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Abstract:

Snow and glacial melt processes are an important part of the Himalayan water balance. Correct quantification of melt runoff
processes is necessary to understand the region’s vulnerability to climate change. This paper describes in detail an application of
conceptual GR4J hydrological model in the Tamor catchment in Eastern Nepal using typical elevation band and degree-day
factor approaches to model Himalayan snow and glacial melt processes. The model aims to provide a simple model that meets
most water planning applications. The paper contributes a model conceptualization (GR4JSG) that enables coarse evaluation of
modelled snow extents against remotely sensed Moderate Resolution Imaging Spectroradiometer snow extent. Novel aspects
include the glacial store in GR4JSG and examination of how the parameters controlling snow and glacial stores correlate with
existing parameters of GR4J. The model is calibrated using a Bayesian Monte Carlo Markov Chain method against observed
streamflow for one glaciated catchment with reliable data. Evaluation of the modelled streamflow with observed streamflow gave
Nash Sutcliffe Efficiency of 0.88 and Percent Bias of <4%. Comparison of the modelled snow extents with Moderate Resolution
Imaging Spectroradiometer gave R2 of 0.46, with calibration against streamflow only. The contribution of melt runoff to total
discharge from the catchment is 14–16% across different experiments. The model is highly sensitive to rainfall and temperature
data, which suffer from known problems and biases, for example because of stations being located predominantly in valleys and
at lower elevations. Testing of the model in other Himalayan catchments may reveal additional limitations. © 2016 The Authors.
Hydrological Processes published by John Wiley & Sons Ltd.
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INTRODUCTION

The Himalayan region has been described as the ‘Third
Pole’ because the amount of snow and ice stored is lesser
only to the Polar Regions. In the context of global climate
change, understanding snow and ice processes is vital to
estimating the impact of climate change on the hydrolog-
ical regime (Barnett et al., 2005; Immerzeel et al., 2010;
Nepal et al., 2014). However, the likely impact on water
availability in downstream areas is less clear because of:
(1) questions of the appropriate model structure to capture
Himalayan dynamics, (2) uncertainty in precipitation and
temperature estimates and projections (Immerzeel et al.,
2010; Lutz et al., Nepal, 2016), and (3) uncertainty in the
volume of water contained in shrinking glaciers.

Hydrologists have used hydrological models to under-
stand hydrological dynamics at a watershed scale for many
decades (Singh and Frevert, 2002). For this, different types
of hydrological models are proposed depending upon the
model research questions, data availability and under-
standing of related hydrological processes (Nepal et al.,
2014). Many hydrological models have been applied in the
Himalayan region to understand hydrological system
dynamics such as SRM model (Immerzeel et al., 2010;
Panday et al., 2013; Khadka et al., 2014), SPHY model
(Lutz et al., 2014) and J2000 model (Gao et al., 2012;
Nepal et al., 2014; Nepal, 2016). Many of the models have
adjustments for snow processes; SPHY and J2000 also
simulate glacier melt processes. They typically use an
index or degree-day factor (DDF)—see Shea et al. (2015),
Thayyen and Gergan (2010) and Immerzeel et al. (2013)
for reference values. Models that explicitly represent
physical processes require significantly more detailed data,
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than more abstract lumped conceptual models (Daniel
et al., 2011). In the case of the Himalayan region, snow and
glacier melt processes dominate the hydrology of some
high-altitude areas (in contrast to mid-hills) (Lutz et al.,
2014) and may require explicit representation to capture
dynamics expected in climate change studies. For example,
the high-altitude areas provide streamflow during the dry
season through melt runoff (Immerzeel et al., 2012;
Nepal, 2016). A further constraint is the limited climate
observations because of harsh terrain—many of the high-
altitude areas are remote and inaccessible (Nepal, 2012;
Pellicciotti et al., 2012). In such cases, selecting a model
that balances model complexity and data availability is a
challenging task (Knoche et al., 2014). Because of the
limited amount of available data in such environments, it
may not be possible to adequately constrain the model
parameters, leading to well-known equifinality problems
(Beven and Freer, 2001).
The spatial distribution of precipitation for hydrological

models continues to cause difficulties for modellers
(Pellicciotti et al., 2012). Several authors (e.g. Andermann
et al., 2012; Krakauer et al., 2013) have assessed the
accuracy of ground network surfaces (e.g. APHRODITE
by Yatagai et al., 2012) and satellite radar (e.g. TRMM
described in Huffman et al., 2007) against independent
ground measurements using the normal observation
network, high elevation stations (i.e. EV-K2-CNR stations
examined by Diodato et al., 2010) and short expeditions
(Immerzeel et al., 2014). In general, many consider
APHRODITE the best of the freely available interpolated
products (e.g. Andermann et al., 2012), although it under-
estimates precipitation in the Nepal Himalayas (see notes
in Supporting Information of Lutz et al., 2014 for more
details). Müller and Thompson (2013) also demonstrate
that methods for assimilating the satellite and ground
network datasets improve rainfall accuracy compared to
either network. For this study, the ground network
observations are denser than most locations in the
Himalayas, providing an opportunity to examine sensitiv-
ities to model input data.
Recent advances in model development and regional

calibration of GR4J for the snow-covered areas by Valéry
et al. (2014) and SPHY for Himalayan areas by Lutz et al.
(2014) demonstrate methods to improve the robustness of
estimates of the Himalayan water balance. Valéry et al.
(2014) removed glaciated catchments from the suite of
catchments used for calibration because of their unique
properties. Lutz et al. (2014) evaluated the SPHY model
against streamflow using hydrological stations that were
interior to the calibration catchments because of limita-
tions on data availability.
This paper evaluates an adaptation of the GR4J

hydrological model (Perrin et al., 2003) to include snow
and glacier melt processes, hereafter called ‘GR4JSG’. The

model is proposed as a combination of parsimonious
approaches to (1) catchment runoff process, (2) snow-melt
processes; and (3) glacial snow stores in this study. The
model is evaluated against streamflow and compared to
Moderate Resolution Imaging Spectroradiometer
(MODIS) snow extent (as motivated by Valéry et al.,
2014) in the Tamor sub-catchment, an eastern tributary of
the Koshi River basin. The model’s parameter sensitivity is
explored using Markov Chain Monte Carlo (MCMC)
sensitivity as implemented in DiffeRential Evolution
Adaptive Metropolis (DREAM) (Vrugt et al., 2009). This
paper explores the model uncertainty because of different
assumptions about model structure and biases in the input
data, which informs our understanding of the likely
limitations in the application of the model. The application
of snow and glacier melt processes into the conceptual
GR4J model provides melt runoff estimation from the
alpine catchment with minimum data requirements (only
precipitation, temperature and potET), but may not be
accurate, as the parameters were not adequately identified
from the stream-flow signal.

STUDY AREA

The Tamor catchment is a tributary of the Koshi River
basin located in eastern Nepal as shown in Figure 1. The
basin is characterized by steep topography (average slope
of 28°) and high mountains, which are geologically active
(rising and eroding). Figure 2 shows the river profile, with a
landscape of sparsely covered forest in the lower catchment
and permanently snow-covered mountain in the upper
catchment (10% glaciated). The total area of the catchment
is about 4005 km2 and comprises the mountain
Kanchenjunga, third highest mountain in the world (8200
masl). The glacier area covers about 407 km2 of the basin
area in altitude ranging from 4000 masl to 8200 masl
according to Bajracharya and Shrestha (2011). The basin
shows temperate climate in the lower elevation areas and
sub-alpine to alpine climate in high altitude areas. The
mean annual rainfall at the highest reference station,
Taplejung (1732masl), is 2.2m/year with about 74% of the
annual rainfall occurs during the summer monsoon
between June to September (Nepal, 2012). The basin
suffers from multiple water related hazards such as floods
and flash floods, including glacial lake outburst, landslides,
flooding and erosion (Chen et al., 2013).

METHODS AND MATERIALS

This section describes the GR4JSG model, conceptual
structure of the catchment, the input data used and the
methods of calibration and evaluation.
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Figure 1. The Tamor catchment is a headwater of the Koshi, which is part of Ganges. It is located on eastern border of Nepal

Figure 2. The elevation from south to north of the Tamor catchment. The Tamor catchment has a large variation in elevation from the mid-hills of Nepal
to the top of mount Kanchenjunga (8200 masl). Images courtesy of Dr. Mac Kirby
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GR4J with snow and glacier (GR4JSG)

GR4J has been widely used in Europe and around the
world including in the Himalayas. The GR4J model
developed by Perrin et al. (2003) is a daily lumped
rainfall–runoff model with four parameters (x1, x2, x3
and x4). GR4J consists of two main stores: the production
store, and the routing store as shown in the conceptual
structure of Figure 3. The inputs to the model are rainfall
depth (P) in mm and potential evapotranspiration (E) in
mm. As shown in Figure 3, x1 controls the size of the
production store (mm), x2 controls the flux to ground-
water (mm), x3 controls the size of the routing store (mm)
and x4 controls the recession of the unit hydrograph
(days). The eWater Source (Welsh et al., 2013)
implementation of GR4J was used as the base for this
paper. For more details on GR4J, please refer to Perrin
et al. (2003).
In addition to Perrin et al. (2003)’s GR4J model, the

GR4JSG model contains stores for snow accumulation
(Snow in mm) and glacial water content (Ice in mm). The
model distributes precipitation between rain and snow,
depending upon the average temperature. The daily
partition of precipitation into rainfall and snow is:

Psnow ¼ P : Ps (1)

Prain ¼ P : 1 � Psð Þ (2)

where Psnow is the amount of precipitation falling as snow
(mm), Prain is the fraction of snow falling as liquid
precipitation (mm) and Ps is the proportion snow as
defined in the J2000 hydrological model (Krause, 2002;
Nepal, 2012):

Ps ¼ TRS þ TRANS� Tavg

2: TRANS
(3)

where TRS (°C) is the base temperature which differen-
tiate rain (above TRS) and snow (below TRS). The range
for Ps is fixed in between 0 and 1. However, parameter
TRANS (°C) provides the temperature range of above and
below the TRS in which the rain-snow mixture is
calculated and defined in Equation 3. For this model,
TRS is considered as 0 °C and TRS is 2 °C which means
above +2 °C is rain, �2 °C is snow and mixture of rain-
snow in between +2 and �2 °C. Tavg is the daily average
temperature which is defined from the daily maximum
and minimum temperature.
The snowmelt leaving the snow store is estimated by

applying temperature index degree-day factor, DDFSnow
(mm/°C/day) as shown in Equation 4. In this approach,
temperature is considered as a heat transfer process for
melting of snowpack (Hock, 2003). The amount of
snowmelt (mm) is:

Snowmelt ¼ DDFsnow : Tmelt � Tbaseð Þ (4)

Figure 3. From Perrin et al. (2003), the conceptual structure of the GR4Jmodel is shownwith modifications for snow and glaciers.When temperature is below
zero precipitation falls as snow. In warm conditions, the snow melts (or thermal energy causes ice to melt). Snow and ice melt enter to Production Store (S)
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where Tbase (°C) is the threshold temperature for
snowmelt and Tmelt is the average value of maximum
and average temperature.
Likewise, the model simulates the glacier icemelt by

applying temperature index degree-day factor, DDFIce
(mm/°C/day). In the glacier area, when the surface is
covered with seasonal snow, first the snowpack melts as
explained above (Equation 4), then once the snow storage
is empty, glacier icemelt begins:

Icemelt ¼ DDFice : Tmelt � Tbaseð Þ: (5)

The output from snowmelt and glacier melt are allowed
to enter into the production store as shown in Figure 3.
In this study, a large initial volume of water in the ice

store makes the glacier area behave in a time invariant
manner. In the real environment, the glacier area shrinks
and expands. This dynamic process is not included in the
GR4JSG model. However, the change in glacier area is a
gradual process and reflected at a decadal scale, and might
not affect the model results for a short simulation periods
of a couple of decades (Jóhannesson et al., 1989; Pelto
and Hedlund, 2001). Similarly, this study only uses
glacier area without differentiating into clean and debris
covered glaciers. However, in recent modelling
applications, glaciers are distributed into clear and
debris-covered in which melt runoff from debris-covered
glaciers is reduced by some extent (Nepal et al., 2014;
Lutz et al., 2014). Because of the conceptual nature of the
model in which the catchment is distributed in elevation
bands, only glacier area is used.

Conceptual structure of the catchment

The conceptual structure of the catchment aimed to: (1)
retain a simple parsimonious model, (2) account for
differing characteristics of glacier and non-glacier areas,
(3) account for significant variation in the catchment’s
temperature profile, and (4) provide a spatial structure that
would allow evaluation against observations. GR4J is a
simple parsimonious model which required each extra
free parameter to demonstrate a significant improvement
in performance Perrin et al. (2003). We afforded an
additional two free parameters to account for snow and
glacial properties, but no extra free parameters.
One of the characteristics of mountainous region is

elevation differences where the temperature varies
significantly. Valéry (2010) demonstrated the need to
account for significant variation in the catchment’s
temperature profile. Accounting for variation in temper-
ature profile by dividing the catchment into elevation
bands improved model performance in highly mountain-
ous catchments by dividing the catchment into elevation
bands. Each elevation band had different forcing data
based on a temperature lapse rate from a reference

temperature station. Following suit, we partitioned the
catchment into bands based on elevation from the Shuttle
Radar Thematic Mission 3-s digital elevation model with
processing by CGIAR to mosaic and fill voids (Jarvis
et al., 2008).
The combination of elevation bands at 200-m

intervals and glacier extent led to 44 functional units
(FUs) (Figure 4). A FU is a conceptual portion of a
catchment that functions in a similar way for hydrological
processes as defined by Argent et al. (2009) in similar
fashion to the concept of hydrological response units
defined by Leavesley et al. (1995). Principally, a FU in a
catchment can have different model parameters or inputs to
another FU in the catchment. For this study, we used
identical precipitation data, but different temperature and
potential evapotranspiration data for each FU; however,
the parameters were changed for different experiments.
The same parameter values were applied for all FUs. The
runoff from rainfall runoff models in all the FUs are
summed at the catchment outlet (i.e. there is no explicit
routing scheme between FUs).

Input hydroclimate data

GR4JSG requires precipitation, temperature and evapo-
transpiration climate data to simulate streamflow, snow
extent and the catchment’s water budget. The precipita-
tion input was the daily simple mean of the five nearby
precipitation stations (as shown in Figure 1). Table I
provides a detailed description of these stations and their
characteristic features.
In meteorological contexts, Brunt (1933) and many

others have investigated the rate that air temperature falls
when it ascends, either as a fully saturated air mass, or as
a fully dry air mass—this is the adiabatic lapse rate for
dry and saturated air. These lapse rates are often used to
extrapolate temperatures at particular elevations based on
ground observations. Rolland (2003) examined the
reliability of extrapolating temperature based on 269
sites, finding that the strongest correlation for maximum
temperatures was in summer with additional topographic
features such as aspect and slope affecting the interpo-
lation reliability. In the local region: (1) Kattel et al.
(2013) examined 56 temperature stations (72 to 3920
masl) in Nepal to produce monthly lapse rates varying
from 0.43 °C/100m to 0.61 °C/100m for mean tempera-
ture, (2) Pokhrel et al. (2014) used a constant lapse rate of
0.46 °C/100m for Dudh Koshi catchment (100 km west of
Tamor) based on local observations in their analysis of
snowmelt modelling approaches, (3) Panday et al. (2013)
calibrated annual lapse rates (mean 0.51 °C/100m to
0.68 °C/100m) in their application of Snowmelt Runoff
Model to Tamor catchment, (4) Normand et al. (2010)
used a second-order polynomial regression function in
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their application of HBV to the Tamor catchment (no
further details provided); and (5) Nepal et al. (2014)
derived seasonal lapse rates of 0.55 °C/100m for

monsoon (June to September) and 0.6 °C/100m for the
dry season (October to May) based on observations of the
Dudh Koshi catchment. Immerzeel et al. (2014) have
suggested a more physically based model of temperature
lapse rate that includes humidity. The temperature for
each functional unit in the Tamor catchment model was
corrected using the seasonal lapse rate for summer and
winter as suggested by Nepal (2012) for the neighbouring
catchment of the Dudh Koshi catchment. For Tamor, the
difference in elevation between the median elevation of
the functional unit and the elevation at the Taplejung
meteorological station was adapted to calculate the
temperature of each functional units.
The potential evapotranspiration data for the Tamor

catchment model was from Nepal (2012), which was
derived by using Penman–Monteith equation. The
model’s streamflow predictions were evaluated against
the Majhitar (station id 684) streamflow gauge measure-

Table I. Hydro-meteorological stations used in the Tamor river
sub-basin. Each measurement station measures parameters such as

precipitation (P), maximum temperature (Tmax), minimum
temperature (Tmin), sunshine hours (SH), wind-speed and

discharge (D).

Station ID Station name Elevation (mASL) Parameters

1403 Lungthung 1780 P
1404 Taplethok 1383 P
1405 Taplejung 1732 P, Tmax, Tmin,

SH, RH, WS
1406 Memenjagat 1830 P
1420 Dovan 763 P
684 Majhitar 533 D

Figure 4. Top, the elevation of the catchment is divided into elevation bands using the Shuttle Radar Digital Elevation Model. Below left, the elevation
bands are combined with glacial coverages (based on Landsat and field observation). Right, the combination of glacial coverage and elevation band form
functional units. Bottom, four functional units are shown in detail with the total area covered. There are 30 functional units representing the area without
glaciers at elevations from 400m to 8600m. There are 12 functional units representing the area with glaciers at elevations from 4000m to 8600m
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ments (Table I). The Majhitar streamflow gauge was the
outlet of the Tamor catchment model.

Calibration and evaluation method

GR4JSG parameters x1, x2, x3, x4, DDFSnow and
DDFIce are subject to local catchment conditions; that is,
the actual parameter values need to be inferred by
calibrating to local conditions (see Vaze et al., 2011 for
further discussion on calibration techniques, and Bennett
et al. (2013) for discussion on evaluation methods). The
melt runoff estimated through calibration parameters of
DDF for snow and ice is shown in Equations 4 and 5 which
is directly affected by temperatures of the functional units.
The calibration techniques involved: (1) split-sample
calibration and validation of six parameters, (2) Box-Cox
transform (Box and Cox, 1964) on streamflow (for
calibration only), and (3) Joseph and Guillaume (2013)
likelihood function to compare modelled and observed
time-series. The results were evaluated against streamflow
and compared to MODIS snow extent.
The split-sample calibration involved training the

model from 1 January 2001 to 31 December 2004 then
testing the model from 1 January 2005 to 31 December
2009. The availability of good quality rainfall data
dictated the length of the calibration and validation
periods. The snow stores were slow to reach an
equilibrium state. That is, if the snow stores were at zero
at the start of a simulation it would take 20years for some
of them to warm up. We seeded the initial value of the
snow stores by running a complete simulation with
calibrated parameters. From these initial snow store
states, running the model in the warm-up period
(1994–2000) was sufficient to remove any trends in the
snow store states. Even noting that inter-annual variability
of the region is relatively low, the short calibration and
evaluation period meant the model is unlikely to capture
all climatic variability. The performance of the model was
evaluated against streamflow by applying Nash–Sutcliff
Efficiency (Nash and Sutcliffe, 1970—NSE), Percent
Bias (PBIAS) and visual inspection.
The model was also calibrated using the DREAM

MCMC algorithm by Vrugt et al. (2009) with the
likelihood function defined by Joseph and Guillaume
(2013). Through Bayesian inference, the adaptive MCMC
algorithm, running multiple interacting chains in
DREAM, calculates the posterior probability density
function of parameters through sampling (i.e. the
likelihood that the observed series was generated from
particular parameter sets). For accurate description of the
posterior probability density functions, many chains are
required. Twelve chains provided a quantitative under-
standing of the parameter variation and the model’s
sensitivity to particular parameter values. The R-based

implementation of DREAM described by Guillaume and
Andrews (2012) with parallelism described by Joseph and
Guillaume (2013) was used for calibration in which the
authors used eight chains. According to Laloy and Vrugt
(2012), the number of chains for the original implemen-
tation of DREAM should be double the number of
dimensions of the problem (in this case 12 chains were
used to match six dimensions that were presumed to be
orthogonal).
In order to avoid skew in the likelihood function

towards high flows, we transformed the streamflow using
a Box–Cox Transform (Box and Cox, 1964), with power
0.5 as shown in Equation 6 (note evaluation used
untransformed values). A value of 0.5 provided the effect
of required, so no investigation of other lambda ranges
was necessary.

X t ¼
Qt þ λ2ð Þλ1 � 1

λ1
; λ1≠0

log Qt þ λ2ð Þ; λ1 ¼ 0;

8><
>:

(6)

where Qt is stream flow and λ1 and λ2 are transformation
parameters (λ1 is set to 0.5, and λ2 = 0). Xt is the
transformed value at time t.
The comparison against snow extent involved produc-

ing a spatial total for the Tamor catchment from the
MODIS 8-day composite snow extent product (Hall et al.,
2002). For the assessment of snow cover areas, different
filters (temporal, spatial and altitude-based filters) were
used to reduce the influence of cloud pixels in the snow
products, as described by Gurung et al. (2011), as shown
for some dates in Figure 5. Note the accuracy of the
product improves from 5 July 2002 when both Aqua and
Terra satellites are providing measurements, and the
accuracy is less during continuous periods of cloudy
weather during monsoon. MODIS snow products have
been widely used for understanding snow extent in
different parts of the world (Klein and Barnett, 2003,
Parajka and Blöschl, 2006; Wang et al. 2008). Figure 5
shows the MODIS pixels (500-m resolution) overlapping
the Tamor catchment. The snow extent for the catchment
was the sum of the areas covered by MODIS pixels
classified as snow covered. The equivalent modelled
snow extent was compared by using coefficient of
determination (R2) and visual inspection after the model
was calibrated using streamflow.

Uncertainty and sensitivity analysis

Sources of uncertainty in the catchment runoff
modelling include observed data (precipitation,
temperature, potential evaporation and streamflow),
model assumptions and simplifications, and parameteri-
zation (Kuczera et al., 2006; Renard et al., 2010;

HYDROLOGICAL MODELLING IN TAMOR CATCHMENT

© 2016 The Authors. Hydrological Processes published by John Wiley & Sons Ltd. Hydrol. Process. (2016)



Vaze et al., 2011). Andermann et al. (2012) discuss
difficulties understanding precipitation in the Himalayas
including: (1) inaccessible terrain that makes monitoring
difficult, and (2) the orographic effects resulting from
elevation and climate processes. In many cases, the
location of stations around river valleys may cause under-
reporting of precipitation (Nepal, 2012). The ground
network is sparse and typically limited to elevations under
2000m (1830m in the case of Tamor; Table I).
In general, sensitivity analysis techniques provide a

method to test the robustness of models to input or
parameter uncertainty. Common schemes for conducting
sensitivity analysis include variance-based schemes such
asMonte Carlo analysis; however, Peeters et al. (2014) and
Plischke et al. (2013) have highlighted the complexity of
conducting sensitivity analysis when the solution space is
complex and non-linear (which it often is). Nonetheless,
the robustness of the model to uncertainties was tested by
varying precipitation data and ground-water parameter
bounds (one-at-a-time) and assessing the Monte Carlo
parameter distributions returned by DREAM.
For testing the sensitivity to precipitation, three

additional sets of plausible precipitation inputs were tested:
(1) average observed precipitation, (2) 110% of average
observed precipitation above 2000m, and (3) 110% of
average observed precipitation between the elevation
bands of 2000m and 3000m, 100% of precipitation
between 3000m and 4000m, 70% precipitation between

elevation bands 4000m and 5000m, 40% precipitation
between 5000m and 6000m and 10% precipitation above
6000m. Set (1) represented the extrapolation method of
many hydrological studies (e.g. Panday et al., 2013). Set
(2) represented calibrated multiplicative factors such as
that of Lutz et al. (2014)—note, Lutz et al. (2014) add 17%
to Aphrodite rainfall. Set (3) represented a complicated
pattern of precipitation variation as depicted by Diodato
et al. (2010)—note the level of extrapolation is large
because of the lack of reference stations.

Summary of experiments

Ten experiments were designed to examine the
sensitivity of the model to input data and parameterization
(Table II). Experiment A was set up as a baseline using
GR4J without any conceptual changes. Experiment B
added snow and glacial stores to see the performance
improvement of conceptual changes. Experiment C and D
tested the sensitivity of the model to different precipitation
series. The ground-water flux component (x2) is designed
to allow inter-catchment flows of groundwater (Le Moine
et al., 2007). It is unknownwhether such a flux exists in this
catchment. However, because x2 can introduce and
remove water from the catchment water-balance, it may
compensate for other processes (e.g. DDFs may rise to
compensate). To understand the role of x2 in this
catchment, Experiment E, F and G examined the variation
of the parameters for GR4J ground-water flux and ice and

Figure 5. MODIS 8-day snow extent classification, shown in red, across the Tamor catchment. Top row images were for dates 18 November 2001, 26
November 2001 and 4 December 2001. Bottom row images were for dates 12 December 2001 (with Landsat image background of the same date), 20

December 2001 and 28 December 2001
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snow stores by constraining the ground-water flux (x2=0).
Experiment H examined the sensitivity of the model to
glacial area (a historic glacial area map was used for this
experiment). Experiment J and K investigated the
performance of the model when using reference values to
constrain the ice and snow degree day factors. In each
experiment, DREAM was used to calibrate the model, and
the reported best parameter set was the one with the highest
likelihood through calibration.

RESULTS AND DISCUSSION

The design and application of GR4JSG to the Tamor
catchment demonstrated: (1) the ability to adequately
represent streamflow using GR4J and GR4JSG models,
(2) the ability to compare hydrological models against
MODIS snow extents, (3) the difficulty establishing
robust degree-day factors, and (4) interaction between
different GR4JSG parameters.

Water balance (snow and glacier melt)

Figure 6 shows the median monthly precipitation and
discharge of the catchment during 2001 to 2009
according to station observations (with inter-annual

variation of one standard deviation shown as bands). In
the period 2001–2009 the average precipitation and
discharge are 2135mm and 1734mm, respectively. Most
of the precipitation (about 72%) falls during the monsoon
season and most of the discharge (74%) flows during the
same period. During the latter part of the monsoon and
post monsoon period, discharge is greater than precipi-
tation indicating a streamflow contribution from ground-
water, snowmelt, permafrost melt and/or glacial melt.
The integration of snow and glacier melt plugins to the

standard GR4J model made it possible to understand the
contribution of snow and glacier melt runoff to the total
streamflow as shown in Figure 7. The model estimates
that snow and glacier melt runoff from the catchment
amount to about 14 to 16% of the total annual runoff
across various experiment. The contribution of melt
runoff during the pre-monsoon season (March–May)
ranges from 23 to 27% of the total runoff, while it is 16 to
18% during the monsoon season (June–September) when
the melt runoff coincides with rainfall–runoff. A few
other studies in the Tamor basin (Nepal, 2012 and Panday
et al., 2013) estimate that the snowmelt contribution to
total annual runoff to be about 27%, which is higher than
estimated from this study. The lower amount of glacier
melt from this study is primarily because of unrealistic

Table II. Calibration performance scores against different assumptions of precipitation driving data, ground-water constraints (×2) and
degree-day-factor values. Precipitation set (A) average observed precipitation at 5 stations, (B) 110% of average observed precipitation

above 2000m and (C) 110% of average observed precipitation between the elevation bands of 2000m and 3000m, 100% of
precipitation between 3000m and 4000m, 70% precipitation between elevation bands 4000m and 5000m, 40% precipitation between

5000m and 6000m and 10% precipitation above 6000m. NSE is calculated daily.

Exp Description Param
bound

Glacier
area

Precip.
set

Calib
NSE

Calib
PBIAS

Eval
NSE

Eval
PBIAS

All
NSE

All
PBIAS

A Baseline GR4J None 407 km2 A 0.867 1.93% 0.848 �4.91% 0.840 �7.18%
B Baseline GR4JSG None 407 km2 A 0.892 2.40% 0.883 0.24% 0.86 �5.45%
C Sensitivity to

precipitation
None 407 km2 B 0.894 0.14% 0.883 �2.10% 0.856 �7.56%

D Sensitivity to
precipitation

None 407 km2 C 0.888 �1.40% 0.878 0.58% 0.840 �8.00%

E Sensitivity to
g/w (x2)

x2 = 0 407 km2 B 0.895 �1.40% 0.880 �3.70% 0.850 �9.00%

F Sensitivity to
precipitation
and g/w (x2)

|x2|< 0.5 407 km2 B 0.895 �0.14% 0.880 �2.40% 0.856 �7.80%

G Sensitivity to
precipitation
and g/w (x2)

|x2|< 0.5 407 km2 C 0.875 �6.20% 0.872 �4.20% 0.820 �12.0%

H Sensitivity to
glacial area

x2 = 0 536 km2 B 0.895 �1.40% 0.880 �3.70% 0.850 �9.00%

J Performance
using tight
reference
values for ddf

3.0< iceddf
9.0> snowddf
x2 = 0

407 km2 B 0.894 1.10% 0.880 0.29% 0.860 �6.20%

K Sensitivity to
ice-snow
discrimination

iceddf =
snowddf,
|x2|< 0.5

407 km2 B 0.891 1.10% 0.880 0.80% 0.858 �6.20%
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lower values of DDFIce. This is also explained in the next
section with reference to different experiments (Table III).
Similarly, the reason for the difference is also due to the
of different conceptualizations of snowfall and snowmelt.
In Nepal (2012), runoff from rain-on-snow (because of
rainfall on snow buckets in the days following a snow
event) is treated as part of the snowmelt, whereas in this
model it is considered as runoff generated by rainfall. As

suggested by Nepal et al. (2014), the contribution of rain-
on-snow event is quite high in low elevation areas and
gradually decrease in the high-altitude areas. The studies
from the nearby western catchment (Dudh Koshi) suggest
that the glacier melt contribution is 19% (Lutz et al.,
2014) between 1998 and 2007 and 17% (Nepal et al.,
2014) between 1986 and 1997. Nepal et al., 2015
compared the GR4JSG and J2000 in the Dudh Koshi

Figure 7. Monthly contribution of different melt runoff (snow and glacier) to modelled streamflow

Figure 6. The median monthly precipitation and discharge of the catchment during 2001 to 2009 according to station observations (with inter-annual
variation of one standard deviation shown as bands)
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catchment results similar melt contribution of about 13%
(GR4JSG) and 17% (J2000) and variation was attributed
to different conceptualization of hydrological processes in
both models.

Evaluation against streamflow

The performance of standard GR4J model through the
evaluation period was NSE daily (0.85) and PBIAS
(�4.9%) for streamflow (Experiment A, Table II and
Table III). Note that GR4J by itself provides no insight
into the snow and glacier processes. The addition of snow
and glacier melt approach in GR4JSG model (Experiment
B) led to improvements in the representation of
streamflow with daily NSE (0.88) and PBIAS (0.24%)
during the evaluation period (Figure 8). The modelled
flow values demonstrate a high level of visual agreement
with observations through both wet and dry seasons;
however, the high peak flows are underestimated in some
occasions during both the calibration and validation
periods. Most values are represented quite well although
there are deviations in theoretical quantile versus model
quantiles as shown in Figure 8d.
Increasing precipitation in different elevation zones as

explained earlier did not produce a significant change to
model performance in Experiment C, resulting in similar
calibrated parameter values to Experiment B. The
increase in precipitation did lead to a smaller value of x2,
i.e. less water was imported via the groundwater transfer.
In Experiment D, decreasing precipitation above 4000m
led to significant compensation through the x2 parameter,
unrealistic degree-day-factors and poor performance
(higher biases). Further constraining the x2 parameter
led to poorer performance (higher biases)—Experiment
E, F and G. Constraining snow and glacial degree-day-
factor to narrower theoretical bounds did not change the

model behaviour with daily NSE (0.88) and PBIAS
(0.3%)—Experiment J.
The snow processes dominated the glacial processes in

all the experiments with unconstrained snow and ice
degree-day-factors. When the ice degree-day-factors were
unconstrained, the calibrated values were far lower than
reference values from other models (i.e. 0.006mm°C�1

day�1 in Experiment B where Lutz et al., 2014 calibrated
values of 3.0mm°C�1 day�1 for debris covered and
6.0mm°C�1 day�1 for debris free glaciers), and the
difference between snow and ice degree-day factors for
Experiment B was not realistic. Degree-day-factor to the
ice degree-day-factor led to a value of 3.8mm°C�1 day�1

for the degree-day-factor (Experiment K), which is near
other studies (Lutz et al., 2014 calibrated snow degree
day factor of 4.80mm°C�1 day�1). Therefore, calibration
across a range of similar alpine glaciated catchments may
be necessary to constrain the degree-day-factors to
representative values. However, the current lack of
precipitation and temperature data across several catch-
ment makes this task difficult to achieve practically.

Comparison against MODIS snow extent

When the snow bucket in any FU contained more snow
than a threshold of 10mm, it was assumed that the
complete area of the FU was covered in snow. Without
the use of a low snow threshold to consider the area
covered in snow, the model produced unrealistic snow
area calculations, presumably because of an oversensitiv-
ity to smaller precipitation events. The agreement
between MODIS 8-day snow extent and modelled snow
extent for GR4JSG Experiment B was R2 = 0.46 for the
period 2002 to 2009 (Figure 9) and R2 = 0.42 for
Experiment K. From Figure 9, which compares the snow
cover extent between the model (panel b) and the MODIS

Table III. Best parameter sets for each experiment

Exp # Description x1 (mm) x2 (mm) x3 (mm) x4 (day) Snowddf
mm °C-1 day-1

Iceddf
mm °C-1 day-1

A Baseline GR4J 1143.243 3.452 146.904 0.800 N/A N/A
B Baseline GR4JSG 1498.572 0.522 142.402 0.517 7.801 0.006
C Sensitivity to precipitation 1498.616 0.240 170.733 0.592 7.776 0.006
D Sensitivity to precipitation 1313.566 1.303 128.167 0.507 9.669 9.537
E Sensitivity to g/w (x2) 1499.893 0.000 185.961 0.524 7.807 0.018
F Sensitivity to precipitation

and g/w (x2)
1498.258 0.196 172.444 0.524 7.831 0.009

G Sensitivity to precipitation
and g/w (x2)

1499.432 0.499 99.525 0.632 9.959 9.988

H Sensitivity to glacial area 1499.882 0.000 188.600 0.532 7.782 0.014
J Performance using tight

reference values for ddf
1499.817 0.000 175.914 0.605 7.754 3.000

K Sensitivity to ice-snow
discrimination

1497.991 0.247 153.613 0.608 3.801 3.801
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snow extent (panel a), it is clear that the model can
reproduce the seasonal pattern of snow accumulation and
melting.
In Experiment K, with lower degree-day-factors

(snow= ice =3.801), the R2 was 0.42. In all the experi-
ments, the modelled snow extent during summer was
consistently lower than the snow extent from MODIS
possibly because of combined effect of overestimation of
snow extent in MODIS for cloud cover and/or excessive
melt because of temperature input and conceptualization.

Because the relationship to snow extent was not part of
the calibration objective function, there is a significant
possibility that other equally good solutions might
produce different levels of agreement.
The correlation between modelled snow extent and

MODIS snow extent enables identification of internal
model behaviours that are consistent with the conceptual
model of catchment behaviour. That is, if the snow pack
is growing when the MODIS snow extent is increasing,
the model is behaving as expected. Conversely, if the

Figure 8. a) Observed versus modelled streamflow through the entire period. b) Observed versus modelled streamflow through the evaluation period. c)
Scatter plot (hexagon density) showing observed versus modelled discharge of Experiment B. The efficiency is NSE daily (0.88) and PBIAS (0.24%)

through the test period from 1 January 2005 to 31 December 2009. d) Sample quantiles versus theoretical quantiles for the evaluation period
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snow pack is shrinking when the MODIS snow extent is
increasing, the model might be responding spuriously to
the input data, and it may not respond as expected to new
input data (e.g. climate change scenarios). Because snow
volume is a significant portion of the Himalayan water
balance, any improvement in the estimation of snow

volume should lead to hydrological predictions that are
more robust. In particular, if snow extent is calibrated as
in Finger et al. (2015), we would expect improved
performance in alpine catchments.
Modellers using GR4JSG and similar models with

degree-day-factors should beware of slow trends in the

Figure 9. a) MODIS versus modelled snow extent for GR4JSG Experiment B and K through the period where data was available (including from both
Aqua and Terra). b) Snow extent according to MODIS 8 day, c) attributed snow extent according to snow buckets containing snow, d) scatter plot
(hexagon density) of MODIS versus modelled snow extent for experiment B. e) Scatter plot (hexagon density) of MODIS versus modelled snow extent

for experiment K
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internal states of the models (i.e. the model will behave
differently depending on the initial states of the snow and
ice stores, which may take 20 years to converge to
sensible values). However, the analysis of model
sensitivities in this study showed that precipitation
inaccuracies affect parameter values, which then affect
hydrological estimates of ground-water fluxes and snow
extent estimates.

Parameter sensitivity

Perrin et al. (2003) reported 80% confidence intervals
for each parameter based on a large variety of catchments
as 100 – 1200mm for x1, �5 – 3mm for x2, 20 –
300mm for x3 and 1.1 – 2.9 days for x4. The calibration
algorithms ranged over slightly broader parameter ranges:
0 – 1500mm for x1, �10 – 5mm for x2, 0 – 500mm for
x3 and 0.5 – 4days for x4 to identify unusual parameter
values. For all the GR4JSG experiments, the x1
parameter was close to the upper parameter bound
(1500mm) indicating that the production store for this
catchment was larger than expected from the original
GR4J model application and may be compensating for
processes particular to this catchment (e.g. snow and
glacier).

Figure 10 shows the parameter frequency derived from
the posterior parameter density for the experiments using
DREAM. Ideally, parameters of the model would be
identifiable and independent, features of a parsimonious
model. That is, identifiable in that there would be a single
best value for each parameter when compared to the
observed data for validation, and hence the posterior
parameter distributions would be narrow; and indepen-
dent, where each parameter value would not influence the
best parameter value for another parameter (i.e. not
exhibit cross-correlation). For most of the experiments,
the model was identifiable, there was a narrow range of
acceptable parameter values; however, DDFSnow varied
across a range of around 3mm°C�1 day�1 in all the
scenarios. Most of the parameter values were independent
of each other, with minor relationships between DDFSnow
and other parameters as shown in Figure 11, which shows
the correlation between parameters of acceptable solu-
tions for Experiment B (where acceptable solutions have
Gelman diagnostic (Gelman et al., 2000) statistic<1.2
for convergence and are part of the second half of
solutions). For Experiment B, Figure 12 shows the
relationship between DDFSnow and x3. For differing
values of DDFSnow, x3 varied around 50mm, generally
with a linear trend (note DDFSnow converged to the

Figure 10. Histogram of acceptable parameter values from DREAM calibration for each experiment—each parameter’s range is split into 50 buckets
(where acceptable solutions have Gelman diagnostic statistic< 1.2 for convergence and are part of the second half of solutions). Parameters x1, x4 and

DDFice were regularly on or near parameter boundaries
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parameter boundary in experiments D and K). This would
be consistent with the idea that the routing store
parameter (x3) compensates for faster runoff generated
by a higher DDFSnow value.
In Bayesian inference frameworks, the appropriateness

of the likelihood function depends on the model structure
and data, and the statistical form of the errors that cause the
differences between them. Further information about the
structure of errors in the observation series (e.g. rating
curve, precipitation) would assist in disaggregating data
errors from problems with the conceptual model. Never-
theless, DREAM identified reasonable parameters using
likelihood functions designed for other, quite different
catchments. Note, producing better posterior parameter
densities would involve examination of the residuals in
terms of possible autocorrelation and heteroscedasticity
(Schoups andVrugt, 2010). Improved understanding of the
prior probability distribution of rainfall and streamflow
could lead to improved understanding of parameters and
better estimates of the region’s water balance.

CONCLUSIONS

This paper described a spatial GR4JSG conceptualization
of the glaciated alpine Tamor catchment using elevation
bands and degree-day factors. The model conceptualiza-
tion enabled evaluation of the modelled streamflow and
comparison to remotely sensed MODIS snow extent. The
agreement of these snow extents to MODIS snow extent
for the catchment was R2 (0.46), with calibration against
streamflow only. The evaluation with observed
streamflow was NSE (0.88), PBIAS (<4%), using a
split-sample calibration and validation method. The
model application also provided information about the

melt runoff from glacier and non-glacier areas. This study
showed the successful implementation of the GR4JSG
conceptual model in the data scarce region of the
Himalayan region.
However, the application also highlighted a few

limitations of the model: (1) sensitivity to initial
conditions, (2) slow trends in the internal states, (3)
parameters collapsing to boundaries of GR4J’s parameter
range, (4) insufficient signal to constrain the ice degree-
day-factors based on streamflow alone, and (5) interplay
of GR4J parameters such as x2 with the degree-day-
factors. The model is also highly sensitive to rainfall and
temperature driving data, which suffer from known
problems and biases. Testing of the model in other
Himalayan catchments may reveal additional limitations.
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