speed at 925 and 
850 hPa fail to pass the statistical significance t test at the 
90 % level in most areas over the ECP region, which dif-
fers from the distinct decrease of V10m-OBV spreading 
over the ECP region. The variances of wind speed at 925 
and 850  hPa are smaller than on the near-surface. These 
characteristics mean that the long-term decrease in wind 
speed over most parts of the ECP region is evident at the 
near-surface only and that the temporal changes of wind 
speed at 925 and 850 hPa have no distinct decreasing trend 
over the ECP region. The temporal changes of the normal-
ized PGF at the near-surface, 925 and 850 hPa are given in 
Fig. 9. The surface PGF shows an increasing trend with its 
linear trend coefficient passing the significant t test at the 
99 % level, but the PGF at 925 and 850 hPa has no statisti-
cally significant increase during 1980–2011. The decadal-
scale change determined using 9-year, Gaussian-type fil-
tered values of the PGF shows that the interdecadal change 
of the PGF at the near-surface, 925 and 850 hPa is differ-
ent. The PGF at the near-surface has a strong increasing 
trend during 1995–2011, but the PGFs at 925 and 850 hPa 
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show the characteristics of fluctuation. In addition, the cor-
relation coefficients between wind speed and PGF at the 
near-surface, 925 and 850 hPa are −0.31, 0.89, and 0.90, 

respectively, and the PEST between wind speed and PGF 
on the three levels is 50, 81.3, and 87.5  %, respectively. 
The ratio of positive and negative anomalies in the same 

Fig. 8   Spatial distribution of the wind speed (unit: m  s−1), as well 
as its linear trend coefficient (unit: m s−1 (10 year)−1) and variance 
(unit: m−2  s−2) at the near-surface, 925 and 850  hPa levels during 
1980–2011 (a, d, g for V10m-OBV; b, e, h for 925  hPa; c, f, i for 

850 hPa. Additionally, light blue, yellow, and red in (d–f) represent 
the criterion of the t test at the 90, 95, and 99 % significance levels, 
respectively)
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year between PGF at the near-surface, 925 and 850 hPa is 
72 and 63 %, respectively, and the PEST between PGF at 
the near-surface, 925 and 850 hPa is 65 and 60 %, respec-
tively, which indicates different temporal change char-
acteristics of the PGF at different heights. To clarify the 
effects of PGF on wind speed changes at different heights, 
the composite analysis is used in the following research 
(Fig.  10). The abnormal years of PGF are determined in 
the composite analysis based on the specific principle that 

the time series of the PGF should be normalized; then, if 
the value is more (less) than 0.9 (−0.9), its correspond-
ing year is deemed as a strong (weak) PGF year (Jhun and 
Lee 2004). The wind speed difference at the near-surface is 
below 0.1 m s−1, and the difference is statistically insignifi-
cant in the ECP region, whereas the difference at 925 hPa 
is statistically significant, exceeding the 90  % level in 
most parts of the ECP region, except the southern bottom 
of the region. A much larger difference of wind speed can 
be found at 850 hPa, with the maximum of 0.7 m s−1, and 
the statistically significant region reaching the 95 % level 
spreads over the entire ECP region. PGF fails to dominate 
the long-term change of the wind speed at the near-surface, 
but it is a controlling factor for wind speed at higher levels. 
PGF is motive force for wind, but it has no distinct long-
term decline during 1980–2011 in the ECP region, whereas 
SWS decreases distinctly in the same period, which should 
be interpreted from the viewpoint of the rise of the surface 
roughness by LUCC, as revealed by Vautard et al. (2010) 
and Wu et al. (2016).  

5.2 � Uncertainty in the SWSD from the evaluation 
of different SDMs established by different periods

The skill of SDM is related to the length of the period used 
to establish the model. In general, the longer the period that 
is used, the better the results will be. The longest observed 
SWS data in the ECP region exceed 50  years, beginning 
from 1960, but high-resolution, ERA-Interim reanaly-
sis data are available from 1980. In addition, a reasonable 
period must be used to establish SDM, and this period 
should be selected from the earlier segment during 1980–
2011 because stronger signals of LUCC may be included 
in the latter segment of the whole observed SWS dataset 
during 1980–2011. The period should not be too short to 
ensure the reliability of the SDM. Therefore, the period 
used to construct SDM, considering both the needs from the 
validation of SDM and the small amount of LUCC infor-
mation existing in the observation, is 1980–1992 because 
(1) the 13-year length includes seasonal and annual cycling 
signals in the wind speed data; (2) 13-year data embody a 
complete decadal change; (3) 13-year data include a suf-
ficient number of samples to perform validation of SDM; 
and (4) the LUCC signal contained in the period is weaker 
than in the later period. Chinese economic development 
appeared with the rise of manufacturing ability after the 
policy of Opening and Reform was implemented in 1980. 
Widespread urban expansion followed, regarded as a key 
LUCC type in China, began from the extensive construc-
tion of commercial residential buildings in the 1990s to 
feed the needs of population migration from the country-
side and small towns or small cities to big cities (Liu et al. 
2014; Liu and Tian 2010). Chen et al. (2004) showed that 

Fig. 9   Temporal change of the normalized pressure-gradient force 
(PGF) during 1980–2011 at the near-surface, 925 and 850  hPa lev-
els, respectively. The black solid lines denote a 9-year low-pass-fil-
tered time series with the Gaussian-type filter and the pink solid lines 
denote the linear trend of the normalized PGF. (R is the correlation 
coefficient, Rc is the threshold, and P is the 99 % significance level)
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the rapid development of urbanization in China started in 
1996. Therefore, LUCC signals contained in SWS observa-
tion during 1980–1992 are weaker than in the later period. 
These are the main reasons for selecting 1980–1992 to 
establish the SDM and estimate the influence of the LUCC 
on SWS quantitatively in Sects. 3 and 4.

A different selection of the time period used to construct 
SDM would result in a different assessment of the impact 
of LUCC on SWS in ECP region, but we consider 1980–
1992 to be the most proper choice. We design comparisons 
of two extreme cases to reflect the uncertainty in the effect 
of LUCC on the SWS by using different time periods to 
establish the SDMs: 1980–1985 and 1980–2011. The two 
statistical downscaled wind speeds are defined as V10m-
SDM-1 and V10m-SDM-2 for the periods of 1980–1985 
and 1980–2011, respectively. The wind speed difference 
between the observations and downscaled SWS output by 
SDMs during the periods of 1980–1985 and 1980–2011 are 
defined as SWSD1 and SWSD2, respectively. The period 
of 1980–1985 is the 6 years of the available ERA-Interim 
reanalysis data, when the Chinese economy just began to 
develop; therefore, the potential influence from LUCC on 
the observed SWS should be negligible compared to the 
later period. The SDM based on the period of 1980–1985 
diminishes the effect of LUCC in the regression coeffi-
cients, but the time length is shorter than the other two peri-
ods, and some seasonal signals of wind speed are ignored. 
When the full-length period of 1980–2011 is used to con-
struct the SDM, the signals of LUCC are introduced into 
the regression coefficients that are used to calibrate V10m-
ERA data because the observed SWS combined with the 
PCs of large scale circulation from ERA-Interim reanalysis 

data are used to solve the regression coefficients in SDM. 
Therefore, this comparison can determine the range of 
uncertainty in the evaluation of the effect of LUCC on 
SWS.

The temporal changes of SWSD of the two extreme 
SDMs are compared in Fig. 11. The temporal mean differ-
ence of the SWSD in the two extreme SDMs is 0.12 m s−1, 
which is close to the resolution of the cup anemom-
eter (Zhang and Chen 1999; Kaganov and Yaglom 1976; 
Hyson 1972). The linear trend coefficients of the SWSD 
in the two extreme SDMs are negative, and they pass the 
statistical significance t test at the 99  % level. In addi-
tion, the two series have similar interannual and decadal 
changes, with the PEST between them reaching 70  %. 

Fig. 10   Spatial distribution of the composited wind speed difference 
(unit: m  s−1) between the strong and weak pressure-gradient force 
years during 1980–2011 at the near-surface, 925 and 850 hPa levels, 

respectively (the light blue, yellow, and red represent the criterion of 
the t test at the 90, 95, and 99 % significance levels, respectively)

Fig. 11   Temporal change of the wind speed difference (unit: m s−1) 
during 1993–2011 between V10m-OBV and V10m-SDM using 
1980–1985 (red line) and 1980–2011 (blue line) in establishing the 
statistical downscaling model (R is the correlation coefficient, Rc is 
the threshold, and P is the 99 % significance level)
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The linear trend coefficients of SWSD1 and SWSD2 are 
−0.20  m  s−1 (10  year−1) and −0.18  m  s−1 (10  year−1), 
respectively, the variances of SWSD1 and SWSD2 are 
0.02 and 0.014  m−2  s−2, respectively, and the correlation 
coefficient between SWSD1 and SWSD2 is 0.78, which 
passes the significant t test at the 99  % confidence level. 
Additionally, we also investigate the spatial characteristics 
of SWSD1 and SWSD2 (figure not shown). The patterns 
of the average wind speed of the two serials are similar, 
which is consistent with that of SWSD in Fig. 5a. SWSD1 
is higher than SWSD2 by approximately 0.1 m s−1 in some 
regions to the north of the Yangtze River. The linear trend 
coefficients and variances of SWSD1 and SWSD2 are in 
agreement with that of SWSD in Fig. 5, and they are sta-
tistically significant at the 90 % confidence level. The vari-
ance of V10m-SDM-1 is larger than that of V10m-SDM-2 
by 0.004 m−2 s−2, which is negligible.

The mean results of the three SDMs established by the 
three different periods and V10m-ERA, as well as V10m-
OBV, during 1980–2011 are summarized in Table  4. 
V10m-SDM is between V10m-SDM-1 and V10m-SDM-2, 
and the most distinct difference among the three serials is 
0.12  m  s−1. SWSD versus V10m-OBV is −0.46, −0.44, 
and −0.34  m  s−1 for V10m-SDM-1, V10m-SDM, and 
V10m-SDM-2, respectively, and the biggest difference of 
0.12  m  s−1 is found between V10m-SDM-2 and V10m-
SDM-1, which reaches 27 % of the SWSD of V10m-SDM 
and can be considered the uncertain range of the SWSD 
evaluated by SDM. In addition, the linear trend coefficients 
of SWSD versus observation are similar among the three 
SDMs.

From the above-mentioned results of the average wind 
speed, temporal change, and spatial pattern, the most dis-
tinct difference among V10m-SDM, V10m-SDM-1, and 
V10m-SDM-2 reaches 27  % of the SWSD evaluated by 
the difference between V10m-OBV and V10m-SDM. The 

difference of the two SDMs is represented by their differ-
ent regression coefficients between the observed SWS and 
large-scale signals from high levels in the reanalysis data. 
When the decomposed PCs of V10m-ERA are used to pre-
dict V10m-SDM, the two sets of regression coefficients 
are used as the weighting coefficients of the PCs in V10m-
ERA. Therefore, the two sets of coefficients change only 
the relative importance of the PCs, and the temporal and 
spatial characteristics are determined mainly by the PCs of 
V10m-ERA.

6 � Summary

The results of the combined use of statistical downscaling 
and the OMR method to evaluate the influence of LUCC on 
SWS quantitatively in the ECP region during 1993–2011 
can be summarized as follows:

1.	 The surface wind speeds in the ERA-Interim reanalysis 
data and in the station observation show a pattern of 
“big inshore small inland” and “big north small south”, 
with averages of 3.16 and 2.38  m  s−1, respectively. 
V10m-ERA captures obvious large-scale characteris-
tics but fails to reveal the fine local spatial features in 
V10m-OBV. V10m-SDM captures both the large-scale 
and local characteristics in the observation, with an 
average speed of 2.76 m s−1, which approaches V10m-
OBV much more than V10m-ERA. There is a statis-
tically significant decrease in V10m-OBV, but V10m-
ERA and V10m-SDM do not show apparent decreases 
and fail to pass the significant t test at the 90 % level. 
V10m-SDM has a more similar spatial pattern to 
V10m-OBV than V10m-ERA.

2.	 The impact of LUCC on SWS is signified by SWSD, 
which is the difference between V10m-OBV and 

Table 4   Comparison of the mean values from three SDMs with different periods used in establishing V10m-ERA and V10m-OBV during 
1980–2011

V10m-SDM-1, V10m-SDM, and V10m-SDM-2 refer to the results from the SDM established based on the periods of 1980–1985, 1980–1992, 
and 1980–2011, respectively. V10m-ERA and V10m-OBV are the surface wind speeds at 10 m height in the ERA-Interim reanalysis data and 
the observation wind speed, respectively

* Represents that the linear trend coefficient passes the significant t test at the 99 % significance level

Wind speed (m s−1) Linear trend of 
wind speed (m s−1 
(10 year)−1)

Standard devia-
tion of wind speed 
(m s−1)

SWSD versus 
V10m-OBV 
(m s−1) during 
1993–2011

Linear trend of 
SWSD (m s−1 
(10 year)−1)

Standard deviation 
of SWSD (m s−1)

V10m-SDM-1 2.83 0.44 0.04 −0.46 −0.20* 0.14

V10m-SDM 2.81 0.02 0.02 −0.44 −0.17* 0.11

V10m-SDM-2 2.71 −0.02 0.06 −0.34 −0.18* 0.12

V10m-ERA 3.16 −0.017 0.06 −0.86 −0.16* 0.10

V10m-OBV 2.38 −0.12* 0.13 – – –
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V10m-SDM during 1993–2011, displaying a pattern of 
“big north small south and big inshore small inland”, 
with the most distinct SWSD of −0.4 and −0.38 m s−1 
in inshore and inland regions, respectively. The SWSD 
in regions with more downscaled SWS is more dis-
tinct than in smaller SWS regions. The linear trend 
coefficient of SWSD indicates that LUCC induced 
a 0.17 m s−1 wind speed decrease per 10 years in the 
ECP region during 1993–2011. Furthermore, each 
10 % increase of the urbanization rate could cause an 
approximately 0.12  m  s−1 decrease of wind speed. 
Compared with the OMR and FWM methods, the 
SDM method obtains the weakest effect of LUCC on 
SWS and has the medium decreasing rate of SWS in 
three methods. In addition, the SDM method success-
fully reveals the fine characteristics of the spatial pat-
tern for SWSD, which is similar to the economic level 
in China in recent decades.

3.	 Based on the comparison of the temporal patterns 
between PGF and SWS and the composite analysis 
of wind speed differences between strong and weak 
PGF years, it is obvious that PGF fails to dominate the 
long-term change of wind speed at the near-surface, 
but it is also an important control factor for wind speed 
on higher levels. The increase of surface roughness 
induced by LUCC is regarded as an important fac-
tor causing the observed SWS to decrease in the ECP 
region.

4.	 Different periods used to establish SDM can cause a 
maximum 27  % error in the regional mean SWSD 
of −0.44 m s−1 during the period of 1980–2011, and 
the linear trend of SWSD has a bias of 0.03  m  s−1 
(10  year)−1 and 0.01  m  s−1 (10  year)−1 with the 
SWSD1 and SWSD2 respectively, which is lower than 
the linear trend of SWSD itself significantly.

In addition, there are some limitations and drawbacks in 
our research that are important to mention. There are other 
downscaling methods than the method used in this study; 
thus, these methods can also be used with OMR to evaluate 
the influence of LUCC, and potential differences in these 
results should be compared to verify the SDM method. We 
note the importance of dynamic and thermodynamic factors 
in the SWS change, but we have no special result in this 
research. In addition, the LUCC in the ECP region includes 
urbanization, forest cutting, farmland irrigation, returning 
farmland to forest and other types, but we cannot distin-
guish their contributions to the observed SWS decrease, 
and we hope to discuss this issue with reliable numerical 
models in the near future. Additionally, the potential rea-
sons for the SWS decrease, except for the rise of the drag 
force caused by LUCC, contain the weakening of the gen-
eral circulation, including the East Asian Monsoon, and 

local circulation changes, which are related to the change 
of stability and turbulent mixture in the boundary layer 
induced by global warming, surface albedo change, and 
even anthropogenic heat release. Therefore, the causes are 
complicated and further research from other viewpoints is 
required.
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