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Introduction

1.1	 Mountains and the hydrological cycle

1.1.1	 The hydrological cycle
For human life and life in general, the hydrological cycle can be considered as the most important 
recycling system of matter on Earth, since water is an essential and widely used substance in 
every living organism. In today’s society human beings use water directly to sustain their bodies 
and to sanitize themselves, their goods and their homes. The bulk of water is used indirectly for 
the production of agricultural products, raw materials and goods. In the hydrological cycle, water 
is transported between different reservoirs of water, such as oceans, lakes, rivers, groundwater 
storages, and also snow packs and glaciers. The fluxes of water between the different reservoirs are 
driven by a variety of physical processes, like for example the transpiration of water by plants to the 
atmosphere or the precipitation of water from the atmosphere to the Earth’s surface (Figure 1.1).

The oceans, covering 71% of the Earth’s surface form the largest reservoir of water, holding over 
97% of the total amount of water on the planet [Chahine, 1992]. Only about 2.5% of the water on 

Figure 1.1: Schematic representation of the hydrological cycle. By Ehud Tal, licensed under Creative 
Commons (CC BY NC SA).
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Earth is fresh water, of which the majority is stored as ice or as deep groundwater [Oki and Shinjiro, 
2006]. Related to the different reservoir sizes and magnitude of fluxes into and out of the reservoir, 
also the average residence time of a water molecule differs strongly per reservoir. For example, the 
mean residential time of water in a natural river is about 2.5 weeks and a water molecule stays for 
~10 days in the atmosphere [Oki and Shinjiro, 2006]. Water molecules in the oceans stay there on 
average for more than 3000 years, whereas groundwater residence times can be up to 10000 years. 
The average residence time of a water molecule in the Antarctic ice sheet is 12000 years, but the 
ice at the base of some parts of the ice sheet can be millions of years old [Fischer et al., 2013]. 
Water resides in glaciers for shorter timescales than it does in ice sheets, often about 20-100 years, 
depending on the size and flow velocity of a glacier [Marshak and Prothero, 2008].

1.1.2	 Mountains as water towers
Mountains form natural barriers in the landscape, and moving air masses in the atmosphere are 
lifted when passing a mountain range. When lifted, the air is cooled and because of that the amount 
of moisture that can be stored in the air decreases, resulting in precipitation of water. As a result, 
precipitation rates are particularly high in mountain ranges and thus mountain ranges are important 
sources of water [Viviroli et al., 2003; Kaser et al., 2010]. Liquid water flows downstream directly 
or is stored for short periods of time near the surface, whereas water can be stored on seasonal 
scales as seasonal snow, or for longer periods of time when stored as firn, ice, permafrost or as 
groundwater. The fact that mountains are higher than their surroundings ultimately forces all of the 
water that is not taken back to the atmosphere by evaporation or sublimation, to move downstream 
by the gravitational force. In liquid state this can be as surface runoff, lateral flow through the soil 
or percolation to deeper groundwater. In solid state this can be through wind-induced transport, 
gravitational downslope transport of snow (avalanching), or through the downward flow of glacier 
ice.

The fact that mountain ranges in High Mountain Asia (HMA) are the highest on Earth combined 
with monsoon-dominated precipitation regimes (implying large amounts of precipitation), 
makes the amount of water generated in those mountain ranges particularly large [Viviroli et al., 
2003; Bookhagen and Burbank, 2010]. Because of its large areas and volumes of snow and glacier 
ice, HMA is also referred to as the “Asian Water Tower”, or the “Third Pole”. HMA does not only 
comprise the Himalayas, but also other mountain ranges such as the Tien Shan, Pamir, Hindu Kush, 
Karakoram, and the vast Tibetan Plateau. The focus of this thesis is on the the Tien Shan and Pamir 
mountain ranges in the Amu Darya and Syr Darya basins, and the Hindu Kush, Karakoram and 
Himalayan ranges in the Indus, Ganges, Brahmaputra, Salween and Mekong river basins (Figure 
1.2).

The importance of upstream water resources with respect to the total water resources differ per 
river basin and depend on the relative area of a basin located in mountainous parts, the amount of 
water stored as snow and ice, and the distribution of precipitation between the upstream part and 
downstream part of the basin. In HMA, the basins with the largest dependency on upstream water 
resources are the Indus and Amu Darya basins, which have very dry downstream climates, westerly-
influenced precipitation regimes, and large glacier systems [Immerzeel et al., 2010; Immerzeel and 
Bierkens, 2012; Schaner et al., 2012].

HMA has a large volume of water stored as glacier ice. Different glacier inventories have been 
published in recent years, based on the mapping of glaciers from satellite imagery (Table 1.1). The 
largest glacier systems are in the Karakoram and Pamir mountain ranges. Differences between 
the glacier inventories stem from the use of imagery from different acquisition dates representing 
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a different status of glaciers and subjectivities in glacier area mapping, which is mostly manual 
digitization work [Nuimura et al., 2015]. A significant proportion of the glaciers in the HMA region 
is covered by a layer of rock debris on their tongues [Bajracharya and Shrestha, 2011; Scherler et al., 
2011]. In the upper Indus basin ~18% of the glacier surface is debris-covered [Khan et al., 2015a], 
whereas this is ~14% in the Ganges basin, and ~12% in the Brahmaputra basin [Bajracharya and 
Shrestha, 2011]. No large-scale estimates of the debris-covered glacier areas are available for the 
Pamir in the Amu Darya basin and the Salween and Mekong basins. Melting of glacier surfaces 
below a layer of debris can be either accelerated compared to debris-free surfaces if the debris layer 
is thin (a few centimeters), or dampened if the thickness is more than a threshold of 5 cm [Östrem, 
1959; Nicholson and Benn, 2006; Brock et al., 2010]. In the Pamir and Karakoram mountain ranges, 
large numbers of glaciers show periodical surging behavior, during which ice and debris are 
transported downslope at a rate of one to two orders of magnitude greater than during their phases 
of quiescence [Hewitt, 2007, 2011; Quincey et al., 2011; Sevestre and Benn, 2015].

Ice volumes of glaciers are more difficult to obtain compared to glacier areas, because 
information of ice depth and bedrock topography is only available for a small selection of glaciers. 
Different widely used methods to estimate the ice volumes have been applied in the Karakoram and 
Himalayas, showing that the ice volume in the Karakoram is likely larger than the ice volume in the 

Figure 1.2: Map of the Asian mountain ranges, Tibetan Plateau and surroundings, showing parts 
of ten large river basins which have sources in High Mountain Asia. Glaciers (Randolph Glacier 
Inventory [Pfeffer et al., 2014]) are indicated by the dark blue color. Elevation data is derived from 
the HydroSheds SRTM digital elevation model [Lehner et al., 2008]. The inset shows the full 
extent of the ten river basins and the most important climatic systems.
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entire Himalayas (Figure 1.3) [Frey et al., 2014]. The combined Indus, Ganges and Brahmaputra 
basins cover about 2.65 million km2. Assuming the total ice volumes assessed by Frey et al. [2014] 
to cover all ice reserves in these basis, the ice volume can be compared to the long-term annual 
precipitation sum in these basins for 1978-2007, being 730 mm yr-1 [Yatagai et al., 2012]. This 
indicates that the amount of water stored as ice in the mountains equals roughly 1.5 to 2.5 years of 
the combined basins’ annual precipitation, based on the minimum and maximum estimate of the 
total ice volume (Figure 1.3).

Estimates of the snow cover and snow cover dynamics in HMA are mostly based on MODIS 
remotely sensed snow cover products [Hall et al., 2002]. The Indus basin has the most extensive 
snow cover in HMA [Immerzeel et al., 2009], and the snow cover follows distinct seasonal patterns, 
with maximum snow cover during winter, and minimum during summer [Gurung et al., 2011]. 
However, for the Indus basin, the maximum in snow cover is observed in spring [Immerzeel et al., 
2009]. Since the inter-annual variability of precipitation in HMA is large, this also holds for the 
inter-annual variability of snow cover [Immerzeel and Bierkens, 2009]. Estimates of snow water 
equivalent are not available at the large scale and this remains challenging, since the snow depth 
cannot be assessed accurately by remote sensing products. Climate models might be more suitable 
to estimate snow water equivalent, but they generally have difficulties to simulate the observed snow 
cover accurately [Ménégoz et al., 2013]. Furthermore, precipitation estimates provided by reanalysis, 
station observations, remote sensing and climate models have large discrepancies [Ménégoz et al., 
2013; Immerzeel et al., 2015].

1.1.3	 Downstream water demands
The water resources supplied by HMA are essential to hundreds of millions of people and future 
changes in both demand and supply may have large impacts for future water availability [Immerzeel 
and Bierkens, 2012; Miller et al., 2012]. Whereas the analyses in this thesis focus on the supply 
side, this section briefly zooms to the demand side to illustrate the significance of HMA as a water 
resource for people living in the large Asian river basins. The river basins surrounding HMA have 
large populations, growing at high rates and with increasing demands for water and energy. The 
combined population of the ten large river basins with sources in HMA (Figure 1.2) is estimated at 
1.3 billion people [Shrestha et al., 2015] (~18% of the world’s population [UN, 2015]). The combined 
population of the basins studied in this thesis (Syr Darya, Amu Darya, Indus, Ganges, Brahmaputra, 
Salween and Mekong) is estimated at 775 million people (~10% of the world’s population 

Table 1.1: Glacier-covered areas in six different Asian river basins according to three different 
glacier inventories: Randolph Glacier Inventory (RGI) version 4.0 [Pfeffer et al., 2014], ICIMOD 
glacier inventory [Bajracharya and Shrestha, 2011], and Glacier Area Mapping for Discharge from 
the Asian Mountains (GAMDAM) Glacier Inventory (GGI) [Nuimura et al., 2015].

River basin Glacier area (km2)

 GGI  ICIMOD  RGI 4.0

Amu Darya 2498 2566 3154 ± 256
Indus 23668 21193 26018 ± 1750
Ganges 7537 9012 10621 ± 824
Brahmaputra 9803 14020 17419 ± 1373
Salween 1318 1352 2198 ± 210
Mekong 225 235 586 ± 49
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[UN, 2015]), of which 85% live in the Indus, Ganges and Brahmaputra basins. The populations of 
India, Pakistan, and Bangladesh, harbouring the major parts of the Indus, Ganges and Brahmaputra 
basins, are expected to grow by 30.1%, 63.9% and 25.6% respectively between 2015 and 2050 [UN, 
2015].

The Indus basin has the world’s largest irrigation scheme [Jain et al., 2007]. The Punjab and 
Haryana regions are also called “bread baskets” and the West Bengal region is also called “rice bowl”, 
because of their large (irrigated) agricultural productions. HMA has a large hydropower potential, 
which is largely unused. For example, Pakistan uses around 15% of its hydropower potential [Mirza 
et al., 2008], whereas Nepal uses only 1.6% of its hydropower potential [Surendra et al., 2011]. 
Despite the hydropower potential being not fully developed, large hydropower facilities are present 
in the region. For example, the Tarbela dam in the Indus river, has a storage capacity of 13.7 km3 
and an installed capacity of 3500 MW. The extensive amount of unused hydropower potential is 
being developed more rapidly in recent years [Mirza et al., 2008], as the region faces energy-deficits 
since decades [Molden et al., 2014]. The populations and life standards in the region are projected 
to increase further [Qureshi, 2011; UN, 2015]. The same holds for the areal of irrigated agriculture 
[Fischer et al., 2005], and development of reservoirs for water storage and hydropower generation 
[Siddiqi et al., 2012].

In the present time, the water resources in the areas surrounding HMA are already stressed. Parts 
of the Indus and Ganges groundwater reservoirs are among the most overstressed aquifers in the 
world [Wada et al., 2010; Gleeson et al., 2012; Richey et al., 2015], indicating that water resources 
in this basin already depend largely on non-renewable sources of water. Within the 100 largest 
river basins worldwide, the Syr Darya, Amu Darya, Indus, Ganges and Brahmaputra are listed in 
the top 20 of most water-stressed river basins [Gassert et al., 2013]. Even without bringing future 
climate change into the picture, increased water stress is expected for the future, considering the 
increasing water demand due to the expected increase in population, irrigated agriculture and 
energy consumption.

Figure 1.3: Estimates of ice volumes made with different methods. Source: [Frey et al., 2014]
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1.2	 Mountains and climate change

1.2.1	 Climate in High Mountain Asia
In general, the climate in the eastern part of the Himalayas is characterized by the East-Asian and 
Indian monsoon systems (Figure 1.2), causing the bulk of precipitation to occur from June to 
September. The precipitation intensity shows a strong north-south gradient caused by orographic 
effects [Galewsky, 2009]. Precipitation patterns in the Pamir, Hindu Kush and Karakoram ranges in 
the west are also characterized by westerly and southwesterly flows, causing the precipitation to be 
more evenly distributed over the year compared to the eastern parts [Bookhagen and Burbank, 2010] 
(Figure 1.4). In the Karakoram, up to two-thirds of the annual high-altitude precipitation occurs 
during the winter months [Winiger et al., 2005; Hewitt, 2011]. About half of this winter precipitation 
is brought by western disturbances, being westerly-driven eastward propagating cyclones bringing 
sudden winter precipitation to the north-western parts of the Indian subcontinent [Barlow et al., 
2005]. The inter-annual variability in precipitation is higher for HMA than for the downstream 
parts of the river basins [Immerzeel and Bierkens, 2009].

Meteorological stations are relatively sparse in HMA because of the poor accessibility of the 
terrain. Especially precipitation can vary strongly over short horizontal distances due to orographic 
effects but high-altitude precipitation gauge networks are almost non-existent. If there are gauges, 
they are mostly located in the valley bottoms where precipitation amounts are smaller compared to 
higher altitudes. Besides, most gauges have difficulties capturing snowfall accurately. Direct snow-

Figure 1.4: Percentage of the mean annual precipitation distributed over the periods December 
to February (DJF), March to May (MAM), June to August ( JJA) and September to November 
(SON), as represented in the High Asia Reanalysis product. Source: [Maussion et al., 2014]. 
©American Meteorological Society. Used with permission.
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accumulation measurements, using snow pillows, pits, and cores from accumulation zones are also 
scarce and usually only cover short periods. Precipitation predictions for the HMA region based on 
ground observations, which are not able to capture all the variations spatially, are therefore not very 
accurate and often replaced with or complemented by data from other approaches such as the use 
of remote sensing and reanalysis techniques to generate gridded climate products, to obtain more 
accurate predictions (Figure 1.5).

1.2.2	 Observed climate change
Past trends in climate in HMA have been analyzed in multiple studies, of which key results are 
highlighted in this section. This is by no means a complete overview of the work done in this 
field, but serves to identify the main climatic trends observed in the region. Palazzi et al. [2013] 
analyzed trends in precipitation for different products, with records varying in length from 30 to 60 
years, and ending around 2010. They found no statistically significant long-term trends for winter 

Figure 1.5: Multi-annual mean (1998-2007) of monsoon ( JJAS) and winter (DJFMA) precipitation 
over the HMA region as represented by different datasets. Source: [Palazzi et al., 2013]. Reprinted 
by permission from John Wiley and Sons. ©2012 American Geophysical Union.
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precipitation averaged over the Hindu Kush-Himalayan area. Slightly increasing, though significant, 
trends in precipitation during the monsoon season were found for two out of nine products, 
whereas no significant trends were found in the seven other products. The trends show a very large 
spatial variability (Figure 1.6).

Trends in meteorological variables measured at ground stations were analysed in a number of 
studies, of which a few are mentioned here. Fowler and Archer [2006] analysed temperature records 
in the upper Indus basin for the period 1961-2000. They showed that winter mean and maximum 
temperatures increased significantly while mean and minimum summer temperatures declined 
consistently. The diurnal temperature range increased in all seasons. An analysis of precipitation 
records for the upper Indus basin by the same authors, showed significant increases in winter, 
summer and annual precipitation for several stations over the period 1961-1999 [Archer and Fowler, 
2004]. Khattak et al. [2011] found stronger increasing trends in winter maximum temperature at 
higher elevations but no significant precipitation trends.

Studies in other areas also show warming temperature trends as for example on the Tibetan 
Plateau [Liu and Chen, 2000] and in the central Himalaya [Shrestha et al., 1999]. The same authors 
also showed that for the central Himalaya no increasing trend in precipitation is observed, but that 
inter-annual variability is large [Shrestha et al., 2000].

Studies worldwide show that recent increasing temperature trends are stronger for mountainous 
regions than for other land surfaces [Rangwala and Miller, 2012; Pepin et al., 2015]. Such trends 
have been observed for the Himalayan region as well [Bhutiyani et al., 2007; Lu et al., 2010].

An analysis of the multi-annual variations in winter westerly disturbance (WWD) activity over 
the period 1971-2010 indicated enhanced strength and frequency of WWD and associated heavy 
precipitation events in the Karakoram and western Himalaya [Cannon et al., 2014]. The central 
Himalaya, in contrast, experienced weakening influence of these disturbances and decreases in 
heavy winter precipitation.

To summarize the two preceding sections, it is clear that the climate in HMA is characterized 
by the monsoon bringing precipitation during the monsoon season (June-September) and westerly 

Figure 1.6: Spatial maps of summer ( JJAS) precipitation trends for different products. Source: 
[Palazzi et al., 2013]. Reprinted by permission from John Wiley and Sons. ©2012 American 
Geophysical Union.
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systems bringing precipitation during winter. The monsoon influence decreases from southeast to 
northwest, whereas the westerly influence decreases from west to east. The conclusion can be drawn 
that the climate in HMA has been warming during recent decades, with steeper trends than in non-
mountainous regions. Precipitation trends are mostly not significant, and interannual variability is 
large. Besides, the precipitation trends have large spatial and seasonal variability.

1.2.3	 Observed changes in the cryosphere

1.2.3.1	 Glacier changes
The evolution of glaciers in HMA is not homogeneous. The general tendency is that glaciers are 
retreating and losing mass, as shown by in situ mass balance measurements and results from 
different remote sensing studies [Bolch et al., 2012; Jacob et al., 2012; Kääb et al., 2012; Yao et al., 
2012; Gardelle et al., 2013; Gardner et al., 2013; Farinotti et al., 2015]. In situ measurements show 
that glaciers in the Brahmaputra basin are losing mass in the eastern Himalaya (Parlang Zangbo 
mountains, ~ -1.1 m w.e. yr−1) and on the Tibetan Plateau (~ -0.4 to -0.55 m w.e. yr−1) [Yao et al., 
2012]. The mass balances are also negative in the Ganges basin in Nepal (~ -0.76 m w.e. yr−1) and 
in Himachal Pradesh (~ -0.91 m w.e. yr−1) [Yao et al., 2012], where part of the glaciers are in the 
Indus and part in the Ganges basin. In the Karakoram, located in the upper Indus basin, glacier 
mass balances are less negative or even positive, as shown by geodetic mass balance studies using 
remotely sensed digitial elevation models (DEMs) (+0.11±0.22 m w.e. yr−1, Table 1.2) [Gardelle et 
al., 2012]. These findings are also confirmed using IceSat and GRACE remote sensing data [Kääb 
et al., 2012; Gardner et al., 2013]. These anomalous observations are also known as the ‘Karakoram 
anomaly’ [Hewitt, 2005]. Gardelle et al. [2013] showed that the observed anomaly in the Karakoram 
extends to the Pamir mountain range, with an estimated average mass balance of +0.14±0.14 
mm yr-1 from 2000 to 2009, and therefore suggest to revise the terminology of ‘Karakoram anomaly’ 
to ‘Pamir-Karakoram anomaly’. Later research suggests that the center of the anomaly is located 
more eastwards over the Kunlun Shan mountains [Kääb et al., 2015]. A review of debris-covered 
glacier changes in the HKH region shows a similar pattern, with mostly neutral mass balances in 
the Karakoram and negative mass balances in the other regions [Scherler et al., 2011] (Figure 1.7). 
According to this analysis glaciers in the northern part of the Central Himalaya are losing mass at 
the highest rate.

Table 1.2: Glacier mass budget of nine sub-regions, as derived using the geodetic method, i.e. 
differencing of the SPOT5 DEM with acquisition date mentioned in the table and the SRTM 
DEM acquired in February 2000. Source: [Gardelle et al., 2013].

Sub-region Total glacier area 
(km2)

Measured glacier area
(%)

Acquisition date 
SPOT5 DEM

Mass balance
(m w.e. yr-1)

Hengduan Shan 11584 12 24 Nov 2011 -0.33±0.14
Bhutan 4021 34 20 Dec 2010 -0.22±0.13
Everest 6226 23 4 Jan 2011 -0.26±0.14
West Nepal 6849 13 3 Jan 2011 -0.32±0.14
Spiti Lahaul 9043 23 20 Oct 2011 -0.45±0.14
Hindu Kush 6135 13 17-21 Oct 2008 -0.12±0.16
Karakoram East

19024
28 31 Oct 2010 +0.11±0.14

Karakoram West 30  3 Dec 2008 +0.09±0.18
Pamir 9369 34 29 Nov 2011 +0.14±0.14
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For the Tien Shan mountain range, Farinotti et al. [2015] used three different approaches to 
assess glacier changes. They used satellite gravimetry, laser altimetry, and glaciological modeling to 
estimate the total glacier mass change over the past 50 years. The three approaches yield consistent 
results and the authors estimate the overall decrease in total glacier area and mass from 1961 to 
2012 to be 18±6% and 27±15%, respectively.

The estimates of ice volumes and areas in HMA discussed in section 1.1.2 indicate an average 
estimate of glacier area being ~9680 km2 and an average estimate of ice volume being ~3650 km3. 
This implies that the average ice thickness is roughly 375 m. Combining this with the observed 
mass balance trends discussed in this section, yields that a period roughly between 750 and 3750 
years would be required to melt this amount of ice, assuming time-invariant glacier mass balances 
between -0.1 and -0.5 m w.e. yr-1. This is however just a very rough and theoretical estimate for 
illustration purposes, since ice thicknesses and glacier mass balances are highly variable in space.

1.2.3.2	 Snow cover
Snow cover monitoring on a regional scale has started only recently. With the availability of satellite 
data, near real-time spatial maps of snow cover have become available. However, long term trends 
in snow cover cannot be established, since these analyses cover a maximum of ten years. Most of the 
available studies are based on MODIS satellite products. They do not show clear general temporal 
changes in the snow covered area over the whole HMA region. There is a large inter-annual 
variation in snow cover and an increasing trend from west to east for HMA from 2000 until 2008 
[Immerzeel et al., 2009]. For the Indus basin, during winter a significant decreasing trend in snow 
cover is identified, but not for other seasons and not for other HMA river basins. A large scale study 
by ICIMOD also indicated large inter-annual and intra-annual variation in snow cover [Gurung 

Figure 1.7: Regional distribution of debris-covered and stagnating glaciers. a) Location of glaciers 
(circles) grouped by region. Histograms give relative frequencies (y-axis, 0 – 40%) of debris cover 
(x-axis, 0 – 100% in 5% bins). Number of studied glaciers is given in upper-right corner, measured 
frontal changes in parentheses. Globe depicts location of subset and atmospheric transport 
directions. b) Regional distribution of mean annual frontal changes. Boxes give lower and upper 
quartiles and median (notches indicate 95%-confidence intervals). Whiskers extend 2.5 times the 
interquartile data range, crosses lie outside this range. Numbers left of boxes indicate percentage of 
advancing/stable (top) and retreating (bottom) glaciers. Reprinted by permission from Macmillan 
Publishers Ltd: Nature Geoscience [Scherler et al., 2011], ©2011.
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et al., 2011]. Their analysis of trends in snow cover during 2000-2010 did not yield statistically 
significant trends, but indicated increase in the western and eastern Hindu Kush-Himalayan 
region and decrease in the central parts. Studies by Tahir et al. [2011c, 2015] showed a stable or 
slight increase in snow cover in the Hunza basin (central Karakoram) and Astore basin (Western 
Himalayas) between 2000 and 2009, which may be the result of an increase in winter precipitation 
caused by westerly circulation. On the other hand, decreasing trends in snow cover for westerly-
influenced subbasins of the Indus, including Hunza, and increasing trends for the more monsoon-
influenced subbasins of the Indus were found [Hasson et al., 2014]. A trend analysis of snow 
cover in the monsoon-dominated Sutlej basin in the Indus basin indicated a trend of snow cover 
reduction between 2000 and 2009 [Mir et al., 2015]. A possible explanation of the contrasting trends 
found in different studies could be related to differences in processing of raw snow cover satellite 
images [Hasson et al., 2014].

1.3	 Climate modeling

1.3.1	 Representative Concentration Pathways
Since the release of Intergovernmental Panel on Climate Change (IPCC)’s fifth Assessment Report, 
four representative concentration pathways (RCPs) have been defined as a basis for long-term 
and near-term climate modeling experiments in the climate modeling community [van Vuuren 
et al., 2011b]. The four RCPs together span the range of radiative forcing values for the year 2100 
as found in literature, from 2.6 to 8.5 Wm-2 (Table 1.3, Figure 1.8). Climate modelers use the time 
series of future radiative forcing from the four RCPs for their climate modeling experiments to 
produce climate scenarios. The development of the RCPs allowed climate modelers to proceed with 
experiments in parallel to the development of emission and socio-economic scenarios [Moss et al., 
2010]. The four selected RCPs were considered to be representative of the literature, and included 

RCP Description

RCP8.5 Rising radiative forcing pathway leading to 8.5 Wm2 
(~1370 ppm CO2eq) by 2100

RCP6 Stabilization without overshoot pathway to 6 Wm2 
(~850 ppm CO2eq) at stabilization after 2100

RCP4.5 Stabilization without overshoot pathway to 4.5 Wm2 
(~650 ppm CO2eq) at stabilization after 2100

RCP2.6
Peak in radiative forcing at ~3 Wm2 (~490 ppm 
CO2eq) before 2100 and then decline (the selected 
pathway declines to 2.6 Wm2 by 2100

Figure 1.8: RCPs. blue: RCP8.5, black: 
RCP6, red: RCP4.5, green: RCP2.6. 
Source: [van Vuuren et al., 2011b] 

Table 1.3: Description and visualization of the four 
representative concentration pathways (RCPs). Source: 
[van Vuuren et al., 2011b]
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one mitigation scenario (RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6) and one 
very high baseline emission scenario (RCP8.5) [van Vuuren et al., 2011b].

Since the four RCPs are considered to be representative of radiative forcing that can be expected 
by 2100, each of them should theoretically be considered with equal probability to be included in 
climate change impact studies. However, in climate change impact studies there is usually a trade-
off in how many RCPs and how many climate models can be included within the available time and 
resources, whilst at the same time having the ability of producing robust and reliable results.

Between 1996 and the release of the IPCC’s fifth assessment report in 2013 [IPCC, 2013], the 
IPCC used a different set of future scenarios, combining main demographic, economic and 
technological driving forces with future greenhouse gas emissions. These scenarios were used 
in some of the literature cited in this thesis. An extensive description of this earlier generation of 
scenarios can be found in the IPCC’s special report on emission scenarios [IPCC, 2000].

1.3.2	 Types of climate models
Climate is modeled at different spatial scales. General Circulation Models (GCMs) are used to 
simulate global climate and operate at spatial resolutions ranging from ~100 km2 to ~250 km2. 
Regional Climate Models (RCMs) can be used to simulate regional climate at a typical resolution 
of ~10-50 km. Climate change information is usually required at a higher spatial resolution since 
applications like hydrological models, forced by the data from GCMs or RCMs, operate at higher 
resolutions, down to several meters. For example, the hydrological models used in the research 
described in this thesis operate at 1 km2 spatial resolution.

The current state-of-the-art GCMs are organized in the fifth Coupled Model Intercomparison 
Project (CMIP5) archive [Taylor et al., 2012], which was used as a basis by the IPCC for the 
generation of its fifth Assessment Report. A similar effort to organize the output from RCMs is the 
CORDEX framework [Giorgi et al., 2009]. The earlier CMIP3 [Meehl et al., 2007] archive is the main 
archive used for studies prior to the release of the CMIP5 archive.

1.3.3	 Downscaling
Because of the discrepancy in spatial resolution, different downscaling techniques can be applied 
to overcome differences in resolution when climate models are used to force other models such 
as hydrological models. Downscaling techniques can be divided in two groups: dynamical 
downscaling and empirical-statistical downscaling [Wilby and Wigley, 1997].

1.3.3.1	 Dynamical downscaling
Dynamical downscaling is the nesting of climate models of different spatial resolutions. A 
GCM, operating at spatial resolutions ranging from ~100 km2 to ~250 km2 usually provides the 
boundary conditions for a RCM that has a nested domain within the GCM domain, and operates 
at a resolution of ~10-50 km2. Higher resolutions can be reached when a finer resolution RCM 
or a high-resolution numerical weather prediction model (which needs to be non-hydrostatic 
in mountainous areas) is nested within the RCM domain. The RCM then in turn provides the 
boundary conditions for the finer resolution RCM. On finer scales, Large Eddy Simulation (LES) 
models can be deployed, which can include atmospheric turbulence in the simulations. Because of 
the high spatial resolution of RCMs, computational resources are a limiting factor for the temporal 
and spatial coverage of the simulation [Fowler et al., 2007].
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1.3.3.2	 Empirical-statistical downscaling
In most climate types, but especially in climate types with large spatial variation, such as the climate 
in mountainous regions, the GCM or RCM resolution is not sufficient to satisfactory simulate the 
climate, because climatic variables vary strongly over short distances due to orographic effects. 
Many processes such as local circulation patterns leading to hydrological extreme events cannot 
be resolved by GCMs [Christensen and Christensen, 2002]. Besides a gap in resolution, GCMs and 
RCMs exhibit biases with respect to observed climate data. To try to overcome these two problems, 
additional empirical-statistical downscaling and error correction techniques are required to 
account for the scale differences between GCMs/RCMs and hydrological models, and to correct 
for systematic biases between GCMs/RCMs and local-scale observations (Figure 1.9). Empirical-
statistical methods are based on statistical relationships between large-scale predictors (climate 
model data) and local-scale observations [Wilby and Wigley, 1997; Fowler et al., 2007; Maraun et al., 
2010]. Advantages of statistical downscaling methods include the possibility to provide point-scale 
climatic variables derived from GCM scale climate model output, the ability to directly incorporate 
observed data, and the computational efficiency compared to dynamical downscaling. Important 
disadvantages on the other hand, include the requirement of a sufficiently long and reliable 
observed historical data series for calibration and the assumption that the statistical relationship 

Figure 1.9: Scheme of different statistical downscaling approaches. Traditional empirical-statistical 
downscaling (right pathway) calibrates the statistical transfer function between large-scale 
observation/reanalysis data and local-scale observations. Empirical-statistical downscaling and 
error correction methods (DECMs) (left pathway) are calibrated on RCM or GCM data and 
local observations, account for downscaling as well as model errors. Adapted from [Themeßl et al., 
2011a]. Reprinted by permission from John Wiley and Sons. ©2010 Royal Meteorological Society.
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between the large-scale data and the local-scale data stays constant in the future [Wilby and Wigley, 
1997; Fowler et al., 2007].

Maraun et al. [2010] categorize statistical downscaling methods into ‘perfect prognosis (PP)’, 
which include regression models and weather typing schemes, ‘model output statistics (MOS)’, and 
‘weather generators (WG)’. Here the categorization by Maraun et al. [2010] is followed to summarize 
the different approaches for statistical downscaling.

Perfect Prognosis statistical downscaling approaches (or traditional empirical-statistical 
downscaling methods [Themeßl et al., 2011b]) establish links between observed large-scale 
predictors and observed local-scale predictands. Often, the large‐scale observations are replaced 
by data from reanalysis products. As predictors, variables with high predictive power to predict 
the variable of interest should be used. These can include various predictors representing the 
atmospheric circulation, humidity and temperature [Maraun et al., 2010]. Different statistical 
models can be used to represent the statistical relationships between the large-scale observations 
and the local-scale observations. These include regression models, which can be linear models, 
more complex generalized linear models, generalized additive models, vector generalized linear 
models, or non-linear regression models [Maraun et al., 2010]. Weather type based downscaling 
is based on the relation of different weather classes to local climate. Climate change can then be 
estimated by evaluating the change in frequency of the weather classes in the climate model [Fowler 
et al., 2007].

In Model Output Statistics (MOS) approaches, the statistical relationship between predictors 
and predicted values is established by using simulated predictor values instead of observed values 
[Maraun et al., 2010]. MOS combines a downscaling and an error correction step [Themeßl et al., 
2011a]. The predictors can be simulated time series or properties of the distributions of climatic 
variables. The predicted values can be local-scale time series or local-scale distributions of the 
variable of interest. MOS is mostly used for RCM downscaling, while MOS application for GCM 
downscaling is still limited [Eden et al., 2012; Eden and Widmann, 2014]. Multiple post-processing 
methods, termed empirical-statistical downscaling and error correction methods (DECMs, Figure 
1.9), are based on the MOS approach [Themeßl et al., 2011a]. The most basic MOS approach is 
the simple delta change or perturbation method [Prudhomme et al., 2002; Kay et al., 2008], which 
downscales climate models to local scale using change factors. Differences between a future and 
control GCM run are superimposed on a local-scale baseline observation dataset. Because of the 
simplicity of this method, a large number of climate models can be downscaled, facilitating the 
possibility to use a large ensemble of possible future climates in climate change impact studies 
[Wilby and Wigley, 1997]. The major shortcoming of this method is the fact that only changes in 
the mean, minima and maxima of climatic variables are considered [Fowler et al., 2007], making 
this less suitable to assess changes in the distribution’s tails, i.e. the extreme weather events. Another 
method with a slightly different concept is the scaling method or direct approach [Widmann and 
Bretherton, 2003; Lenderink et al., 2007]. In this approach the future precipitation is determined as 
the simulated future precipitation scaled to the ratio of the mean observed and mean control run 
precipitation.

The Advanced Delta Change (ADC) approach [van Pelt et al., 2012], built on work by Leander 
and Buishand [2007] and Shabalova et al. [2003], has the advantage over the classical delta change 
method that not only changes in the mean are considered, but also the changes in extremes, thus 
making a non-linear transformation of climate signals derived from climate models. Besides, 
changes in multi-day precipitation events are also modeled. The approach has been successfully 
applied in the Rhine basin in Europe [van Pelt et al., 2012]. Multiple succesful applications of the 
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Leander and Buishand [2007] approach were also demonstrated for the Rhine basin [Hurkmans 
et al., 2010, Terink et al., 2010]. To test the usefulness of the initial non-linear bias-correction 
approach developed by Leander and Buishand [2007] in complex, orographically influenced climate 
systems, it was used to bias-correct RCM temperature and precipitation for the upper Rhone basin 
in Switzerland [Bordoy and Burlando, 2013]. The authors concluded that the method is able to 
dramatically reduce the RCM errors for both air temperature and precipitation and that the method 
could be used successfully for correcting future projections. However, they also observed that an 
undesired effect of the technique developed by Leander and Buishand [2007] was that it generated 
extreme precipitation values which considerably exceeded the range of the observations.

Quantile mapping [Boe et al., 2007; Deque, 2007; Themeßl et al., 2011b] is based on the principle 
of comparing distributions of a climatic variable in a dataset of historical observations and climate 
model control run and defining an error function to correct for biases for each quantile in the 
distribution. This error function is applied to a future climate model run to correct future climate 
data. The approach can be based on empirical or fitted probability distributions [Piani et al., 2010; 
Themeßl et al., 2011a]. New extremes can be simulated by linear extrapolation of the error function 
outside the range of the distribution in the calibration period [Themeßl et al., 2011a].

Weather generators are stochastic models generating random sequences of weather variables, 
with statistical properties resembling observed weather [Maraun et al., 2010]. They are most 
commonly used to simulate weather at point locations. Attempts to generate continuous spatial 
precipitation fields have only recently been extended for downscaling [Maraun et al., 2010].

1.3.4	 Future climate change in High Mountain Asia
Given the importance of HMA’s water resources for the downstream areas, future changes in 
the climate may have large impacts on the water resources in HMA and its downstream areas 
[Barnett et al., 2005; Rees and Collins, 2006; Immerzeel et al., 2010]. This section summarizes the 
main findings considering future climate change in the region. Projections of 32 GCMs from the 
CMIP5 model ensemble, were analysed for the Hindu Kush-Karakoram and the Himalaya where 
RCP4.5 and RCP8.5 were considered [Palazzi et al., 2014] (Figure 1.10). The CMIP5 models 
predicted wetter future conditions in the Himalaya during the monsoon season, with precipitation 
gradually increasing until the end of the century. For the Hindu Kush-Karakoram, wetter summer 
conditions were also projected for RCP8.5, whereas in both regions no significant change in winter 
precipitation was observable. The authors emphasize that no single model performs significantly 
better than the others, and the projections vary to a large degree.

Six statistically downscaled GCMs project accelerated seasonal increases in temperature and 
precipitation in the Brahmaputra basin for the period 2000 to 2100, with largest changes on the 
Tibetan Plateau and smallest changes on the Brahmaputra floodplain [Immerzeel, 2008].

An analysis of PRECIS RCM data for the A1B scenario in the Indus basin, until the end of the 
century, indicated a potential increase in winter precipitation in the upper Indus basin, whereas 
decreasing winter precipitation is projected for the lower Indus basin [Rajbhandari et al., 2014]. The 
projected change in monsoon precipitation is highly variable. Greater warming is projected for the 
upper basin than for the lower basin, indicating that the observed elevation-dependent warming is 
likely to continue in the future. Furthermore a slightly greater increase in minimum air temperature 
than maximum air temperature is projected. A stronger warming of winter temperatures is 
projected, compared to other seasons. All three simulations indicated that changes in precipitation 
are more uncertain than temperature change.
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Sharmila et al. [2015] analyzed future projections of Indian summer monsoon variability in 
CMIP5 GCMs for RCP8.5. The authors first filtered the CMIP5 ensemble for models simulating the 
monsoon satisfactory over a historical period. Subsequently changes in future monsoon dynamics 
were assessed for the five remaining models which were considered to provide satisfactory 
simulations of the monsoon. The projections of these five models are consistent and are summarized 
as follows:

•	 The Indian summer monsoon is very sensitive to global warming.
•	 Summer monsoon mean rainfall is likely to increase moderately.
•	 Higher rainfall intensity is likely over the core monsoon zone.
•	 A decreasing number of wet days is likely.
•	 The monsoon season lengthens due to later cessation.
•	 Larger inter-annual variability in monsoon intensity is likely.

Earlier projections for summer monsoon climate over India using a RCM and IPCC SRES 
scenarios already indicated an expected increase in summer monsoon precipitation by 9-16% 

Figure 1.10: Projected percentage precipitation change in 2071–2100 (RCP 8.5 scenario) relative to 
1971–2000 in summer (top left) and winter (top right) for the multi-model-mean of the CMIP5 
ensemble. Number of models (out of 32) showing, in each 2°×2° pixel, a positive precipitation 
change (bottom left and right) [Palazzi et al., 2014].
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in the 2080s compared to the 1970s. Besides, the number of rainy days was projected to decrease 
accompanied by increasing rainfall intensity on wet days [Krishna Kumar et al., 2011].

There are multiple studies on climate change (and the effects thereof) in smaller areas within 
HMA. A study using downscaled RCM output for the northern part of the upper Indus basin 
projected year-round increases in precipitation between 1961-1990 and 2071-2100 (+18% annual 
mean change) with increased intensity in the wettest months February, March and April (+27% 
seasonal mean) [Forsythe et al., 2014]. In addition, year-round increases in mean temperature 
around +4.8 °C were projected. The authors emphasize that the year-round uniformity in 
temperature increase is in contrast to the asymmetrical recent trend in observations. Furthermore 
the authors emphasize that this study can be seen as exploratory because only one pair of 
simulations, from a single RCM driven by one GCM only was used, whereas the use of an ensemble 
of GCMs or RCMs would provide more information about a range of possible climatic futures in 
the upper Indus basin.

Downscaled climate change scenarios for the Langtang (upper Ganges) and Baltoro (upper 
Indus) catchments, using the Quantile Mapping downscaling approach [Themeßl et al., 2011b], 
showed that a consistent temperature increase is expected in both catchments until the end of 
the 21st century [Immerzeel et al., 2013]. A stronger increase in precipitation is projected for the 
Langtang catchment than for the Baltoro catchment, with a larger uncertainty of precipitation 
projections in Baltoro due to the large variability in GCM results over the Indus basin. For the 
Hunza basin in the upper Indus basin, Ragettli et al. [2013] also found a consistent temperature 
increase until 2050, based on three downscaled GCMs. Two GCMs indicated an increase in 
precipitation whereas the third indicated a decrease.

From these highlighted studies it is clear that changes are imminent and that some projected 
trends are consistent across different studies. It is very likely that the observed, exceptionally 
strong, warming trend continues for HMA in the future. Furthermore it is likely that the diurnal 
temperature range increases and that extremely high and low temperatures become more frequent. 
It is also likely that the amount of precipitation increases and intensifies, especially for the monsoon 
season. Inter-annual variation and the frequency and magnitude of extremely high precipitation 
events and dry spells are also likely to increase. However, a large degree of uncertainty remains, 
as the climatic projections by different climate models vary significantly. Furthermore there is a 
large gap in scale between the climate models and the scale at which processes are simulated in 
hydrological models, requiring additional downscaling and bias-correction before climate models 
can be used to force hydrological models.

1.3.5	 Challenges
Given the large, and still growing, number of climate models available that can be used in a 
climate change impact study, the selection of a representative ensemble of climate models is one of 
the challenges when conducting such a study. The number of GCMs available for climate change 
projections is increasing rapidly. For example, the CMIP3 archive [Meehl et al., 2007], which was 
used for the 4th IPCC Assessment Report [IPCC, 2007] contains outputs from 25 different GCMs, 
whereas the CMIP5 archive [Taylor et al., 2012], which was used for the 5th IPCC Assessment 
Report [IPCC, 2013], contains outputs from 61 different GCMs. These GCMs often have multiple 
ensemble members resulting in an even larger number of available model runs. Besides, the spread 
in projections is large as demonstrated in section 1.3.4. Considering the large number of available 
climate models and constraints in the available computational and human resources, detailed 
climate change impact studies, such as described in this thesis, cannot include all projections. 
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In practice, rather one climate model or a small ensemble of climate models is selected for the 
assessment. Despite the importance of using an ensemble that is representative for the region of 
interest and shows the full uncertainty range, the selection of models to be included in the ensemble 
is not straightforward, and can be based on multiple criteria. Often climate models are selected 
based on their skill to simulate the present and near-past climate [e.g. Pierce et al., 2009; Biemans 
et al., 2013]. Another approach is the so-called envelope approach, where an ensemble of models 
covering a wide range of projections for one or more climatological variables of interest is selected 
from the pool of available models. This approach aims at covering all possible futures as projected 
by the entire pool of climate models. The decision on which variables are considered depends on 
the character and goals of the climate change impact assessment. The major drawback of envelope-
based approaches is that the models’ skill to simulate climate are not considered, since all available 
climate model runs are considered to have equal plausibility and only changes in the annual means 
are criteria for selection. On the other hand, selecting only models with a high skill in simulating 
present and past climate may lead to omission of possible futures. These two contrasting methods to 
select a climate model ensemble will result in different ensembles, with different mean projections 
and different uncertainties in the climate change projection. This in turn lead to different projections 
from the models forced by the future climate data. The uncertainty originating from the spread 
in climate models’ projections is considered to be a large source of uncertainty in climate change 
impact studies, i.e.: this uncertainty is often larger than model parameter uncertainties, uncertainty 
stemming from natural variability and structural uncertainties in hydrological models [Minville 
et al., 2008; Finger et al., 2012]. Therefore, the selection of climate models is a crucial step when 
conducting a climate change impact study. To summarize in one sentence, selecting a representative 
ensemble of climate models is not straightforward, but imposes a major challenge.

Besides selecting a representative ensemble of climate models, another main challenge is the 
downscaling and bias-correction of climate models to higher spatial resolutions that make them 
suitable to force hydrological models. In this regard especially the downscaling in relation the 
representation of changes in extremes and seasonal shifts is challenging. Considering the large scale 
of the research described in this thesis, combined with high spatial resolution that is required to 
capture spatial variation in mountainous climate sufficiently, applying dynamical downscaling 
is not feasible for the research described in this thesis. Besides, a recent study that analyzed the 
uncertainty of the CORDEX South Asia regional climate models showed that the RCMs exhibit 
large uncertainties in both temperature and precipitation, that they exhibit a large cold bias and 
that they are unable to reproduce observed warming trends [Mishra, 2015]. Furthermore, the 
GCMs providing the boundary conditions for the RCMs performed better in simulating winter 
climate than the RCMs. For these reasons, empirical-statistical downscaling of GCMs may be the 
better option, but the downscaling method to use should be chosen with care, and should be able 
to include changes in precipitation extremes. Since the availability of a long-term historical climate 
dataset with sufficient quality is a prerequisite to apply empirical-statistical downscaling methods, 
this is a challenge as well in the poorly monitored HMA region.

1.4	 Hydrological modeling

The hydrological properties and future hydrological changes of single catchments or entire 
river basins are typically assessed with hydrological models. Hydrological models are simplified 
representations of components of the hydrological cycle. Many hydrological models are used 



33

CH
A

PT
ER

 1

and depending on the model’s purpose they are based on different concepts and level of detail 
included. The simpler hydrological models are empirical models. These models are largely based 
on observed relationships rather than based on simulated physical processes. Usually they are based 
on the relationship between precipitation and discharge. These models are often lumped, treating a 
complete watershed as a homogeneous whole. On the other side are the more complex, physically-
based models. These models have detailed, descriptions of physical processes, and often need a 
large number of input variables. They can include energy-balance modeling besides water balance 
modeling. Physically-based models are often distributed, dividing a watershed into elementary 
units like grid cells and calculating flows between them. There is a large transition zone between the 
empirical and physically-based models in terms of the detail of representation of physical processes. 
Models in the transition zone are often referred to as conceptual models. Similarly there is also a 
transition in spatial discretization between lumped models and distributed models. The models in 
the transition zone are often categorized as semi-distributed, dividing a watershed in different areas 
or subbasins.

1.4.1	 Hydrological modeling in mountains
In hydrological models of mountainous environments, the inclusion of routines for snow melt and 
glacier melt is of key importance. Multiple hydrological models have been applied in HMA and here 
the most important ones are highlighted. Probably the most widely applied hydrological model in 
mountainous catchments is the semi-distributed Snowmelt Runoff Model (SRM) [Martinec and 
Rango, 1986]. In the SRM model the catchment is subdivided into elevation zones. For each zone, 
air temperature is extrapolated from a station elevation to the hypsometric mean elevation of the 
zone using a temperature lapse rate. Depending on the temperature, precipitation will fall as rain or 
snow in each of the zones and discharge from snow melt is calculated with a degree-day approach. 
Discharge from the elevation zones is added together before routing. Applications of this simplified 
approach in HMA include climate change impact assessments at different spatial scales [Immerzeel 
et al., 2010; Tahir et al., 2011a].

Another model frequently used is the semi-distributed Hydrologiska Byråns Vatten-
balansavdelning (HBV) model [Bergström, 1992], which is suitable for catchment-scale applications. 
HBV is a conceptual model that handles both rainfall and snowfall and models accumulation and 
melt from a snow pack. The model also includes a routine for glacier melt. Snow melt and glacier 
melt are calculated with a degree-day approach that includes different degree-day factors for 
north-facing and south-facing slopes [Konz and Seibert, 2010]. Applications of the HBV model in 
HMA are restricted to catchment scale. Applications have been published for catchments in the 
Karakoram [Akhtar et al., 2008, 2009] and Central Himalaya [Konz et al., 2007].

A spatially distributed physically-based model for application at catchment scale has been applied 
in the Langtang and Baltoro watersheds [Immerzeel et al., 2011, 2013]. The model has specific focus 
on cryospheric processes by including basal sliding of ice [Weertman, 1957], and avalanching of 
snow [Bernhardt and Schulz, 2010]. Glacier melt and snow melt are simulated using a degree-day 
modeling approach, incorporating the aspect of a grid cell.

The Topographic Kinematic Wave Approximation and Integration (TOPKAPI) model is a 
spatially distributed physically-based model that is suitable for applications at catchment scale 
[Liu and Todini, 2002]. Glacier and snow melt are calculated using an enhanced temperature index 
approach, taking incoming shortwave radiation and albedo into account besides air temperature. 
The model can be applied at an hourly time step. Applications in HMA include the Hunza basin in 
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the Karakoram [Pellicciotti et al., 2012; Ragettli et al., 2013] and Langtang catchment in the Central 
Himalayas [Ragettli et al., 2015].

The Spatial Processes in Hydrology (SPHY) model [Terink et al., 2015], is a physically-based, 
distributed model specifically designed for large-scale applications in mountainous areas under 
data-scarce conditions. This model uses degree-day modeling approaches to calculate melt. The 
SPHY model is used in the studies described in chapter 4 and chapter 5 of this thesis.

1.4.2	 Representation of cryospheric processes in models
A number of hydrological modeling exercises have been conducted in HMA, with varying ways 
of representing the hydrological processes. Cryospheric processes play important roles in the 
regional hydrology, but can be simulated in different ways. A simple approach to estimate glacier 
melt is an ice ablation gradient model, such as applied in the Langtang catchment [Racoviteanu et 
al., 2013]. In ablation gradient models, a gradient of increasing glacier melt with lowering altitude 
starting at zero melt at the equilibrium line altitude (ELA) is assumed, based on field measurements. 
Different ablation gradients can be adopted for debris-free glaciers and debris-covered glaciers. 
In other approaches glacier and snow melt is often simulated using a degree-day approach [Hock, 
2003], based on the relation between air temperature and the amount of melt. A calibrated amount 
of melt water per positive degree of air temperature is assumed. The advantage of this method is 
that it can be applied in most cases, because air temperature data is mostly available and relatively 
easy to interpolate to spatial fields. Enhanced degree-day models are also used to integrate more 
variables such as radiation, aspect or albedo in the model [Kustas et al., 1994; Pellicciotti et al., 2005; 
Heynen et al., 2013]. Glacier and snow melt can be simulated more accurately using models that 
include the energy balance, which however has large data requirements and can be applied to a 
limited modeling extent. Since the amount of snow transported downslope through avalanching can 
be substantial, it is also simulated in some models [Bernhardt and Schulz, 2010; Immerzeel et al., 
2013; Ragettli et al., 2015]. Because the cryospheric processes are important in the river basins of 
HMA, the quality of results generated with the models largely depends on the representation of the 
relevant processes in those basins. The complexity of models can increase with increased spatial and 
temporal resolution and data availability. This means that the modeling extent largely determines 
how complex a model can be. Larger modeling extents allow for lower spatial resolutions of 
modeling, as the choice for modeling resolution is typically a trade-off between desired resolution 
and feasibility in terms of human and computation resources. To simulate changes in glaciers, 
ideally a simulation of changes in glacier geometry due to ice flow is included. This can be done 
by combining glacier mass balance models with two or three dimensional ice flow dynamics, [e.g. 
Huss et al., 2007; Jouvet et al., 2008], but these are computationally demanding, require detailed 
knowledge of glacier bed geometry and ice thickness distribution and a high spatial resolution. 
Immerzeel et al. [2013] use Weertman’s sliding law [Weertman, 1957] to simulate basal sliding of 
ice, but this also requires modeling at a high spatial resolution. Therefore, applications of these 
types of models are limited to the catchment scale. In large-scale models, changes of future glacier 
changes can be included as scenarios of hypothetical glacier change [Immerzeel et al., 2010]. At the 
intermediate scale, mass balance models combined with volume-area scaling [Bahr et al., 1997] have 
been applied outside HMA [Stahl et al., 2008].

1.4.3	 Limitations at large river basin scale and data scarcity
While mass balance modeling is rather straightforward to implement and approaches of different 
complexity can be used (from simple degree-day to energy-balance models for the calculation of 
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ablation; see previous paragraph), changes in glacier geometry due to ice flow are more complex 
to include. At the same time, changes in glacier geometry have to be considered in regions where 
glacier melt makes a significant contribution to total runoff. Ideally, these should be simulated with 
mass balance models combined with two or three dimensional ice flow dynamics. However, these 
are computationally demanding and require detailed knowledge of glacier bed geometry and ice 
thickness distribution. Other approaches have been developed in which ice is transported from 
the accumulation zone to the ablation zone through basal sliding or creep [e.g. Immerzeel et al., 
2011, 2013b], but, like models of full ice flow dynamics, this approach is only applicable for small 
catchments as it requires modeling at high spatial resolution. In several hydrological models glaciers 
are treated as static entities that generate melt water and the glacier extent is modified for the future 
by making crude assumptions on the ice mass balance [e.g. Immerzeel et al., 2010] or by imposing 
hypothetical glacier scenarios [e.g. Singh and Bengtsson, 2004; Rees and Collins, 2006; Singh et 
al., 2006; Finger et al., 2012]. A commonly used alternative method is to use volume-area scaling 
relationships [e.g. van de Wal and Wild, 2001; Möller and Schneider, 2010; Radić and Hock, 2011]. 
A parameterization of future glacier evolution has been developed for individual glacier systems 
[Huss et al., 2010]. Although this approach can be applied to any area, it requires recalibration based 
on repeated DEMs for different glacier types. Several global scale models that simulate glacier mass 
balances have been developed [e.g. Hirabayashi et al., 2010; Radić and Hock, 2011], but limited 
approaches to assess glacier evolution at the large river basin scale are available. Only few studies 
of glacier changes at basin scale have been conducted [Prasch, 2010; Weber et al., 2010; Prasch et al., 
2013], all using the same modeling approach. This approach uses an energy-balance model for the 
calculation of melt and therefore requires additional atmospheric input besides air temperature.

1.4.4	 Challenges
Forthcoming from the previous paragraph, the robust simulation of glacier responses to climate 
variations at the large river basin scale and under data-scarce conditions can be identified as a major 
challenge for the generation of robust climate change impact projections for the hydrology in HMA. 
Another major challenge is to use a hydrological modeling approach that can cover a large spatial 
scale, but includes sufficient detail to simulate the hydrology of HMA.

1.5	 Research questions and thesis outline

In the preceding sections of this chapter major challenges were identified that should be overcome 
to obtain robust projections of climate change impacts for the hydrology in High Mountain Asia. In 
summary, these challenges are:

•	 Selection of representative ensembles of climate models as basis for climate change 
projections.

•	 Downscaling of climate models to make them suitable to force a high-resolution 
hydrological model while including future changes in precipitation extremes.

•	 Robust simulation of glacier responses to climate variations at large river basin scale and 
under data-scarce conditions.

•	 Developing hydrological modeling approaches at the river basin scale with sufficient detail 
to simulate the hydrology of HMA, and able to operate under data scarcity.
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In the light of these challenges, the importance of the water resources provided by the high 
mountains in Asia, and the large, still poorly quantified, impact climate change may have on the 
hydrology of this region, the main research question I try to answer in this thesis is:

•	 What are the impacts of climate change on the hydrology in High Mountain Asia?

I will focus in particular on changes in overall water availability, seasonal shifts in runoff generation 
and changes in the frequency and magnitude of hydrological extremes.

Given the challenges described in this chapter, the following specific research questions are 
formulated, which together answer the main research question:

•	 How can we select an ensemble of climate models that represents the uncertainty in the future’s 
climate?

•	 How can we use climate change projections to assess changes in mountainous climate including 
seasonal changes and changes in extremes?

•	 How can we make robust simulations of future glacio-hydrological changes under data-scarce 
conditions at the large river basin scale?

Answers to those research questions are pursued in the subsequent chapters of this thesis. Chapter 
2 describes an innovative approach for selecting a representative ensemble of General Circulation 
Models from a larger inventory of climate models. The approach combines selection based on the 
entire range of changes in air temperature and precipitation as projected by the total inventory of 
climate models, selection based on the range of projected changes in temperature and precipitation 
extremes and selection based on climate models’ skill in simulating historical climate. In chapter 
3 a novel regionalized glacier mass balance model is presented, which is specifically developed 
to estimate changes in future glacier extent for inclusion in large-scale hydrological models. 
Chapter 4 describes the application of a large-scale, high-resolution cryospheric-hydrological 
model to quantify the impacts of climate change for water availability in the upper Indus, Ganges, 
Brahmaputra, Salween and Mekong river basins until 2050. In chapter 5, the hydrological model 
is applied to Asia’s climate change hotspot; the upper Indus basin [Immerzeel and Bierkens, 2012]. 
Hydrological projections are generated for the entire 21st century. The analysis of the results focuses 
on changes in sources of runoff, seasonality and hydrological extremes. In chapter 6 the findings 
of the research are synthesized, including discussions on uncertainty, limitations and future 
research priorities. The major conclusions and their implications for water management in the 
region are discussed as well. Chapters 2 to 4 are based on published peer-reviewed scientific journal 
publications. Chapter 5 is based on a manuscript which is under review for publication in a peer-
reviewed scientific journal.
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Chapter 2

Selecting a representative ensemble
of climate models

Based on: Lutz, A.F., H.W. ter Maat, H. Biemans, A.B. Shrestha, P. Wester, and W.W. Immerzeel 
(in press), Selecting representative climate models for climate change impact studies: an advanced 
envelope-based selection approach, International Journal of Climatology.

Abstract
 
Climate change impact studies depend on projections of future climate provided by climate models. 
The number of climate models is large and increasing, yet limitations in computational capacity 
make it necessary to compromise the number of climate models that can be included in a climate 
change impact study. The selection of climate models is not straightforward and can be done 
following different methods. Usually the selection is either based on the entire range of changes 
in climatic variables as projected by the total ensemble of available climate models, or on the skill 
of climate models to simulate past climate. Here we combine these approaches in a three-step 
sequential climate model selection procedure: 1) initial selection of climate models based on the 
range of projected changes in climatic means, 2) refined selection based on the range of projected 
changes in climatic extremes, and 3) final selection based on the climate model skill to simulate past 
climate. This procedure is illustrated for a study area covering the Indus, Ganges and Brahmaputra 
river basins. Subsequently the changes in climate between 1971-2000 and 2071-2100 are analysed, 
showing that the future climate projections in this area are highly uncertain, but that changes are 
imminent.

2.1	 Introduction

Climate change impact studies depend on projections of future climate provided by climate models. 
Due to their coarse spatial resolution, outputs from General Circulation Models (GCMs) are usually 
directly downscaled to higher resolution using empirical-statistical downscaling methods, or used 
as boundary conditions for Regional Climate Models (RCMs), with their outputs being downscaled 
to higher resolution subsequently. The downscaled outputs are then used to assess future climatic 
changes and to drive other sector-specific models for climate change impact studies. Outcomes from 
these studies are used by policymakers to support decisions on climate change adaptation measures.

The number of GCMs available for climate change projections is increasing rapidly. For example, 
the CMIP3 archive [Meehl et al., 2007], which was used for the 4th IPCC Assessment Report [IPCC, 
2007] contains outputs from 25 different GCMs, whereas the CMIP5 archive [Taylor et al., 2012], 
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which was used for the 5th IPCC Assessment Report [IPCC, 2013], contains outputs from 61 
different GCMs. These GCMs often have multiple ensemble members resulting in an even larger 
number of available model runs.

Despite improvements in the CMIP5 models compared to CMIP3 in terms of process 
representation [e.g. Blázquez and Nuñez, 2013; Sperber et al., 2013], uncertainty about the future 
climate remains large [e.g. Knutti and Sedláček, 2012], and locally even increases with the larger 
number of models available [e.g. Joetzjer et al., 2013; Lutz et al., 2013]. Considering the large 
number of available climate models and constraints in the available computational and human 
resources, detailed climate change impact studies cannot include all projections. In practice, rather 
one climate model or a small ensemble of climate models is selected for the assessment. Despite the 
importance of using an ensemble that is representative for the region of interest and shows the full 
uncertainty range, the selection of models to be included in the ensemble is not straightforward, 
and can be based on multiple criteria.

Often climate models are selected based on their skill to simulate the present and near-past 
climate [e.g. Biemans et al., 2013; Pierce et al., 2009]. Here we refer to this approach as the past-
performance approach. Another approach is the so-called envelope approach, where an ensemble 
of models covering a wide range of projections for one or more climatological variables of interest 
is selected from the pool of available models. This approach aims at covering all possible futures 
as projected by the entire pool of climate models. Some approaches consider only the changes in 
mean air temperature and total annual precipitation [e.g. Immerzeel et al., 2013; Sorg et al., 2014; 
Warszawski et al., 2014], whereas other approaches consider more climatological variables using 
cluster analysis algorithms [e.g. Cannon, 2014; Houle et al., 2012]. Another approach uses criteria 
for model independence to generate a representative selection of models from a larger ensemble, 
where the ensemble of selected models has characteristics that reflect the larger ensemble [Evans et 
al., 2013].

The decision on which variables are considered depends on the character and goals of the climate 
change impact assessment. For example a study on future hydrological floods will be most interested 
in changes of extremely high precipitation events, whereas a study on the impacts of climate change 
for the exploitation of ski slopes in a mountainous area will most likely consider changes in winter 
temperature and winter precipitation. The major drawback of envelope-based approaches is that 
the models’ skill to simulate climate are not considered, since all available climate model runs 
are considered to have equal plausibility and only changes in the annual means are criteria for 
selection. On the other hand, selecting only models with a high skill in simulating present and past 
climate may lead to omission of possible futures. These two contrasting methods to select a climate 
model ensemble will result in different ensembles, with different mean projections and different 
uncertainties in the climate change projection.

The uncertainty originating from the spread in climate models’ projections is considered to be 
a large source of uncertainty in climate change impact studies, e.g.: this uncertainty is often larger 
than model parameter uncertainties, uncertainty stemming from natural variability and structural 
uncertainties in hydrological models [Minville et al., 2008; Finger et al., 2012]. Therefore, the 
selection of climate models is a crucial step when conducting a climate change impact study.

Here we present an approach to select climate models combining the envelope approach and 
the past-performance approach. Our goal is to select an ensemble consisting of a manageable 
number of climate model runs, which still represents all possible futures in terms of future mean 
air temperature and annual precipitation sums, as well as future changes in climatic extremes. 
The climate in our study area is complex with mountainous climate types and monsoon dynamics 
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playing important roles. Because these are often poorly simulated by climate models [Sperber et 
al., 2013], in addition, we aim at selecting only models that have sufficient skill in simulating the 
present day climate in our study area.

2.2	 Study area and data

We illustrate our approach for a study area covering the Indus, Ganges and Brahmaputra river 
basins, ranging from their sources in the Hindu Kush-Himalayan mountains and Tibetan Plateau 
to their mouths in the Arabian Sea and Bay of Bengal respectively (Figure 2.1). This region is 
considered a climate change ‘hotspot’ [De Souza et al., 2015; Nepal and Shrestha, 2015]. The 
ensemble of climate models selected using the approach described here, will be downscaled to 
assess future climate changes at different scales and force hydrological and crop growth models in 
later stages of the research.

We use the RCP4.5 and RCP8.5 model runs available in March 2013 in the CMIP5 repository 
[Taylor et al., 2012] as the initial pool of climate models from which our ensemble of models can 
be selected. For RCP4.5 the total number of model runs available is 94, whereas 69 model runs are 
available for RCP8.5. For analysis of the projected changes in climatic extremes, we use the database 
presented in Sillmann et al. [2013a] and Sillmann et al. [2013b]. This database includes projected 
changes in the climatic indices as defined by the CCI/CLIVAR/JCOMM Expert Team on Climate 
Change Detection and Indices (ETCCDI, [Peterson, 2005]), for CMIP5 models. To evaluate the 
model performance of individual GCM runs we use the Watch Forcing Data ERA-Interim (WFDEI) 
dataset [Weedon et al., 2014], which has been generated using the same methodology as the widely 
used WATCH Forcing Data [Weedon et al., 2011] by making use of the ERA-Interim reanalysis data 

Figure 2.1: Study area comprising the Indus, Ganges, and Brahmaputra river basins. The  
2.5° x 2.5°grid used for most steps in the selection procedure is shown in blue.
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[Dee et al., 2011]. We use the precipitation data in WFDEI which is bias-corrected to the GPCC 
precipitation climatology [Schneider et al., 2013].

2.3	 Methods

For the selection of GCM runs, the envelope-based approach and the past-performance approach 
are integrated in a three-step selection procedure (Figure 2.2). The initial selection of climate 
models is based on the projected average annual changes in the mean temperature and precipitation 
sum. Subsequently, this selection is refined based on changes in extremes of precipitation and 
temperature. Ultimately, the final selection is based on validation of the remaining models’ past 
performance to the WFDEI climatic reference product [Weedon et al., 2014].

2.3.1	 Selection of Representative Concentration Pathways
In the climate modeling community, generally four representative concentration pathways (RCPs) 
are used as a basis for long-term and near-term climate modeling experiments. The four selected 
RCPs are considered to be representative of the scientific literature, and include one mitigation 
scenario (RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6) and one very high baseline 
emission scenario (RCP8.5) [van Vuuren et al., 2011b]. RCP2.6 is representative of the low end of 
the scenario literature in terms of emissions and radiative forcing [van Vuuren et al., 2011a]. Often 

Figure 2.2: Flow-diagram showing the steps taken during the climate model selection procedure.



41

CH
A

PT
ER

 2

these scenarios show negative emissions from energy use in the second half of the 21st century. The 
scenario is shown to be technically feasible, but one of the key assumptions is the full participation 
of all countries in the world in the short run, including broadening participation beyond OECD 
countries, and commitment of important OECD countries [van Vuuren et al., 2010]. As robust, 
realistic climate change scenarios need to be developed to facilitate the planning of adaptation 
measures we choose not to include RCP2.6 for the climate model ensemble. This leaves the choice 
between two medium stabilization scenarios (RCP4.5 and RCP6) and one very high baseline 
emission scenario (RCP8.5). The best choice in that case is to include RCP4.5 and RCP8.5, thus 
including one medium stabilization scenario and the high emission scenario, and covering the 
entire range of radiative forcing resulting from RCP4.5, RCP6 and RCP8.5. Although we decided 
to include only RCP4.5 and RCP8.5, the approach presented here can evidently be applied to model 
ensembles for the other RCPs as well.

2.3.2	 Initial selection (step 1): changes in climatic means
The initial selection is based on the range of projections of changes in mean air temperature (ΔT) 
and annual precipitation sum (ΔP), between 1971-2000 and 2071-2100, averaged over all 2.5° x 2.5° 
grid cells included in the model domain (Figure 2.1). This calculation was done using the KNMI 
Climate Explorer (http://climexp.knmi.nl). For the model runs included in RCP4.5 and RCP8.5 
separately, the 10th and 90th percentile values for ΔT and ΔP are determined, after resampling all 
GCM data to the same 2.5° x 2.5° grid. These values represent the four corners of the spectrum of 
projections for temperature and precipitation change. The 10th percentile value for ΔT and 10th 
percentile value for ΔP are in the “cold, dry” corner of the spectrum. The 10th percentile value for 
ΔT and 90th percentile value for ΔP are in the “cold, wet” corner of the spectrum. The 90th percentile 
value for ΔT and 10th percentile value for ΔP are in the “warm, dry” corner of the spectrum. The 90th 
percentile value for ΔT and 90th percentile value for ΔP are in the “warm, wet” corner of the 
spectrum. The 10th and 90th percentile values are chosen rather than the minimum and maximum 
projections to avoid selecting outliers, cf. other studies [e.g. Immerzeel et al., 2013; Sorg et al., 2014]. 
The proximity of the model runs to the 10th and 90th percentile values is derived from the model 
runs’ percentile rank scores corresponding to their projections for ΔT and ΔP with respect to the 
entire range of projections in the entire ensemble:

where D ,   is the distance of a model (j)’s ΔT and ΔP (P   and P  respectively) to the corner (i)’s 
10th and/or 90th percentile score of ΔT and ΔP for the entire ensemble ( P   and P  respectively). For 
each corner the five models with the lowest values for D and data available at a daily time step are 
selected from the ensemble. We select only models that have data available at a daily time step 
because this is a requirement for an empirical-statistical downscaling method to be applied to the 
GCM runs in a later stage. Nonetheless, model runs with data available at larger time steps are 
included in the initial pool of available model runs used to calculate the model runs’ percentile 
scores, to have a complete representation of all projected possible futures. The initial selection 
results in 5 model runs x 4 corners = 20 model runs for each RCP.

For GCMs with ensemble members with different initial conditions available (denoted with 
rxixpx behind the GCM’s name), all members are included in the ensemble that is subjected to the 
initial selection step. The inclusion of all initial condition ensemble members will lead to a different 
definition of the 10th and 90th percentile values, than when only one initial condition ensemble 

D , = P − P + P − P  (2.1)
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member per GCM is included. We chose to include all initial condition ensemble members because 
each of them leads to a different future and there is no way to determine which of the initial 
condition ensemble members should be preferred over others.

2.3.3	 Refined selection (step 2): changes in climatic extremes
The number of model runs remaining after the initial selection process is further reduced during 
the refined selection step. In this step, the model runs are evaluated for their projected changes 
in climatic extremes. We evaluate the changes in climatic extremes for air temperature and 
precipitation, by considering the changes in two ETCCDI indices [Peterson, 2005] (Table 2.1) for 
both air temperature and precipitation. For characterization of changes in air temperature extremes 
we analyse changes in the warm spell duration index (WSDI) and the cold spell duration index 
(CSDI). For characterization of changes in precipitation extremes we consider the precipitation 
due to extremely wet days (R99pTOT) and the number of consecutive dry days (CDD). Since the 
climate model ensemble will be used to force hydrological and crop growth models, we have chosen 
to analyse changes in R99pTOT and CDD as obvious indicators of precipitation extremes leading 
to associated hydrological extremes whereas CDD is an important indicator for dry spells affecting 
crop growth. WSDI is also an indicator for situations where crops may face water stress due to 
increased evapotranspiration during warm spells. Changes in WSDI and CSDI both have effects on 
the cryospheric processes (snow- and ice melt/accumulation), which are important in the upstream 
parts of our study area. The changes in these indices between 2071-2100 with respect to 1971-2000 
are calculated from the database constructed by Sillmann et al. [2013a; 2013b]. Not all GCM runs 
used for the initial selection are included in this database. For those runs the ETCCDI indices were 
calculated using the same procedures as Sillmann et al. [2013a; 2013b] used in their study. The 
indices are calculated from the daily model output, for each individual year in the future period 
(2071-2100) and reference period (1971-2000), for the individual 2.5° x 2.5° grid cells covering the 
study area (Figure 2.1). For both periods, the indices are then averaged over the period of thirty 
years. The changes in the indices are then calculated as a percentual change for the future period 
with respect to the reference period. Subsequently these changes in the indices are averaged over the 
2.5° x 2.5° grid cells covering the study area.

For each model selected during the initial selection, the most relevant index for air temperature 
and the most relevant index for precipitation are considered. For example, for the models in the 
warm, wet corner, WSDI indicating warm spells and R99pTOT indicating extreme precipitation 
events are considered. CDD and CSDI are not considered in that case, but they are considered 
for models in the dry and cold corners respectively. For the five models initially selected for each 
corner, the two relevant indices are both ranked and given scores 1 to 5. For example in the warm, 

Table 2.1: Description of ETCCDI indices leading the refined selection step.
Meteorological
variable ETCCDI index Index description

Precipitation R99pTOT precipitation due to extremely wet days (> 99th percentile)
Precipitation CDD consecutive dry days: maximum length of dry spell (P < 1 mm)
Air temperature WSDI warm spell duration index: count of days in a span of at least six days where TX 

> 90th percentile (TXij is the daily Tmax on day i in period j)
Air temperature CSDI Cold spell duration index: count of days in a span of at least six days where TN 

< 10th percentile (TNij is the daily Tmin on day i in period j
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wet corner the model with the largest increase in R99pTOT scores 5 points for that index whereas 
the model with the smallest increase in R99pTOT scores 1 point for that index. Similarly, the model 
with the largest increase in WSDI scores 5 points for that index and the model with the smallest 
increase in WSDI scores 1 point for that index. Both scores are then averaged to obtain a final score. 
Based on that final score, the two models with the highest scores are selected. Thus for each corner 
the number of models is reduced from five to two models. For each RCP 4 corners x 2 models = 8 
models are selected, which are validated to the climatic reference product in the next step.

2.3.4	 Final selection (step 3): past performance
The models remaining after the refined selection are subjected to a validation to the Watch Forcing 
Data ERA-Interim (WFDEI) dataset [Weedon et al., 2014]. The selected models are compared to 
the WFDEI for six subdomains (upstream Indus, upstream Ganges, upstream Brahmaputra, 
downstream Indus, downstream Ganges, downstream Brahmaputra, Figure 2.1). The skill 
assessment is done for the period 1980-2004, and skill scores are calculated for each model, taking 
into account all monthly values in this dataset spanning 25 years. Criteria to assess each model’s 
ability to simulate the reference climate are comparisons between the model simulation and WFDEI 
for monthly average mean air temperature and monthly precipitation sums. The validation is done 
per subdomain (Figure 2.1) to analyse differences in model performance between the different river 
basins and between the mountainous upstream parts and downstream parts of the basins, and to 
avoid compensations of overestimations and underestimations in the entire domain.

To assess the performance of the selected GCM runs, skill scores are derived based on earlier 
work by Perkins et al. [2007], Sanchez et al. [2009] and Kjellström et al. [2010]. The calculation of 
temperature and precipitation skills are different. For the calculation of the skill score of temperature 
the approach by Perkins et al. [2007] is used. A metric was developed which “calculates the 
cumulative minimum value of two distributions of each binned value, thereby measuring the 
common area between two PDFs”:

where n is the number of bins used to calculate the Probability Density Function (PDF) for a 
subdomain, ZGCM is the frequency of values in a given bin from the model, and ZOBS is the frequency 
of values in a given bin from the observed data. The number of bins used is 100. If a model simulates 
the observed frequencies perfectly, the skill score (Sscore) will equal one, which is the total sum of the 
probability at each bin center in a given PDF.

The skill score of precipitation is based on the work of Sanchez et al. [2009], which consists of 
a collection of five skill score functions taking into account different aspects of the behavior of 
precipitation. These skill score functions are listed here for our case of comparing GCM data to the 
WFDEI dataset:

S = minimum( Z , Z )  (2.2)

f = 1 −
|A −  A |

2 ∙  A

.

 (2.3)

f = 1 −
|A −  A |

2 ∙  A

.

 (2.4)
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where AGCM and AWFDEI are the areas below the cumulative distribution functions of the GCMs and 
WFDEI respectively. Similarly, A+ and A- are the areas right and left of the 50th percentile. P is the 
mean annual precipitation over the total area and σ is the standard deviation of the probability 
distribution function. The distribution as a whole is taken into account through the total area below 
the density function (f1, Eq. (2.3)) and the mean (f4, Eq. (2.6)). High and low precipitation amounts 
are taken into account by analyzing the amounts above the 50th percentile limit (f2, Eq. (2.4)) and 
the amounts below the 50th percentile limit (f3, Eq. (2.5)) respectively. The shape of the distribution 
is considered through the variance (f5, Eq. (2.7)). The five skill scores are multiplied to yield a total 
skill score for precipitation. The skill scores for temperature and precipitation are calculated for 
the control period for the six subdomains separately. Following Perkins et al. [2007] the average is 
taken from the skill scores for both temperature and precipitation and these scores are ranked per 
subdomain. Subsequently, the rankings of the subdomains are summed for each model run which 
then results in a ranking for the entire study area, further referred to as general ranking.

The analysis until here is based on the general performance of the model. However, one of 
the main meteorological phenomena in our study area is the Asian monsoon. Most GCMs have 
difficulty in simulating the right amount of precipitation and most of them underestimate the 
precipitation in the monsoon period [Sperber et al., 2013]. The correct representation of monsoonal 
precipitation is key for hydrological impact studies in this region and an additional skill score 
specifically designed to quantify the capability of the GCM to simulate the monsoon is introduced. 
This skill score consists of the absolute bias in precipitation of the GCM for the complete monsoon 
period (June – September). The highest ranked GCM has the smallest absolute bias and the lowest 
ranked GCM the largest absolute bias. Finally, the two rankings (general ranking and monsoon 
ranking) are combined and weighted to reach a final ranking. The weight of the general ranking is 3 
and the weight of the monsoonal ranking is 1. Based on this final ranking, the selection from step 2 
(two model runs in each corner) is reduced to one model in each corner, forming the final ensemble 
of climate models.

2.4	 Results

2.4.1	 Selection of models

2.4.1.1	 Initial selection (step 1): changes in climatic means
The initial selection is made based on the projected changes in mean air temperature (ΔT) and 
annual precipitation sums (ΔP) between 2071-2100 and 1971-2000 thus indicating the projected 
change during 100 years (Figure 2.3, Tables A1 and A2). For each GCM run, the distance to the 
10th and 90th percentile values in the corners is calculated as described in section 2.3.2, and the 
five models that have daily output available and are located closest to these corners are selected 

f = 1 −
|σ −  σ |

2 ∙  σ

.

 (2.7)

f = 1 −
|P −  P |

2 ∙  P

.

 (2.6)

f = 1 −
|A −  A |

2 ∙  A

.

 (2.5)
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(Figure 2.3). The range in the projections for ΔT and ΔP is much larger for the RCP8.5 model pool 
than for the RCP4.5 model pool. ΔT ranges from 1.7 °C to 3.6 °C and ΔP ranges from -5.7% to 
+19.4% for RCP4.5, whereas for RCP8.5 these ranges are 3.6 °C to 6.5 °C and -8.5% to +37.4% 
respectively. This difference in the ranges of projections is also obvious from the differing degree 
of clustering in the scatterplots (Figure 2.3). Note that the values are averaged for all 2.5° x 2.5° grid 
cells in the study area, thus spatial heterogeneity is not considered. The proximity of selected models 
to the 10th and 90th percentile values can differ substantially. For example, the selected models in 
the warm, wet corner for RCP4.5 are all relatively close to the 90th percentile values for ΔT and 
ΔP, whereas some of the selected models in the cold, wet corner have a considerable distance from 
the 10th and 90th percentile values for ΔT and ΔP. This is partly due to the relatively small number 
of models with daily output available in this corner of the model pool. In the cold, wet corner for 
RCP8.5, all models have considerable distance to the 10th and 90th percentile values of ΔT and ΔP.

2.4.1.2	 Refined selection (step 2): changes in climatic extremes
For the models remaining after the initial selection, the changes in four ETCCDI indices between 
1971-2000 and 2071-2100 are calculated. For each corner, the two models that have the highest 
combined scores for the changes in the relevant temperature and precipitation indices are selected 
(models marked yellow in Figure 2.4). This process of calculating a combined score based on 
ranking can lead to the situation that models with the largest change in one of the ETCCDI indices 
are not selected. For example, in the warm, dry corner for RCP4.5, the IPSL-CM5A-MR_r1i1p1 and 
IPSL-CM5A-LR_r2i1p1 models are not selected, although they project the largest changes in CDD 
and WSDI respectively.

When looking at the combination of changes in mean air temperature, precipitation sums and 
changes in the ETCCDI indices (Figure 2.5), it is clear that in general the models projecting large 

Figure 2.3: Projected changes in mean air temperature (ΔT) and annual precipitation sum (ΔP) 
between 2071-2100 and 1971-2000 for all included RCP4.5 (a) and RCP8.5 (b) GCM runs. Black 
crosses indicate the 10th and 90th percentile values for ΔT and ΔP. The model runs selected for step 
2 are indicated with colors.



46

CH
A

PTER 2

changes in the means, also project large changes in extremes. For example, for RCP4.5, the models 
projecting the largest increases in mean air temperature also show the largest increases in warm 
spells and the largest decreases in cold spells (Figure 2.5, panel a). For RCP8.5 this correlation 
is less marked (Figure 2.5, panel c). For precipitation, in both RCPs all models project increases 
in extremely high precipitation events, even the models that project decreasing total precipitation 
(Figure 2.5, panel b and c). Increases in dry spells (CDD) are projected by models that project 

Figure 2.4: GCM runs analysed during the refined selection step. Models selected for step 3 are 
indicated with yellow color.
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moderate increases in total precipitation (up to around +10% and +20% for RCP4.5 and RCP8.5 
respectively). The generally observed relationship that models projecting a larger increase in total 
precipitation also project a larger increase in precipitation due to extremely wet days and the 
strongest decrease in dry periods holds for both RCPs.

The selection of five models in each corner during the initial selection step, may lead to omission 
of the GCM runs with the largest projected changes in extremes. This is because projected changes 
in extremes are only considered in the refined selection step, i.e.: we consider the changes in mean 
air temperature and annual precipitation sum as leading criterion in our selection approach. The 
observation that the GCM runs located near the tails of the distribution of projected changes in the 
mean are generally also located near the tails of the distribution of projected changes in extremes 
(Figure 2.5), supports our sequence of selection steps.

2.4.1.3	 Final selection (step 3): past performance
The final selection of models is based on a validation of model performance to the Watch Forcing 
Data ERA-Interim (WFDEI) dataset. Table 2.2 lists the calculated skill scores for the GCM runs 
remaining from step 2. The score ranking (Table 2.3) results in selecting the GCM runs for the final 
ensemble (Table 2.4). Note that this way of selecting GCM runs will omit GCM runs which have 
good skill for certain subdomains, like for example EC-EARTH_r2i1p1 for the Upper Ganges. The 
GCM runs which were preselected for the warm, wet corner are the models which perform less 
in simulating the present climate. For the warm, wet corner in the RCP4.5 scenario the selected 

Figure 2.5: Projected changes in mean air temperature (ΔT), warm spell duration index (ΔWSDI), 
cold spell duration index (ΔCSDI) between 2071-2100 and 1971-2000 for RCP4.5 (a) and 
RCP8.5 (c). Projected changes in annual precipitation sum (ΔP), precipitation due to extremely 
wet days (ΔR99pTOT), consecutive dry days (ΔCDD) between 2071-2100 and 1971-2000 for 
RCP4.5 (b) and RCP8.5 (d).



48

CH
A

PTER 2

GCM ranked only 10th in the overall final ranking. This may be indicative that such a future is less 
probable. Another striking feature is that the same two models (inmcm4_r1i1p1 and CMCC-CMS_
r1i1p1) are selected for both RCP4.5 and RCP8.5.

Figure 2.6 and Figure 2.7 show the monthly average of mean air temperature and monthly 
average of precipitation respectively for each subdomain, for all models that were selected 
during step 2. As could be expected, a large difference between all models is witnessed. Figure 
2.6 shows that all GCMs show a cold bias in wintertime for the Upper Indus. Some models also 
have difficulties in simulating the annual precipitation cycle (Figure 2.7). Especially in the upper 
Indus, the models diverge in the simulation of the annual cycle. Mountainous climate is less densely 
monitored, leading to larger errors in mountainous areas in reference climate datasets, such as 
WFDEI. The larger biases between the simulation models and WFDEI over the mountainous 
areas may be partly attributed to this. The spread between the climate models is large but there 
is reasonable agreement for most of the subdomains. The mean and annual cycle are reasonably 
captured. Most GCM runs underestimate the precipitation in the lower subdomains. The analysis 
on the annual cycles indicates that the selected models are correctly selected. The large observed 
biases emphasize the necessity of applying downscaling and bias-correction methods before the 
GCM outputs can be used in an impact study.

Table 2.2: Skill scores for GCM runs remaining after step 2. Skill scores are calculated for 
precipitation and air temperature for six subdomains separately. LI=Lower Indus, UI=Upper Indus, 
LB=Lower Brahmaputra, UB=Upper Brahmaputra, UG=Upper Ganges, LG=Lower Ganges. Note 
that GCM runs “CMCC-CMS_r1i1p1” and “inmcm4_r1i1p1” are selected in step 2 for both 
RCP4.5 and RCP8.5, but listed only once in the table.

GCM runs
Precipitation skill scores Mean air temperature skill scores

LI UI LB UB LG UG LI UI LB UB LG UG

CMCC-CM_r1i1p1 0.07 0.10 0.24 0.00 0.09 0.14 0.59 0.54 0.65 0.38 0.65 0.64

CMCC-CMS_r1i1p1 0.12 0.06 0.24 0.01 0.15 0.37 0.61 0.53 0.55 0.65 0.57 0.58

CSIRO-Mk3-6-0_r4i1p1 0.02 0.09 0.19 0.41 0.06 0.07 0.50 0.57 0.41 0.62 0.51 0.61

CSIRO-Mk3-6-0_r5i1p1 0.02 0.12 0.17 0.29 0.06 0.06 0.50 0.55 0.40 0.64 0.49 0.56

BNU-ESM_r1i1p1 0.32 0.15 0.10 0.04 0.23 0.29 0.60 0.53 0.40 0.57 0.60 0.43

CCSM4_r2i1p1 0.06 0.07 0.20 0.02 0.27 0.02 0.72 0.49 0.55 0.47 0.65 0.62

CESM1-BGC_r1i1p1 0.07 0.08 0.23 0.02 0.26 0.03 0.75 0.50 0.59 0.50 0.66 0.63

inmcm4_r1i1p1 0.14 0.36 0.15 0.37 0.24 0.21 0.52 0.45 0.27 0.41 0.51 0.59

IPSL-CM5A-LR_r4i1p1 0.06 0.10 0.05 0.29 0.07 0.41 0.61 0.58 0.69 0.43 0.61 0.66

CanESM2_r2i1p1 0.08 0.16 0.13 0.19 0.16 0.11 0.50 0.51 0.33 0.52 0.59 0.54

CanESM2_r3i1p1 0.14 0.16 0.13 0.20 0.11 0.12 0.55 0.46 0.32 0.52 0.63 0.58

bcc-csm1-1_r1i1p1 0.06 0.57 0.12 0.25 0.08 0.09 0.61 0.56 0.43 0.52 0.56 0.52

MRI-CGCM3_r1i1p1 0.04 0.26 0.05 0.10 0.03 0.16 0.48 0.45 0.59 0.41 0.50 0.57

EC-EARTH_r2i1p1 0.01 0.27 0.14 0.20 0.10 0.63 0.51 0.39 0.36 0.47 0.40 0.45
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Table 2.3: Ranking of the GCM runs for the six subdomains (LI: Lower Indus, UI: Upper Indus, 
LB: Lower Brahmaputra, UB: Upper Brahmaputra, LG: Lower Ganges, UG: Upper Ganges)

RCP Projection GCM run
Rank per subdomain

Total General 
Rank

Monsoon 
Rank

Final 
RankLI UI LB UB LG UG

RC
P4

.5

Warm, dry
CMCC-CM_r1i1p1 8 10 1 14 7 5 45 7 7 6

CMCC-CMS_r1i1p1 4 12 3 9 8 3 39 5 4 4

Warm, wet
CSIRO-Mk3-6-0_r4i1p1 14 8 7 1 11 9 50 10 8 10

CSIRO-Mk3-6-0_r5i1p1 13 7 8 2 12 13 55 14 9 14

Cold, wet
BNU-ESM_r1i1p1 1 4 10 10 3 7 35 2 3 1

CCSM4_r2i1p1 3 14 4 13 2 11 47 8 13 9

Cold, dry
CESM1-BGC_r1i1p1 2 13 2 11 1 10 39 5 10 5

inmcm4_r1i1p1 9 2 14 3 4 4 36 3 2 2

RC
P8

.5

Warm, dry
IPSL-CM5A-LR_r4i1p1 6 5 5 6 9 2 33 1 12 3

CMCC-CMS_r1i1p1 4 12 3 9 8 3 39 5 4 4

Warm, wet
CanESM2_r2i1p1 10 6 12 7 5 12 52 12 5 12

CanESM2_r3i1p1 5 11 13 5 6 8 48 9 6 8

Cold, wet
bcc-csm1-1_r1i1p1 7 1 9 4 10 14 45 7 11 7

MRI-CGCM3_r1i1p1 12 3 6 12 13 6 52 12 14 13

Cold, dry
EC-EARTH_r2i1p1 11 9 11 8 14 1 54 13 1 11

inmcm4_r1i1p1 9 2 14 3 4 4 36 3 2 2

Table 2.4: Final selected ensemble of GCM runs with projected changes in mean air temperature, 
precipitation and ETCCDI indices between 1971-2000 and 2071-2100 averaged over the study 
area.

RCP Projection GCM run ΔT (°C) ΔP (%) ΔWSDI (%) ΔCSDI (%) ΔR99P (%) ΔCDD (%)

RC
P4

.5

cold,wet BNU-ESM_r1i1p1 2.5 12.7 729.3 -85.9 140.3 -6.7

cold,dry inmcm4_r1i1p1 1.7 2.7 347.5 -63.4 10.5 2.9

warm, dry CMCC-CMS_r1i1p1 3.5 -2.9 938.2 -98.4 56.9 14.3

warm, wet CSIRO-Mk3-6-0_r4i1p1 3.5 15.6 1530.3 -95.4 109.3 -9.6

RC
P8

.5

cold, dry inmcm4_r1i1p1 3.6 5.4 905.6 -89.6 30.3 5.6

warm, dry CMCC-CMS_r1i1p1 6.3 -3.1 1855.1 -99.4 140.2 24.1

cold, wet bcc-csm1-1_r1i1p1 4.4 29.7 1215.6 -97.1 220.6 -9.6

warm, wet CanESM2_r3i1p1 6.1 37.4 1426.1 -100.0 295.5 -11.7
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Figure 2.6: Average annual cycles of temperature for WFDEI and GCM runs per subdomain 
(UI=Upper Indus, LI=Lower Indus, UG=Upper Ganges, LG=Lower Ganges, UB=Upper 
Brahmaputra, LB=Lower Brahmaputra).
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Figure 2.7: Average annual cycles of precipitation for WFDEI and GCM runs per subdomain 
(UI=Upper Indus, LI=Lower Indus, UG=Upper Ganges, LG=Lower Ganges, UB=Upper 
Brahmaputra, LB=Lower Brahmaputra).



52

CH
A

PTER 2

2.4.2	 Future climate in the Indus, Ganges and Brahmaputra basins
Averaged over the basins, according to the selected ensembles of GCM runs, mean air temperature 
increases by 1.7 to 3.5 °C for RCP4.5 and 3.6 to 6.3 °C for RCP8.5 between 1971-2000 and 2071-
2100 (Table 2.4). However, there is large spatial variability within the study area (Figure 2.8). The 
largest increases in mean air temperature are projected for the upstream mountainous parts of the 
river basins, whilst the lowest increases are projected for the most downstream parts of the basins. 
The difference in projected temperature increase between the mountainous upstream and lower 
downstream parts of the river basin is several degrees. This elevation-dependent warming is in 
line with what was found in historical temperature records [Rangwala and Miller, 2012; Pepin et 
al., 2015]. Our analysis shows that the observed elevation-dependent warming may become more 
pronounced in the future. The uncertainty within the ensemble is in general slightly larger for the 
downstream basins compared to the upstream basins for RCP4.5, although the opposite is observed 
for the Brahmaputra basin. For RCP8.5, the largest uncertainty in the projections is observed for the 
upstream basins.

For precipitation, in RCP4.5 the largest increases are projected for the eastern part of the lower 
Indus and the western part of the lower Ganges (Figure 2.8). At the same time, the uncertainty in 
the projections within the ensemble is also largest for this region. The RCP8.5 ensemble shows the 
largest increases in precipitation in the lower Brahmaputra basin, with the largest uncertainty in the 
projection also in that region. The uncertainty in model projections is spatially more uniform for 
the RCP8.5 ensemble than for the RCP4.5 ensemble. Note that for both RCPs the strongest decrease 
in precipitation is projected for the western part of the Indus basin. Traversing the Indus basin from 
west to east, the projected precipitation decrease changes to precipitation increase. These differences 
in projected precipitation changes may well be related to the contrasts in climate between the 
western Indus basin, with strong climatic influence from westerly systems, and the eastern Indus 
basin, which has a monsoon-dominated climate [Bookhagen and Burbank, 2010; Maussion et al., 
2014].

In addition to large spatial variability, seasonal variability in the climate change projections is 
large as well (Figure 2.9). The projected change in temperature shows a significant seasonal pattern 
for both RCPs. Averaged over the study area, both ensembles project the largest temperature 
increases for the drier winter months, and smallest temperature increase for the wet summer 
months. For both RCPs the uncertainty in projections is larger for the winter months, compared 
to the monsoon season (June-September). The uncertainty in model projections for temperature is 
larger for the RCP8.5 ensemble than for the RCP4.5 ensemble.

The intra-annual projections of precipitation change show some remarkable features (Figure 
2.9). For the RCP4.5 ensemble, in general precipitation increases are projected for the monsoon 
season. Especially for July and August the spread between the projections is extremely large (for 
July ranging from almost no increase to 225% increase). For January the mean projection indicates 
decreasing precipitation, for February unchanged precipitation and slight precipitation increase 
for March and April. For May and June only small changes are projected. The uncertainty in the 
projections however is large here as well. Remarkable is also the strong projected precipitation 
increase in December, with an extremely large uncertainty in the projections. For RCP8.5, the intra-
annual patterns in precipitation change are quite similar. Remarkable is the observation that the 
extremely large model spread as observed for July, August and December in the RCP4.5 ensemble, 
does not occur for any month in the RCP8.5 ensemble. Still, large uncertainty is observed for most 
months in the RCP8.5 ensemble, with both positive and negative projections of precipitation change 
for 10 out of 12 months.
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Regarding the projected changes in extremes, the wettest, driest, warmest, and coldest projections 
for the two ensembles are analyzed (Figure 2.10). For RCP4.5, the model with the largest projected 
increase in precipitation shows the largest increase in extreme precipitation events in the Ganges 
basin and the eastern part of the lower Indus basin. Decreases in precipitation due to extremely wet 
days are projected for the western part of the Indus basin. This also holds for the model with the 

Figure 2.8: Projected changes between 1971-2000 and 2071-2100 in mean air temperature and 
annual precipitation sum in the Indus, Ganges and Brahmaputra basins. Upper panels show results 
for RCP4.5 model ensemble and lower panels show results for RCP8.5 model ensemble. Left 
panels show the mean of the model ensemble and right panels show the standard deviation of the 
model ensemble. Grey lines indicate upper and lower basin boundaries.



54

CH
A

PTER 2

largest projected increase in precipitation for RCP8.5. The western part of the Lower Indus basin 
is an area where a decreasing precipitation trend is projected (Figure 2.8). The largest increase in 
precipitation due to extremely wet days is projected in the Brahmaputra basin, according to this 
GCM run. An increase in dry spells is projected for almost the entire study area for both the RCP4.5 
and RCP8.5 model ensemble. The strongest increases in dry spells are projected for the lower 
Ganges and upper Brahmaputra basins for both RCPs.

The duration of warm spells according to the warmest members in both ensembles increases for 
the entire study area. For both RCP4.5 and RCP8.5 the increase is strongest for the lower Indus 
basin. The duration of cold spells on the other hand, according to the coldest members in both 
ensembles, decreases for the entire study area. For RCP4.5, the decrease is smallest in the upper 
Indus and western part of the lower Indus basin, whereas strongest decreases are projected for the 
upper Brahmaputra basin. For RCP8.5, some grid cells even show a decrease in CSDI of 100%, 
meaning no period of at least six days in a row with the daily minimum temperature smaller than 
the 10th percentile temperature occurs during 2071-2100.

2.5	 Discussion

Although our method aims to combine the strengths of envelope-based and past performance based 
selection of GCMs for impact studies a few limitations remain.

Figure 2.9: Study-area averaged monthly projected changes in temperature and precipitation 
between 1971-2000 and 2071-2100. Dots indicate model ensemble mean projection and whiskers 
indicate the range of projections according to the model ensemble.
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The first issue is related to the scale of the application. During the first selection step projected 
changes are averaged over the entire area and this may dilute the spatial variation in projected 
changes. The same scaling issues apply to selection based on the changes in the extremes in the 
second step of our approach. This is not unique to our approach, but holds for most studies that 
cover a large spatial domain. A potential solution is to divide the study area into multiple parts and 
apply the selection approach to each part independently. However, the drawback of this approach is 

Figure 2.10: Projected changes in ETCCDI indices between 1971-2000 and 2071-2100 for 
RCP4.5 (a-d) and RCP 8.5 (e-h). Changes in the corresponding index are shown for the wettest 
(a,e), driest (b,f ), warmest (c,g) and coldest (d,h) members in the 4-model ensembles.
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the introduction of physical inconsistencies and erroneous boundary effects in the climate forcing at 
the transition from one GCM to another.

The second limitation relates to the fact that the envelope of changes in means is leading in the 
selection approach. This may result in a reduction in the range of projections of changes in climatic 
extremes in the ensemble. The same holds for the final step, when model runs are selected based 
on their skill in simulating past climate. Because the selection based on skill is introduced in the 
last step, with less GCM runs available to select from than before step 1 and step 2, the selected 
models do not necessarily have the best skill in simulating past climate. This indicates that the 
sequence of selection, or weighting of different criteria, is not fixed and may be subject to changes, 
depending on the type of climate change impact study. Another approach combining skill and 
envelope is introduced by McSweeney et al. [2012]. For a study area in Vietnam the researchers 
first eliminate model runs that do not have sufficient skill in simulating the monsoon, given its 
importance for their study area, before assessing the range of projections provided by the remaining 
models. In our approach we choose the range in projected climate change to be leading over the 
historical performance to ensure including all possible futures as projected by the CMIP5 multi-
model ensemble, which is desirable for planning of adaptation strategies. Previous analyses of 
CMIP5 GCMs’ skills to simulate the precipitation patterns in our study area, which are largely 
dominated by monsoon dynamics, showed that CMIP5 GCMs have poor skills in simulating the 
important features of the precipitation dynamics in our study area [Sperber et al., 2013; Palazzi et 
al., 2014; Sperber and Annamalai, 2014]. Since no single model or group of models clearly stands 
out in performance for our study area, this constitutes another reason to prefer to include all 
possible futures. To show how the chosen ordering of selection steps affects the model skill of the 
selected ensembles, we test how the model skill of selected models compares to model skill in the 
total model ensembles. Figure 2.11 shows how the biases in air temperature and precipitation in the 
ensembles of model runs remaining after selection step 2 correspond to the biases in the total model 
ensembles for winter season, monsoon season and at annual scale. Although the distributions differ 
slightly and especially for the winter season, the distributions of the selected models and total model 
ensembles are generally in the same magnitude, indicating that the skills of the selected models are 
comparable to the skills of the models in the entire ensemble. Thus we conclude that there is no 
significant bias towards models with poorer skills in the selected model ensembles.

Third, the weighting of different skill scores introduces a degree of subjectivity. In our approach 
of testing a model’s past-performance we assign more weight to the model’s skill in simulating the 
entire annual cycle of precipitation and temperature than to its skill in simulating the monsoon. 
Furthermore we assign equal weight to the indicators for precipitation extremes and temperature 
extremes in calculating model scores in step 2 of our approach. We have chosen to assign larger 
weight to the model’s skill to simulate the entire annual cycle of precipitation and temperature and 
equal weight to air temperature and precipitation extremes because cryospheric processes in the 
upstream parts of the basins are important for the hydrological regimes of these basins [Schaner 
et al., 2012; Lutz et al., 2014]. Changes in these cryospheric processes are driven by the combined 
effect of changes in precipitation and temperature. In each of these issues, the weighting could 
be adjusted for other studies, depending on which climatic variables are more important in each 
particular case.

Finally, our approach assumes independency of all model runs, whereas some models share 
identical model code or use the same forcing and validation data, leading to model interdependency 
[Jun et al., 2008; Masson and Knutti, 2011; Knutti et al., 2013]. In our case where we include multiple 
initial condition ensemble members of the same GCM, this interdependency is particularly large. 
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The approach as described here could be expanded by considering weighting metrics for the degree 
of CMIP5 model interdependencies [e.g. Sanderson et al., 2015a, 2015b].

The use of GCMs for climate change impact studies is common practice, although the usefulness 
of this approach has recently been questioned [Kundzewicz and Stakhiv, 2010; Bakker, 2015]. As 
also demonstrated in this study, the biases between GCM simulations and observations are large, 
and many GCMs lack the skill to simulate important regional climatic features, such as the Asian 
monsoon in our case [Sperber et al., 2013]. Dynamic and empirical-statistical downscaling and bias-
correction methods may help to reduce the biases, but cannot completely bridge them [Pielke and 
Wilby, 2012]. This stresses that the currently available climate change projections must be used with 
caution when defining climate change adaptation policies.

2.6	 Conclusions

The selection of climate models for climate change impact studies is not straightforward, while 
at the same time it is a crucial step when conducting such a study. The approach we introduce in 
this study seeks the optimal balance between ensuring that the selected GCMs represent changes 
in average and extreme climatic conditions well, but at the same time have reasonable skill in 
simulating the past climate, with a particular focus on the monsoon dynamics.

The ensembles of selected GCM runs for RCP4.5 and RCP8.5 show that the uncertainty of 
future climate in this region is very large. Projections of mean air temperature indicate an increase 
ranging from 1.7 °C to 6.3 °C between 1971-2000 and 2071-2100, averaged over the three river 
basins, with stronger warming at higher altitudes. The uncertainty in future precipitation is 
larger, with area-averaged projections ranging from -3.1% to +37.4%. All GCM runs included in 
the selected ensembles project increases in warm spells and decreases in cold spells. Besides, all 
selected GCM runs project increases in extremely high precipitation events, even the GCM runs 

Figure 2.11: Comparison of GCM biases in all model runs and model runs remaining after 
selection step 2. Biases are calculated using monthly data for 1980-2004 with respect to WFDEI 
data [Weedon et al., 2014], for precipitation (a) and mean air temperature (b). Biases are calculated 
for the winter season (DJF), monsoon season ( JJAS) and annually. Bars indicate the ensemble 
mean biases and whiskers indicate the standard deviations of the ensemble’s biases.
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that project decreases in annual precipitation sum. Model runs projecting decrease in precipitation 
project increasing dry spells, and model runs projecting strong increases in precipitation project 
a reduction of dry spells. However, an increase in dry spells is projected by the model runs that 
project a minor increase in precipitation. These numbers are averages over the entire Indus, Ganges 
and Brahmaputra river basins. Spatial variability as well as seasonal variability, in terms of the mean 
projections and the uncertainty in the projections, are very large. This means that the future climate 
of the region remains very uncertain, which may compromise defining adequate adaptation policies.
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Chapter 3

Simulating future glacier extent at the
large river basin scale

Based on: Lutz, A.F., W.W. Immerzeel, A. Gobiet, F. Pellicciotti, and M.F.P. Bierkens (2013), 
Comparison of climate change signals in CMIP3 and CMIP5 multi-model ensembles and implications 
for Central Asian glaciers, Hydrology and Earth System Sciences, Vol. 17, pp. 3661 – 3677.

Abstract 

Central Asian water resources largely depend on melt water generated in the Pamir and Tien 
Shan mountain ranges. To estimate future water availability in this region, it is necessary to use 
climate projections to estimate the future glacier extent and volume. In this study, we evaluate the 
impact of uncertainty in climate change projections on the future glacier extent in the Amu and 
Syr Darya river basins. To this end we use the latest climate change projections generated for 
the upcoming IPCC report (CMIP5) and, for comparison, projections used in the fourth IPCC 
assessment (CMIP3). With these projections we force a regionalized glacier mass balance model, 
and estimate changes in the basins’ glacier extent as a function of the glacier size distribution in 
the basins and projected temperature and precipitation. This glacier mass balance model is 
specifically developed for implementation in large-scale hydrological models, where the spatial 
resolution does not allow for simulating individual glaciers and data scarcity is an issue. Although 
the CMIP5 ensemble results in greater regional warming than the CMIP3 ensemble and the range 
in projections for temperature as well as precipitation is wider for the CMIP5 than for the CMIP3, 
the spread in projections of future glacier extent in Central Asia is similar for both ensembles. This 
is because differences in temperature rise are small during periods of maximum melt (Jul-Sep) 
while differences in precipitation change are small during the period of maximum accumulation 
(Oct-Feb). However, the model uncertainty due to parameter uncertainty is high, and has roughly 
the same importance as uncertainty in the climate projections. Uncertainty about the size of the 
decline in glacier extent remains large, making estimates of future Central Asian glacier evolution 
and downstream water availability uncertain.

3.1	 Introduction

The fate of Asian glaciers under climate change has been the topic of a heated scientific debate 
[Cogley et al., 2010; Immerzeel et al., 2010; Kargel et al., 2011; Bolch et al., 2012; Sorg et al., 2012]. 
A main reason for this is the lack of systematic cryospheric observations and the absence of robust 
methods that can assess glacier evolution under climate change at the large river basin scale 
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[Unger-Shayesteh et al., 2013]. Downstream water availability in several large Asian rivers is 
highly sensitive to changes in snow and glacier extent [Immerzeel and Bierkens, 2012], and large 
populations depend on the water generated upstream. This dependence is likely to increase as 
irrigated areas further expand under population growth [Wada et al., 2011].

To assess future changes in high mountain hydrology, glacio-hydrological models forced by 
climate scenarios are used. Future glacier extent is a combined result of the glacier mass balance 
and ice-flow dynamics. While mass balance modeling is rather straightforward to implement 
and approaches of different complexity can be used (from simple degree-day to energy-balance 
models for calculation of ablation), changes in glacier geometry due to ice flow are more complex 
to include. At the same time, changes in glacier geometry have to be considered in regions where 
glacier melt makes a significant contribution to total runoff. Ideally, these should be simulated 
with mass balance models combined with two or three dimensional ice flow dynamics [e.g. Huss 
et al., 2007; Jouvet et al., 2008], but these are computationally demanding and require detailed 
knowledge of glacier bed geometry and ice thickness distribution. Other approaches have been 
developed in which ice is transported from the accumulation zone to the ablation zone through 
basal sliding or creep [e.g. Immerzeel et al., 2011, 2013], but, like models of ice flow dynamics, this 
approach is only applicable for small catchments as it requires modeling at high spatial resolution. 
In several hydrological models glaciers are treated as static entities that generate melt water and 
the glacier extent is modified for the future by making crude assumptions on the ice mass balance 
[e.g. Immerzeel et al., 2010] or by imposing hypothetical glacier scenarios [e.g. Singh and Bengtsson, 
2004; Rees and Collins, 2006; Singh et al., 2006; Finger et al., 2012]. A commonly used alternative 
method is to use volume-area scaling relationships [e.g. van de Wal and Wild, 2001; Möller and 
Schneider, 2010; Radić and Hock, 2011].

A parameterization of future glacier evolution has been developed for individual glacier systems 
[Huss et al., 2010]. Although this approach can be applied to any area, it requires recalibration based 
on repeated Digital Elevation Models (DEMs) for different glacier types. Several global scale models 
that simulate glacier mass balances have been developed [e.g. Hirabayashi et al., 2010; Radić and 
Hock, 2011], but limited approaches to assess glacier evolution at the large river basin scale are 
available. To our knowledge only few studies of glacier changes at basin scale have been conducted 
[Prasch, 2010; Weber et al., 2010; Prasch et al., 2012], all using the same modeling approach. This 
approach uses an energy-balance model for the calculation of melt and therefore requires additional 
atmospheric input besides air temperature. Thus, there is a strong need for an approach that can 
be applied at the large river basin scale, requires a minimum of data inputs which are readily 
available and which generalises changes in glacier extent over large areas without the need to model 
individual glaciers. At the same time this approach has to yield a reliable estimate of future glacier 
extent at the large river basin scale.

Models to estimate future ice areas and volumes are commonly forced by air temperature and 
precipitation provided by General Circulation Models (GCMs) which are downscaled to the study 
region. However, there is large spread in the GCM projections [Hawkins and Sutton, 2009, 2010; 
Radić and Clarke, 2011]. This large spread is especially true for precipitation in Asia [Immerzeel 
et al., 2010]. There is growing agreement that impact studies should be forced by an ensemble of 
GCMs outputs [Hawkins and Sutton, 2009, 2010]. While this has been done for North America [e.g. 
Radić and Clarke, 2011; Zhang et al., 2011], river basins originating in the European Alps [e.g. Huss, 
2011; Farinotti et al., 2012], for river basins worldwide [e.g. Nohara et al., 2006], or for selected 
glaciers [e.g. Giesen and Oerlemans, 2010], no detailed assessments are available for Central Asia. 
Hawkins and Sutton [2009, 2010] identified three main sources of uncertainty in future climate 
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projections: i) model uncertainty due to the structural differences among GCMs, by which different 
models produce different projections for the same radiative forcing; ii) scenarios uncertainty due to 
different radiative forcing; and iii) uncertainty due to the natural climate variability. They showed 
that the first source of uncertainty is the larger throughout the century for both temperature and 
precipitation. It seems therefore imperative to take it into account in impact studies of glacier 
changes.

The aim of this study is to quantify the impact of uncertainty in climate change projections on 
the future glacier extent in the Amu Darya and Syr Darya river basins; two melt-water influenced 
rivers which provide the most important water sources in the Central Asian region. Therefore we 
analyse the differences in uncertainty range between the latest climate change projections provided 
by the fifth Coupled Model Intercomparison Project (CMIP5) generated for the fifth assessment 
report of the Intergovernmental Panel on Climate Change (IPCC), and climate change projections 
used for the fourth IPCC assessment report (CMIP3). These projections for the climate from 2008 
to 2050 are analysed at a monthly scale, and the results are used to force a glacier model simulating 
the future response of glaciers and changes in glacier geometry at the basin scale. We quantify 
the uncertainty in glacier projections as a result of the range in the climate change projections, 
and show how this uncertainty differs between the CMIP3 and CMIP5 ensembles. Moreover, the 
sensitivity of the presented approach to the model parameters is separately addressed, and the 
approach is validated.

3.2	 Study area

The sources of the Amu Darya and Syr Darya rivers are located in the Pamir and Tien Shan 
mountains respectively (Figure 3.1), and both rivers drain into the Aral Sea. Water allocation is a 
highly sensitive topic in the region. The upstream countries (Kyrgyzstan and Tajikistan) use water 

Figure 3.1. Upstream parts of the Amu and Syr Darya river basins (in green and pale blue, 
respectively), the main river system (blue lines), the initial glacierized fraction per 1 km grid cell 
(red shades) and political boundaries (black lines).



62

CH
A

PTER 3

mainly for hydropower production during winter, whereas the downstream countries (Uzbekistan, 
Turkmenistan and Kazakhstan) utilize water for irrigation during summer where around 22 million 
people depend on irrigated agriculture [Siegfried et al., 2012]. Glacier melt provides an important 
source of water in both basins, given the dry and warm climate downstream [Kaser et al., 2010; Sorg 
et al., 2012]. The total glacierized area is 10,289 km2 (1.3% of total 799,261 km2 basin area) in the 
Amu Darya basin and 1596 km2

 (0.14% of total 1,117,625 km2 basin area) in the Syr Darya basin, as 
calculated from the Randolph Glacier Inventory version 2.0 [Arendt et al., 2012b], which for Central 
Asia is a compilation of data acquired between 1960 and 2010. Significant reductions in area and 
volume have been reported for the Tien Shan [Khromova et al., 2003; Aizen et al., 2007a, 2007b; 
Bolch, 2007; Narama et al., 2010; Siegfried et al., 2012] and Pamir mountains [Khromova et al., 2006] 
during the last decades.

3.3	 Data

3.3.1	 Digital elevation models
In this study two DEMs are used. Both are based on the Shuttle Radar Topographic Mission (SRTM) 
DEM at a nominal resolution of 90 m. For the downscaling of GCMs, this DEM is resampled to 1 
km resolution. From here on, this DEM will be referred to as the 1 km DEM, and 1 km will also 
be the spatial resolution of the glacier model. For sub-grid calculations, the SRTM DEM at 90 m 
resolution is used. This DEM is referred to as the 90 m DEM.

3.3.2	 Climate data
A dataset of precipitation and temperature spanning thirty years (1978-2007) is used as reference 
for the climate change assessment. For this period, we use the Asian Precipitation Highly-Resolved 
Observational Data Integration Towards Evaluation of Water Resources (APHRODITE, [Yatagai 
et al., 2012]) dataset for precipitation and Princeton’s Global Meteorological Forcing Dataset 
(PGMFD, [Sheffield et al., 2006]) for temperature. APHRODITE is a long-term continental-
scale daily precipitation product based on a dense network of rain gauges, with spatial resolution 
of 0.25˚ (≈18-30 km in the studied area). The PGMFD was constructed by combining a suite of 
global observation-based datasets with the National Centers for Environmental Prediction – 
National Center for Atmospheric Research (NCEP – NCAR) reanalysis and it has a daily resolution 
and a spatial scale of 0.5˚ (≈36-60 km in the studied area). Daily precipitation data are bilinearly 
interpolated to 1 km resolution from the APHRODITE 0.25˚ gridded precipitation dataset grid cell 
centers. Gridded daily average near-surface air temperature data at 1 km resolution are obtained by 
bilinear interpolation from grid cell centers in the PGMFD 0.5˚ gridded temperature dataset, which 
are subsequently corrected for elevation using the 1 km DEM and a vertical temperature lapse rate 
(Table 3.1).

3.3.3	 Climate change projections
We use the set of global climate change simulations which is used as basis for the upcoming fifth 
assessment report of the Intergovernmental Panel on Climate Change (IPCC), the CMIP5 multi-
model ensemble [Taylor et al., 2012]. All simulations which were available online in the PCMDI 
database (http://cmip-pcmdi.llnl.gov/cmip5/) earlier than 15 December 2011 are included in the 
analysis. In order to compare the CMIP5 multi-model ensemble to the previous generation of global 
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climate change simulations, the CMIP3 multi-model ensemble [Meehl et al., 2007], which is the 
basis of the fourth IPCC assessment report, is also analysed.

3.3.4	 Glaciers
Glacier covered areas in the Amu and Syr Darya river basins are extracted from the Randolph 
Glacier Inventory version 2.0 (RGI 2.0) dataset [Arendt et al., 2012b]. We updated the RGI 2.0 with 
more recently mapped glacier outlines (outlines provided by T. Bolch). The updates include outlines 
for the large glacier systems in the Fedchenko glacier region, which are not available in RGI 2.0 as 
well as more accurate outlines for numerous other glaciers in the Pamir and Tien Shan mountain 
ranges. We assume this compiled dataset of glacier extent to represent the glacier extent at the end 
of the reference period (2007), and to form the starting point for the future simulations of glacier 
extent.

From this dataset, the size distribution of glaciers is extracted (Figure 3.2). In the Amu Darya 
and Syr Darya river basins combined, 50% of the total glacier area consists of glaciers with a surface 
area smaller than 25 km2 and 11% of the glacier area consists of glaciers smaller than 1 km2. The 

Table 3.1: Model parameters used in the glacier model. DDFCI and DDFDC  were calibrated in a 
related study [Immerzeel et al., 2012a], MBOBS is taken from [WGMS, 2011].

Parameter Parameter description Value

 Tlapse Temperature lapse rate -0.0068 °C m-1

 CorT Temperature correction -3.48 °C

 DDFCI Degree-day factor debris-free glaciers 7.94 mm °C-1 day-1

 DDFDC Degree-day factor debris-covered glaciers 3.97 mm °C-1 day-1

 MBOBS Average of observed mass balance, (WGMS, 2011), see Table 3.2 -0.47 m w.e. year-1

Figure 3.2. Distribution of glacier area over glacier size classes for the two basins combined. The 
numbers on top of the bins represent the number of glaciers in the particular size class.
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median glacier size in the basin is 0.21 km2. From this distribution 26 different glacier size classes 
are defined and used for further analysis (Figure 3.2).

The dataset with glacier extents is also used for the calculation of an initial fractional glacier 
cover per 1 km grid cell, to be used as starting point for the glacier model simulations. Each 1 km 
grid cell of the 1 km DEM is assigned a fractional glacier cover varying from 0 (no glacier cover) 
to 1 (entirely covered with glaciers) (Figure 3.1).

For model calibration, the average of the observed annual mass balance in the region’s mountains 
is used, which is approximately -0.47 m water equivalent (w.e.) per year between 1978 and 2007, 
based on five glaciers with mass balance records in the region [WGMS, 2011] (Table 3.2).

3.4	 Methods

3.4.1	 Downscaling of GCM output
Downscaling of the GCMs outputs is necessary due to the large scale discrepancy between 
the climate models (operated on grids of 100 km grid distance or more) and the glacier model 
(operating on the 1 km scale). Since in our study, the major focus is on uncertainty stemming from 
the climate simulations, we include as many climate simulations as possible. We consider the CMIP3 
and CMIP5 simulations based on all available emission scenarios: SRES B1, A1B, and A2 [IPCC, 
2000] in the case of CMIP3, and rcp2.6, rcp4.5, rcp6.0, and rcp8.5 [Meinshausen et al., 2011] in the 
case of CMIP5. Since it is difficult to associate probabilities to the emission scenarios, we do not use 
any prior assumption and give the same weight to all scenarios. We therefore calculate percentiles 
for all GCM realizations according to the inverse number of GCM realizations per scenario. We 
extract the grid cells of the climate models over the study region and analyse projected annual and 
monthly temperature and precipitation averaged over the period 2021 – 2050 and compare it to the 
period 1961 – 1990. Hence, the climate change signals refer to the changes during 60 years. We do 
this for the simulations in both ensembles. The range of temperature and precipitation projections is 
shown in Figure 3.3 for both ensembles.

We derive the 10th (Q10), 25th (Q25), 50th (Q50), 75th (Q75) and 90th (Q90) percentile values of 
the changes in precipitation and temperature for each month for the entire CMIP3 and CMIP5 

Table 3.2: Observed mass balance data since for 1978-2007 for five glaciers in the study area 
(WGMS, 2011).
Glacier name Mountain range Latitude Longitude Mass balance (1978-2007)

(decimal degrees) (decimal degrees) (mm w.e. y-1)

Abramov Pamir – Alai 39.63 71.60 -538

Golubin Tien Shan 42.47 74.50 -349

Kara Batkak Tien Shan 42.10 78.30 -523

Tuyuksuyskiy Tien Shan 43.05 77.08 -514

Urumqi Tien Shan 43.08 86.82 -419

Average -469

Standard deviation 82
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ensemble. We compute a transient “delta change” value for 1961-2050 by linearly interpolating the 
changes between 1961-1990 and 2021-2050. This is done for every percentile and every month. For 
each simulated year in 2008-2050 we select a random year from the 1x1 km reference period climate 
dataset (1978-2007) and we superimpose the basin-averaged monthly temperature and precipitation 
change values to construct a transient time series from 2008 to 2050. These time series are then 
used as meteorological forcing for the glacier model, which is run with all the combinations of the 
percentile values of changes in precipitation and temperature. This well established “delta change” 
approach [Arnell, 1999; Kay et al., 2008] removes large parts of climate models biases, which cancel 
out in the climate change signals. We have selected the delta change method as it allows us to 
include a large number of climate scenarios.

3.4.2	 Glacier model
The method used in this study to estimate the glacier evolution is an approach with minimum data 
requirements. We use a mass balance model with parameterization of glacier area changes and 
subsequent aggregation of regional glacier characteristics. The model estimates the fractional glacier 
cover (GF) for each 1 km grid cell at a monthly time step from 2008 until 2050. The model requires 
monthly average temperature and monthly precipitation sums, terrain elevation data, the initial 
fractional glacier cover for each 1 km grid cell and the distribution of glaciers over terrain elevation 
and glacier size classes as data input (section 3.3). Figure 3.4 provides a schematic representation 
of the modeling steps. First, one basin scale hypsometric curve is derived for the study area, which 
describes the distribution of glacierized area over the terrain elevation. Subsequently we calculate a 
monthly basin scale specific glacier mass balance. We do this by specifying the accumulation area 

Figure 3.3. Range of projected changes (2021-2050 relative to 1961-1990) in yearly average 
temperature and precipitation in the upstream areas of the Amu and Syr Darya river basins. The 
left panel shows model runs used for the fourth assessment report of the IPCC (AR4) for three 
different emission scenarios (A1B (53 runs), A2 (36 runs), B1 (44 runs)). The right panel shows 
model runs that will be used for the fifth assessment report (AR5, all simulations available before 
15 December 2011 are included) for four representative concentration pathways (RCP2.6 (26 
runs), RCP4.5 (32 runs), RCP6.0 (17 runs), RCP8.5 (29 runs)). The plotted values are means over 
the values assigned to the grid cells of the climate models over the study region.



66

CH
A

PTER 3

and ablation area using a monthly basin scale 0 °C isotherm and the basin scale hypsometric curve. 
The model is calibrated against the average of the observed mass balance in the basins during the 
climatic reference period. For the future, the basin scale mass balance is used to derive an annually 
updated area for the glaciers in each glacier size class by volume-area scaling [Bahr et al., 1997]. The 
changes in area are aggregated for all glaciers in all size classes to obtain the basin scale changes in 
glacier area and construct a basin scale area depletion curve. Finally the basin scale area depletion 
curve can be used to calculate an updated fractional glacier cover per 1 km grid cell from 2008 until 
2050.

3.4.2.1	 Basin scale hypsometric curve
To generalize the hypsometry of the glaciers in the basins, we construct a basin scale hypsometric 
curve from the initial fractional glacier cover in the 1 km grid cells. To this end we need to derive 
the median elevation of the fractional glacier cover (HGLAC) in a 1 km grid cell. First we use the 90 
m DEM to calculate the average terrain altitude (HAVG ), standard deviation of the terrain altitude  
(HSD), and maximum terrain altitude (HMAX) within each 1 km grid cell at the 90 m subgrid. We 
then derive HGLAC  for each grid cell based on the distribution of terrain elevation and GF , assuming 
that within a 1 km grid cell the distribution of ice follows the terrain elevation distribution and 
glaciers occupy the highest (coldest) end of the terrain elevation distribution.

Figure 3.5 shows schematically how HGLAC can be determined from HAVG , HSD and GF . It 
shows the terrain elevation distribution within a 1 km grid cell and the part of the terrain 
elevation distribution occupied by glacier ice. If we assume the terrain elevation distribution to be 
approximately normal, then we can estimate the median elevation of the fractional glacier cover as:

where 





 −−

2
11 F

N
GF  is the 2

1 FG
−  quantile of the standard normal distribution and HMAX is the maximum 

terrain elevation within the 1 km grid cell. HGLAC is limited by HMAX  because the median elevation 
of the fractional glacier cover can not be higher than the maximum terrain elevation in the 1 km 
grid cell. If for example HAVG = 4000 m a.s.l., HSD = 200 m and GF  = 0.4, then HGLAC  = 4168 m a.s.l. 
When GF  = 1, the entire cell is covered with ice and thus Eq. (3.1) yields HGLAC  = HAVG .

We sort the data for HGLAC  from low to high values for all grid cells with GF  > 0, with each value 
assigned a weight according to its fractional glacier cover as part of the total glacier area (i.e. the 
sum of GF  for all grid cells), to derive one basin scale hypsometric curve (Figure 3.6), representative 
for the average glacier altitude distribution in the study area. We construct the hypsometric curve 
using the initial fractional glacier cover and distribution of terrain elevation in a 1 km grid cell 
instead of computing it directly from the glacier outlines and 90 m DEM for consistency with the 
calculation of the updated fractional glacier cover at the end of each time step during the simulation 
(section 3.4.2.5).

3.4.2.2	 Basin scale 0 °C isotherm and accumulation area ratio
Once the basin scale hypsometric curve is obtained, we want to use it to calculate a basin scale 
monthly mass balance. The idea is to determine the basin scale 0 ˚C isotherm for each month and 
combine it with the basin scale hypsometric curve to determine the basin scale accumulation area 
ratio, which in turn can be used to calculate the ablation and accumulation for each month and for 
the glaciers in each glacier size class.

 
= +  ∙ 1 − ;  for  > 0 (3.1)
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Figure 3.4. Schematic representation of glacier modeling steps. First calculations are made at the 1 km 
grid cell scale (1). Using the grid cell’s mean terrain elevation (HAVG ) in combination with the standard 
deviation of terrain elevation within the grid cell (HSD) and the fractional glacier cover of the grid cell 
(GF), the median elevation of the part of the grid cell that is covered by ice can be determined (HGLAC). 
Basin scale averaged temperature and elevation for grid cells with glaciers ( AVGT  and AVGH ) are calculated 
(2). Values of HGLAC for all grid cells from step 1 are used to construct a basin scale hypsometric curve. 
Basin scale mass balance calculations are done for all glaciers in 26 glacier size classes with a monthly 
time step (3). Using AVGH , AVGT  and a temperature lapse rate (Tlapse) the basin scale 0 ˚C isotherm 
can be determined ( 0H ). By combining 0H  with the hypsometric curve the accumulation area ratio 
(AAR) can be calculated. With the AAR the amount of ablation (A) and accumulation (C) can be 
derived. A representative temperature for the ablation zone ( ABLT ) is calculated at the mean elevation 
of the ablation zone ( ABLH ). A degree-day factor (DDF) is used to calculate the actual ablation. The 
accumulation consists of the precipitation (P) over the accumulation zone. Using A and C a monthly 
mass balance (ΔM) is calculated. Applying volume-area scaling in October each year an updated glacier 
area is calculated for the glaciers in each size class and the change in area can be tracked (ΔS). With 
the result from step 3 a basin scale area depletion curve is constructed to derive an updated basin scale 
median elevation of the glacierized part of the basins ( GLACH ) for each month (4). With GLACH  and 
the elevation distribution within a grid cell (mean terrain elevation (HAVG ) and standard deviation of 
elevation (HSD )), the basin scale model output is downscaled to the grid cell scale for each month, to 
provide an updated fractional glacier cover (GF ) per grid cell (5).
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To determine the altitude of the basin scale 0 ˚C isotherm, we calculate the basin scale mean 
elevation ( AVGH ) and the monthly basin scale average temperature ( AVGT ). Then, using AVGH  and AVGT , 
we derive the altitude of the basin scale 0 °C isotherm ( 0H ) for each month:

where Tlapse is a temperature lapse rate (°C m-1), which is the mean of the saturated and dry adiabatic 
lapse rates (Table 3.1).

0H  is calculated for each month and combined with the basin scale hypsometric curve to calculate 
the basin scale accumulation area ratio (AAR) for each month. The value for AAR is looked up in 
the upper horizontal axis of Figure 3.6 for the corresponding value of 0H  on the vertical axis. For 
example, in Figure 3.6, 0H  = 4800 m a.s.l. and the associated AAR = 43% as derived from the basin 
scale hypsometric curve. The next step is to use the monthly AAR to scale the ablation area and 
accumulation area for each month, to calculate month specific accumulation and ablation.

3.4.2.3	 Basin scale mass balance
For each month, a specific mass balance (ΔM [m w.e. y-1]) is determined at basin scale:

where C (m) is the monthly accumulation and A (m) is the monthly ablation. The monthly 
accumulation at basin scale is calculated as:

Figure 3.5. Distribution of terrain elevation within a 1 km grid cell. HAVG is the mean terrain 
elevation in a 1 km grid cell. HSD is the standard deviation of the terrain elevation distribution. GF  
is the fractional glacier cover for a 1 km grid cell. HGLAC is the obtained median elevation for the 
part of the grid cell covered with ice. In this figure GF = 0.4, HAVG = 4000 m a.s.l. and HSD = 200 m. 
Eq. (3.1) yields HGLAC = 4168 m a.s.l. During the simulation an updated value for GF  is calculated 
using GLACH  and Eq. (3.10). In this example GLACH = 4270 m a.s.l. With HAVG = 4000 m a.s.l. and HSD 
= 200 m for this grid cell, Eq. (3.10), yields GF = 0.18.

(3.2)

 
 

= − ∙  
 

 
∆ = −  (3.3)



69

CH
A

PT
ER

 3

where P is the monthly precipitation sum over the glacierized area in the basins (m) and ACCT  is 
the basin scale average temperature representative for the accumulation zone. ACCT  can be derived 
from the median elevation of the accumulation zone at basin scale ( ACCH ), which is derived from 
the hypsometric curve (Figure 3.6). For example in Figure 3.6, 0H  = 4800 m a.s.l. and AAR = 43%. 
Thus the upper 43% of the glacier area is located in the accumulation zone. The median elevation of 
this zone ( ACCH ) is 0.5 · 43% = 21.5% on the AAR-axis. Deriving ACCH  from the hypsometric curve 
yields ACCH  = 5133 m a.s.l. We calculate the temperature for the accumulation zone ( ACCT ) according 
to:

Accumulation occurs when ACCT  is below 2 ˚C as stated in Eq. (3.4), in which case all precipitation 
over the accumulation zone is assumed to be solid.

The monthly ablation (A [m]) is calculated as:

where +
ABLT  is the positive (set to zero when negative) basin scale monthly average temperature 

representative for the ablation zone (see derivation below), DDF is a composite degree-day factor 
(mm w.e. °C-1day-1) calculated as the weighted mean of two distinct values referring to debris free 

Figure 3.6: Mean basin scale hypsometric curve (black line) for elevation (H) and glacierized area of 
both basins. The blue dashed line indicates how the accumulation area ratio (AAR) is derived using 
the basin scale 0 °C isotherm ( 0H , red dashed line) and the hypsometric curve. In this example 

0H = 4800 m a.s.l. and the associated AAR = 43%. The median elevation of the accumulation area 
( ACCH ) is indicated by the purple dashed line and the median elevation of the ablation area ( ABLH ) 
is indicated by the green dashed line.  

 
= ∙   for  < 2 ℃ 

 
(3.4)

  for  ℃ 
 

= + ( − ) ∙  
 

(3.5)
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and debris-covered ice (Table 3.1). Weighting is performed according to the fraction of debris free 
glaciers (85%) and debris-covered glaciers (15%). This ratio is based on observations in the western 
Tien Shan [Wang et al., 2011]. The number of days in the month is d, and AAR is the accumulation 
area ratio. The degree-day factors for debris free glaciers and debris-covered glaciers were calibrated 
in a related hydrological study for the same river basins [Immerzeel et al., 2012a].

To calculate ABLT  we derive the median elevation of the ablation zone at basin scale ( ABLH ) using 
the hypsometric curve and the AAR. For example in Figure 3.6, 0H  = 4800 m a.s.l. and AAR = 43%. 
Thus the lower 57% of the glacier area is part of the ablation zone. The median elevation of this zone 
( ABLH ) is 100% – 0.5 · (100% – AAR) = 71.5% on the AAR-axis. Deriving ABLH  in the hypsometric 
curve yields ABLH  = 4261 m a.s.l.

We calculate the temperature for the ablation zone ( ABLT ) according to:

For each month a specific mass balance is calculated at basin scale as specified in Eq. (3.3).

3.4.2.4	 Updating glacier area for glaciers in each size class
An intitial mean ice thickness is determined for the glaciers in each size class using volume-area 
scaling [Bahr et al., 1997]. Volume-area scaling is based on physical arguments [Bahr et al., 1997] 
and has been extensively used [e.g. Farinotti et al., 2009; Radić and Hock, 2010; Grinsted, 2013]. The 
volume-area scaling can be expressed as a relation between the mean glacier thickness (h [m]) and 
glacier area (A [m2]) [Radić and Hock, 2010; Huss and Farinotti, 2012]:

where c and γ are scaling parameters. We use the same scaling parameters as Radić and Hock [2010] 
use for mountain glaciers (c = 0.2055, γ = 1.375). With this relation we derive an initial mean ice 
thickness for the glaciers in each size class. This thickness is updated every month (t) for the glaciers 
in each size class (i) with the basin scale specific mass balance (section 3.4.2.3):

 To simulate future glacier extent, we force the model with the downscaled temperature and 
precipitation projections described in section 3.3.3 for 2008 until 2050 at a monthly time step. Each 
year at the beginning of a new glaciological year (in this study on October 1st), we use the inverse 
of Eq. (3.8) to calculate the new glacier area for each size class from the updated ice thickness. By 
aggregating the results for all glaciers in all size classes, the percentual change in total glacierised area 
in the basins from 2008 to 2050 with respect to 2007 is determined (Figure 3.7). An area depletion 
curve can be fitted through the time series of percentual changes in glacier area (Figure 3.7). By 
looking up the H values on the vertical axis in Figure 3.6 that correspond to the values of the area 
depletion curve for each time step on the upper horizontal axis, a time series of updated basin scale 
median elevation of the glacierized part of the basins ( GLACH ) (Figure 3.7) is constructed, which 
can later be used to downscale the basin scale averaged changes in glacier area to monthly updated 
fractional glacier cover for each 1 km grid cell. For example in Figure 3.7, on 1 January 2040 the 
glacierized area is 52.0% of the glacierized area in 2007 as can be derived from the area depletion 

 
 

 
= + ( − ) ∙  
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curve. Using the fractional glacier cover value 0.520 (=52.0%) in the lower horizontal axis in Figure 
3.6 yields 4586 m a.s.l. for GLACH  from the hypsometric curve.

3.4.2.5	 Updating fractional glacier cover per grid cell
To create monthly maps of glacier extent, we update the fractional glacier cover (GF ) for each grid 
cell for each month from 2008 until 2050 using GLACH  and the distribution of terrain elevation 
within a 1 km grid cell. Assuming that the glacier distribution follows the distribution of terrain 
elevation, and that the latter can be described by a normal distribution, we calculate GF for a 1 km 
grid cell using the cumulative standard normal curve function:

For example in Figure 3.5, when GLACH  = 4270 m a.s.l. and a given grid cell has HAVG = 4000 m 
a.s.l. and HSD = 200 m, then GF  = 0.18. If GLACH   moves up, GF decreases. GF has an upper limit of 1, 
as the fractional glacier cover can not exceed this value. Thus, when GLACH  ≤ HAVG, GF = 1.

3.4.2.6	 Calibration
We calibrate the model for the reference period (1978-2007). Based on the average of the observed 
mass balance in the region during the reference period (Section 3.3.4, Table 3.2) the model is 
calibrated by correcting the monthly mean temperature for the reference period with a temperature 
correction (CorT) (Table 3.1), which is added to the temperature forcing. With the calibrated CorT, 
the model produces the same mass balance for the reference period as the average of the observed 
mass balance in the basins (MBOBS,Table 3.1). The CorT parameter accounts for a combined effect 

Figure 3.7. Relative change in glacier area aggregated for all glaciers at the beginning of October 
for each projected year (blue dots), fitted area depletion curve (black line), and basin scale median 
elevation of the glacierized part of the basins ( GLACH ) (red line). In this figure the glacier area 
change, fitted area depletion curve and median elevation of the glacierized part of the basins are for 
the CMIP5 average projection (ΔT Q50, ΔP Q50), for the Amu and Syr Darya basins combined.

 
 

= 2 ∙ 1 −
−

; 1  (3.10)
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of errors in the forcing data, temperature differences within a 1 km grid cell, vertical and horizontal 
errors from interpolation in the reference period climate dataset (section 3.3.2) and errors from 
averaging over the two basins. The degree-day factors for debris free glaciers and debris-covered 
glaciers where calibrated for a related hydrological study for the same river basins (Table 3.1) 
[Immerzeel et al., 2012a]. The degree-day factors are within the range of other studies reported 
in the region [Mihalcea et al., 2006; Zhang et al., 2006; Hagg et al., 2008; Immerzeel et al., 2010, 
2012b]. In addition we take into account variation in degree-day factors in the uncertainty analysis 
described in section 3.5.3.

3.4.2.7	 Validation
Since data scarcity in Central Asia makes it difficult to validate the model performance we validate 
the method for the Austrian Alps, where multiple glacier inventories and glacier mass balance 
time series for twelve glaciers are available. We use two glacier inventories, marking the starting 
point and endpoint of the simulation. A glacier inventory representative for the year 1969 [Patzelt, 
1978] is used as starting point for the simulation. A second glacier inventory is made with data 
from 1996-2002 [Eder et al., 2000; Lambrecht and Kuhn, 2007]. We assume this inventory to be 
representative for 1997, since 81% of the glacier area was mapped in 1997 and 1998. Thus, 1997 is 
the last year of the simulation. We force the model with daily air temperature and daily precipitation 
from the PGMFD [Sheffield et al., 2006]. We use the same DEMs, the same degree-day factors and 
the same volume-area scaling coefficients as for the application in Central Asia. The average of 
the observed mass balance in the Austrian Alps is -0.37 m w.e. yr-1 between 1969 and 1997 based 
on mass balance records from twelve individual glaciers (WGMS, 2011). We calibrate the CorT 
parameter to this average of the observed mass balance yielding CorT = 0.76 °C and simulate the 

Figure 3.8. Simulated change in total glacier area in Austria in the European Alps between 1969 
and 1997. The red line shows the simulation results when calibrated for the average of the observed 
mass balance during 1969-1997 in the area. Black error bars represent simulation results when 
calibrated for the average of the observed mass balance plus one standard deviation (positive error) 
and the average of the observed mass balance minus one standard deviation (negative error). Blue 
dots represent the observed differences in total glacier area according to glacier inventories and blue 
error bars indicate the error in the glacier inventories.
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changes in glacier area until 1997. The simulated decrease in glacier area between 1969 and 1997 is 
24.5%. Figure 3.8 shows the complete simulation of changes in glacier area from 1969 until 1997. 
The black error bars indicate simulation results when calibrated for the average of the observed 
mass balance plus one standard deviation (positive error) and the average of the observed mass 
balance minus one standard deviation (negative error). The observed decrease in glacier area 
according to the two glacier inventories equals 19.0% (Figure 3.8). The estimated error in the glacier 
inventories [Lambrecht and Kuhn, 2007] is displayed with the blue error bars. Considering the fact 
that our approach is a first order estimate of basin scale glacier area changes, the uncertainties in 
the methodology (as discussed in section 3.5.4) and uncertainties in the glacier outlines in the 
inventories, we conclude that the model performs satisfactory.

3.5		 Results and Discussion

3.5.1	 Future climate
All results stated are for the Amu Darya and Syr Darya basins combined and the climate change 
signals refer to the changes during 60 years (change between 1961 – 1990 and 2021 – 2050). Both 
the CMIP3 and CMIP5 ensembles show large variation in temperature and precipitation changes 
between models and between emission scenarios (Figure 3.9). On average, temperature is expected 
to rise by about 2 °C and precipitation to remain nearly constant. The uncertainty in temperature 

Figure 3.9. Box-whisker plots for projected changes in temperature (left) and precipitation (right) 
for three AR4 SRES emission scenarios and four AR5 representative concentration pathways 
extracted from the CMIP3 (SRES) and CMIP5 (RCP) databases. The A1B (53 GCM runs), 
A2 (36 runs) and B1 (44 runs) AR4 scenarios are used and the RCP2.6 (26 runs), RCP4.5 (32 
runs), RCP6.0 (17 runs) and RCP8.5 (29 runs) AR5 scenarios are used. The values are mean delta 
change values for GCM grid cells covering the study area and represent the change over 60 years 
(1961-1990 to 2021-2050). The boxes represent the range from Q25 to Q75, divided by the median 
value (Q50). The whiskers represent the range between Q10 and Q25 (at the lower end of the 
distributions) and the range between Q75 and Q90 (at the higher end of the distributions).
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projections (ΔT), expressed as the 90th and 10th percentiles, is estimated to range from 1.3 °C to 
2.4 °C in the CMIP3 ensemble and from 1.7 °C to 2.9 °C in the CMIP5 ensemble (Figure 3.9, left 
panel). For precipitation projections (ΔP) the 90th and 10th percentiles range from -6% to +7% in 
the CMIP3 ensemble and from -8% to +15% in the CMIP5 ensemble (Figure 3.9, right panel). 
Though the climate projections of both ensembles mainly cluster around the same values (about 2 
°C and 0%, for temperature and precipitation, respectively), the new CMIP5 ensemble includes the 
possibility of more extreme climate change. There are several “warmer” simulations (up to +3.5 °C) 
and many of those are also extreme in precipitation change (Figure 3.9). Note that this observation 
not only holds across scenarios, but also between GCM runs within a given scenario, e.g. RCP 2.6, 
6.0 and 8.5 show similar extremes in temperature and precipitation. The CMIP5 ensemble also 
shows a larger average warming than CMIP3 (Figure 3.9, left panel). In addition, the variation 
between scenarios is also larger for CMIP5 for both precipitation and temperature (Figure 3.9).

Looking at the projections on a monthly scale (Figure 3.10), mean projections for temperature 
(ΔT, Q50) in July to September do not differ much between the two ensembles, although the range 
in temperature projections is higher for the CMIP5 ensemble compared to the CMIP3 ensemble 
(Figure 3.10, upper panel). However, mean temperature projections for October to May are higher 
for the CMIP5 ensemble compared to the CMIP3 ensemble. The spread in precipitation projections 
is generally larger for the CMIP5 ensemble compared to the CMIP3 ensemble (Figure 3.10, lower 
panel). Especially for March to September the mean projections for precipitation (ΔP, Q50) are 
higher for the CMIP5 ensemble compared to the CMIP3 ensemble, while little differences in mean 
projections for precipitation are observed for October to February.

As we choose to include as many climate projections as possible in our study we do not use 
particular GCMs but apply the quantile approach as described in section 3.4.1. A disadvantage of 
this approach is that systematic changes in the daily variability are not included. However since our 
glacier model is forced with monthly data we accept this for the benefit of including as many climate 
projections as possible.

Figure 3.10. Box-whisker plots for projected changes per month in temperature (upper panel) 
and precipitation (lower panel) for the CMIP3 ensemble (red) and CMIP5 ensemble (blue). The 
definition of the boxplots is as in Figure 3.9.
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3.5.2	 Implications of climate change for Central Asian glaciers
We force the glacier model with all quantile combinations of the downscaled temperature and 
precipitation as analysed on a monthly basis (monthly delta change values) and obtain the basin 
scale cumulative mass balance for the simulated period (2007-2050). Figure 3.11 shows the 
cumulative mass balance for the average projection (ΔT Q50, ΔP Q50), for the very warm and very 
dry (ΔT Q90, ΔP Q10) case, for the very cold and very wet (ΔT Q10, ΔP Q90) case, for the very 
warm and very wet case (ΔT Q90, ΔP Q90) and for the very cold and very dry (ΔT Q10, ΔP Q10) 
case. The range of projections is higher for the CMIP5 (Figure 3.11, left panel) ensemble compared 
to CMIP3 (Figure 3.11, right panel). When forced with the CMIP3 ensemble the cumulative mass 
balance for 2007-2050 ranges from -32.3 m w.e. for the very cold, very wet case to -44.9 m w.e. in 
the very warm, very dry case. Forcing with the average projection yields -38.9 m w.e. When forced 
with the CMIP5 ensemble the range is from -32.2 m w.e. to -47.7 m w.e. for the very cold, very wet 
case and the very warm, very dry case, respectively. Forcing with the average projection yields a 
cumulative mass balance for 2008-2050 of -38.6 m w.e.

Figure 3.12, spanning the frequency space between the 10 and 90-percentiles for both 
temperature and precipitation, shows the percentual glacier retreat in 2050 for the CMIP3 and 
the CMIP5 case. Both cases show variability in future glacier extent. For the CMIP3 projections, a 
reduction in glacier area varying between 54.5% in 2050 when the model is forced by the ΔT Q10 
and the ΔP Q90, and a reduction of 63.5% in 2050 when forced by the ΔT Q90 and ΔP Q10 is 
observed. By keeping ΔT constant at the Q50 level a 0.8% range in potential glacier retreat is found 
(from 59.0% to 59.8% decrease) over the full ΔP range for the CMIP3 case and a range of 6.7% is 
found (from 56.0% to 62.7% decrease) when ΔP is kept constant at the Q50 level. For the CMIP5 
case this range is larger with a 1.1% range (from 59.1% to 60.2% decrease) when ΔT is kept constant 
at the Q50 level, and a 7.8% range (from 55.7% to 63.5% decrease) when ΔP is kept constant at 
the Q50 level. So, the range in temperature projections has a much larger impact on the predicted 
glacier extent as the range in precipitation projections.

The range for the CMIP5 based projection for glacier extent is slightly wider than for CMIP3. 
The ΔT Q10 and the ΔP Q90 combination results in a projected decrease of 54.4%, while the ΔT 
Q90 and the ΔP Q10 combination leads to a decrease of 65.1% (Figure 3.12). Although the mean 

Figure 3.11: Basin scale cumulative glacier mass balance for the Amu Darya and Syr Darya river 
basins together for 2007-2050 based on the CMIP3 (left panel) and CMIP5 (right panel) model 
runs for the median and extreme values of temperature and precipitation change.
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temperature projection on an annual basis is higher for the CMIP5 ensemble compared to the 
CMIP3 ensemble and the mean precipitation projections are almost similar, the projected decrease 
in glacier extent is practically the same (even 0.1% more decrease for the CMIP3 case). This can be 
explained by the fact that mean temperature projections (ΔT Q50) for July to September, when most 
of the melting takes place, are similar for CMIP3 and CMIP5 (Figure 3.10), and mean precipitation 
projections (ΔP Q50) are also similar for CMIP3 and CMIP5 during October to February when 
most accumulation takes place. From these results it is evident that it is important to assess climate 
change projections at the seasonal level rather than at the annual level, when making projections for 
future glacier extent.

Figure 3.13 shows the decrease in total glacier area in the Amu Darya and Syr Darya basins for 
the entire simulated period based on the CMIP3 (Figure 3.13, left panel) and CMIP5 (Figure 3.13, 
right panel) model runs. The range of glacier extent projections for the CMIP5 ensemble and the 
CMIP3 ensemble are very similar. The fact that the very cold, very dry projection is closer to the 
very cold, very wet projection than to the average projection for both ensembles again shows that 
the uncertainty in temperature projections has a much larger impact on the uncertainty in glacier 
extent than uncertainty in precipitation projections, and change in temperature is the main driver 
for future decrease in glacier extent in these areas.

Figure 3.14 shows, for the CMIP5 case, the projected glacier extent for 2050 for a selected area 
covering the large glacier systems in the central Pamir (Figure 3.14b) as compared with the initial 
glacier extent (Figure 3.14a). The three lower left panels (Figure 3.14c, e, g) show the projected 
fractional glacier cover per 1 km grid cell in 2050 for the average projection and the two most 
extreme projections (very cold, very wet and very warm, very dry). The right panels (Figure 3.14d, f, 
h) show the change in fractional glacier cover per 1 km grid cell with respect to the initial situation 
for these three cases. It can be clearly seen that the fractional glacier cover decreases strongest in 
the lowest glacierized parts, and that mainly the tongues in the valleys are affected. A similar figure 
shows a selected area in the Tien Shan (Figure 3.15). In the Tien Shan mountains the glaciers are 
smaller than in the central Pamir and many are located at lower elevations. As a result, in the Tien 

Figure 3.12. Percentual decrease (relative to 2007) in glacierized area by 2050 for the upstream 
parts of the Amu Darya and Syr Darya river basins together for the changes in temperature and 
precipitation for CMIP3 runs (left) and CMIP5 runs (right).
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Shan the impact of climate change will lead to a more rapid decrease in glacier extent than in the 
Pamir.

3.5.3	 Parametric uncertainty analysis
Besides uncertainty in glacier extent as a result of the uncertainty in the climate change projections, 
the projected glacier changes are subject to other uncertainties. These include parametric 
uncertainty, uncertainty in present glacier extent and volume, uncertainty in the volume-area 
scaling, uncertainty in climate evolution, uncertainty in climatic forcing for the reference period, 
uncertainty in mass-balance time series and uncertainties stemming from simplifications and 
assumptions applied to the model. Since the mass balance model is based on an empirical approach 
requiring calibration we evaluate also, besides uncertainty in the climate change projections, 
how the uncertainties in the model parameters as well as uncertainty in the observed historical 
glacier mass balance translate in uncertainty in the future glacier extent by running the model 
for different sets of parameters and observed glacier mass balance. We assume the three critical 
model parameters (vertical temperature lapse rate (Tlapse), degree-day factor for clean ice glaciers 
(DDFCI ), degree-day factor for debris-covered glaciers (DDFDC)) to be three independent normally 
distributed (random) variables. The temperature correction (CorT) is recalibrated for each set of 
parameters. We use a mean DDFDC = 3.97 mm oC-1 d-1 and DDFCI = 7.94 oC-1 d-1 and both with σ = 
1 oC-1 d-1. For Tlapse we use a mean -0.0068 °C m-1 and assume a standard deviation of 0.0012°C m-1, 
which is based on the difference between the dry and saturated adiabatic lapse rate. The average 
of the observed glacier mass balance (MBOBS) used is -0.47 m y-1 with a standard deviation of 
0.082 m y-1 (Section 3.3.4, Table 3.2). For the observed mass balance we use an uncertainty range 
of two standard deviations. Based on these assumptions we sample 50 parameter sets and mass 
balance values. We then run a full simulation until 2050 with each of these 50 parameter-mass 
balance combinations (i.e. of Tlapse , DDFCI , DDFDC , MBOBS and associated CorT, which is separately 
calibrated for each combination) and we estimate uncertainty by taking the standard deviation of 

Figure 3.13. Decrease in total glacier area in the Amu Darya and Syr Darya basins combined for 
2008-2050 based on the CMIP3 (left panel) and CMIP5 (right panel) model runs for the median 
and extreme values of temperature and precipitation change. The red error range added to the two 
most extreme cases is derived using an uncertainty analysis on model parameters and observed 
glacier mass balance information (see section 3.5.3).
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Figure 3.14. Projected fractional glacier cover in 2050 for the Fedchenko area in the Central Pamir. 
The square in the top right panel (b) represents the area enlarged in the other panels. Panel (a) 
shows the initial fractional glacier cover per 1 km grid cell. The three lower left panels show the 
simulated fractional glacier cover per 1 km grid cell in 2050 for the CMIP5 runs. Panel (c) shows 
the fractional glacier cover for the run with the 50th percentile (Q50) values of temperature and 
precipitation change. Panel (e) shows the projection with the strongest decrease in glacier cover, 
when the model is forced with the 90th percentile (Q90) for temperature change and 10th percentile 
(Q10) for precipitation change. Panel (g) shows the projection with the least decrease in glacier 
cover, when the model is forced with the 10th percentile (Q10) for temperature and 90th percentile 
(Q90) for precipitation change. The three lower right panels (d, f, h) show the change in fractional 
glacier cover per grid cell for the 2050 projections in the three lower left panels (c, e, g) with respect 
to the initial glacier cover (panel a).



79

CH
A

PT
ER

 3
Figure 3.15. Projected fractional glacier cover in 2050 for a slected area in the Tien Shan mountains. 
The square in the top right panel (b) represents the area enlarged in the other panels. Panel (a) 
shows the initial fractional glacier cover per 1 km grid cell. The three lower left panels show the 
simulated fractional glacier cover per 1 km grid cell in 2050 for the CMIP5 runs. Panel (c) shows 
the fractional glacier cover for the run with the 50th percentile (Q50) values of temperature and 
precipitation change. Panel (e) shows the projection with the strongest decrease in glacier cover, 
when the model is forced with the 90th percentile (Q90) for temperature change and 10th percentile 
(Q10) for precipitation change. Panel (g) shows the projection with the least decrease in glacier 
cover, when the model is forced with the 10th percentile (Q10) for temperature and 90th percentile 
(Q90) for precipitation change. The three lower right panels (d, f, h) show the change in fractional 
glacier cover per grid cell for the 2050 projections in the three lower left panels (c, e, g) with respect 
to the initial glacier cover (panel a).
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the 50 simulations [Ragettli and Pellicciotti, 2012]. This analysis allows to estimate the propagation 
of parameter uncertainty to uncertainty in the glacier model simulations.

The uncertainty resulting from model parameters is displayed for the very cold, very wet and 
the very warm, very dry cases in Figure 3.13. The effect of model parameter uncertainty leads to an 
additional uncertainty of ± 8.6% in total glacier extent in 2050 for both the CMIP5 and the CMIP3 
case, showing that parameter uncertainty has roughly the same importance as uncertainty in the 
climate projections.

3.5.4	 Limitations in the methodology
The advantage of low data requirements associated with the approach described in this paper of 
course comes with its limitations. We use volume-area scaling to estimate the initial ice volume 
based on the initial glacierized area and to translate new ice volumes to areas [Bahr et al., 1997]. 
Approaches that use volume-area scaling are sensitive to the scaling parameters used [Grinsted, 
2013], but have been largely used for large areas. Other methods based on ice physics and flux-
balance principles have been suggested to estimate the initial ice volume [Farinotti et al., 2009; Huss 
and Farinotti, 2012; Paul and Linsbauer, 2012], which could yield different results when applied in 
our modeling study.

We are interested in simulating the behavior of the glaciers as a result of climate perturbations 
at the basin scale. We do not model individual glaciers, and therefore we use an average of the 
observed mass balance for the five glaciers in calibration. This regionalization is justifiable over a 
longer period, but not at smaller time steps.

In our model setup, we construct one average hypsometric curve for the two river basins. This 
simplification constitutes a drawback as regional differences are neglected. To retain more regional 
differences a more accurate glacier modeling could be done by constructing different hypsometric 
curves for different (sub)basins, or theoretically for every grid cell. The same holds for basin scale 
averaged temperature and precipitation. As we use the initial hypsometric curve during the entire 
simulation, another improvement could be inclusion of regular recalculation of the hypsometric 
curve during the simulation based on the updated fractional glacier cover per grid cell.

Another area for improvement is the melt modeling. We now use a combined degree-day factor 
for debris free and debris-covered glaciers, which reflects the different behaviour of the two surfaces 
with melt decreasing under a thick debris cover [Nicholson and Benn, 2006; Brock et al., 2010]. If 
the exact extent of both types of glaciers is available it would be recommendable to model the two 
types separately. However, melt modeling under debris-covered glaciers is not trivial as it crucially 
depends on debris thickness, which is not commonly available. Strong spatial variation is observed 
in the Alps as a result of the type and thickness of the debris layer. Improved models for melt under 
debris should be used that account for the effect of debris thickness [Reid et al., 2012], provided that 
the thickness and characteristics of the debris layer are known. Apart from modeling melt under 
debris cover, melt modeling can be improved by including incoming solar radiation [e.g. Pellicciotti 
et al., 2005], and considering other components of the energy balance. A general limitation of 
degree-day melt models is the necessity to calibrate the parameters for each case as the parameters 
are not transferable in time and space.

Given the limitations discussed above, we are aware that the glacier model used in this study is 
too coarse to reproduce the response of single glaciers and the complexity of processes involved. 
The model choice is imposed by the limited amount of data available and the large scale of our 
application. However, the model is suitable for our aim, i.e. to translate downscaled future climate 
scenarios into glacier response at the basin scale, and to assess how the spread and differences in 
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the future climate scenarios transform into differences in glacier response. Despite the fact that 
the simulated glacier response is subject to the uncertainties we discuss, the simulated trends are 
apparent. This study shows that parameter uncertainty and differences between GCMs should be 
taken into account and that the impact of climate change signals should take account of seasonal 
variation.

3.6	 Conclusions

Both CMIP3 and CMIP5 climate change projections point towards a decline of glacier extent 
in Central Asia. Our results show that uncertainty about the range of this decline remains large. 
The range of projections for temperature and precipitation in the Central Asian region until 
2050 for the CMIP5 ensemble is larger than for the CMIP3 ensemble and the median projection 
for CMIP5 models shows greater warming than for CMIP3 models. The CMIP5 ensemble shows 
higher projections for winter temperatures compared to CMIP3 while summer temperature 
projections are similar. On the other hand, the CMIP5 ensemble shows higher precipitation 
projections for the summer months compared to CMIP3 ensemble, while precipitation projections 
for the winter months are similar for both ensembles. As a result, the CMIP5 ensemble leads to 
a slightly wider range in projected glacier extent. For temperature and precipitation projections, 
the median projection shows a decrease in glacier extent between 2007 and 2050 of 59.4% for 
the CMIP5 ensemble compared to 59.6% in the CMIP3 case. The projected decrease in glacier 
extent ranges from 54.4% to 65.1% for the CMIP5 ensemble compared to 54.5% to 63.5% for the 
CMIP3 ensemble. Large spread is evident among models within both ensembles, in agreement 
with recent studies that have indicated that the differences among GCMs due to their structure 
and characteristics is the main source of uncertainty in future climate. Parametric uncertainty 
leads to additional uncertainty in the projections of future glacier extent, and has roughly the same 
importance as uncertainty in the climate projections. The mentioned ranges in projected glacier 
extent decrease demonstrate substantial uncertainty in climate change projections and associated 
glacier response for Central Asia. Furthermore it shows that it is imperative to use a representative 
selection of climate models and emission scenarios that span the entire range of possible future 
climates in climate change impact studies, to provide a complete picture of possible climate change 
impact. At the same time it shows that climate change signals should be analysed at a seasonal 
scale, when used to assess the response of glaciers to the changes in climate. The wide range in the 
projections implies an uncertain future for Central Asian glaciers.
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Chapter 4

Modeling future changes in water availability 
resulting from climate change

 
Based on: Lutz, A.F., W.W. Immerzeel, A.B. Shrestha, and M.F.P. Bierkens (2014), Consistent increase 
in High Asia’s runoff due to increasing glacier melt and precipitation, Nature Climate Change, Vol. 4, 
pp. 587 – 592.

Abstract

Rivers originating in the high mountains of Asia are among the most melt water dependent river 
systems on Earth, yet large human populations depend on their resources downstream. Across High 
Mountain Asia’s river basins, there is large variation in the contribution of glacier and snow melt 
to total runoff, which is poorly quantified. The lack of understanding of the hydrological regimes 
of High Mountain Asia’s rivers is one of the main sources of uncertainty in assessing the regional 
hydrological impacts of climate change. Here we use a large-scale, high-resolution, cryospheric-
hydrological model to quantify the upstream hydrological regimes of the Indus, Ganges, 
Brahmaputra, Salween and Mekong rivers. Subsequently, we analyze the impacts of climate change 
for future water availability in these basins using the latest climate model ensemble. Despite large 
differences in runoff composition and regimes between basins and between rivers within basins, 
we project an increase in runoff at least until 2050, caused primarily by an increase in precipitation 
in the upper Ganges, Brahmaputra, Salween and Mekong basins and from accelerated melt in the 
upper Indus basin. These findings have immediate consequences for climate change policies where a 
transition towards coping with intra-annual shifts in water availability is desirable.

4.1	 Introduction

Rivers originating in the high mountains of Asia are among the most melt water dependent river 
systems on Earth, yet large human populations depend on their resources downstream [Schaner et 
al., 2012]. Across High Mountain Asia’s river basins, there is large variation in the contribution of 
glacier and snow melt to total runoff [Immerzeel and Bierkens, 2012], which is poorly quantified. 
The lack of understanding of the hydrological regimes of High Mountain Asia’s rivers is one of the 
main sources of uncertainty in assessing the regional hydrological impacts of climate change [Miller 
et al., 2012].

In general, the climate in the eastern part of the Himalayas is characterized by the East-Asian 
and Indian monsoon systems, causing the bulk of precipitation to occur during June to September 
(Figure 4.1). The precipitation intensity shows a strong north-south gradient caused by orographic 
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effects [Galewsky, 2009]. Precipitation patterns in the Hindu Kush and Karakoram ranges in the 
west are characterized by westerly and southwesterly flows, causing the precipitation to fall more 
equally distributed over the year (Figure 4.1) [Bookhagen and Burbank, 2010]. In the Karakoram up 
to two-thirds of the annual high-altitude precipitation occurs during the winter months [Winiger 
et al., 2005; Hewitt, 2011]. In addition, basin hypsometry determines the ratio of solid and liquid 
precipitation within a basin. Solid precipitation can be stored long-term as perennial snow, and ice, 
or short-term as seasonal snow before turning into runoff by melting, while liquid precipitation 
runs off directly. Each of these runoff components can be further delayed by infiltration into 
the soil and recharge to groundwater. The magnitude of the contribution of each of these runoff 
components to the total runoff determines a basin’s runoff composition and to a large extent also its 
response to climate variability and change.

Climate change impact assessments are characterized by large uncertainties stemming from large 
variation in climate change projections between different General Circulation Models (GCMs) 
[Hawkins and Sutton, 2010], large regional variation in climate projections and uncertainties in the 
associated response of the cryosphere [Bolch et al., 2012; Radić and Hock, 2013]. In addition, the 
present day hydrological regime is not well understood, constituting a major source of uncertainty 
in the assessment of climate change impact for hydrology in High Mountain Asia. Thus, detailed 
and comprehensive assessments of the future water availability in the region are only possible once 
the current hydrological regime is better quantified [Miller et al., 2012].

Although methods to quantify melt water contribution exist, high-resolution modeling studies 
focus on small scale watersheds [Frenierre and Mark, 2013]. High-resolution approaches that 
explicitly simulate ice dynamics, necessary to simulate the transient response to climate change, 
are even scarcer [Immerzeel et al., 2013]. On the other hand, large-scale assessments in the region 
are often qualitative [Archer, 2003; Immerzeel and Bierkens, 2012] or include crude assumptions 
and simplifications to simulate the response of the cryosphere to climate change, which cannot be 
resolved at low resolution [Immerzeel et al., 2010; Kaser et al., 2010; Schaner et al., 2012; Siderius et 
al., 2013]. In this study we close this scale gap by implementing a large-scale modeling approach 
at such a resolution that allows accurate simulation of key hydro-cryospheric processes. Only by 
using a distributed hydrological modeling approach incorporating transient changes in climate, 

Figure 4.1: Monthly climatology for the five upstream river basins during the reference period 
(1998-2007). Plotted are mean air temperature (red line) as derived from the Princeton global 
meteorological forcing dataset [Sheffield et al., 2006] and basin-averaged precipitation sum (blue 
bars) as derived from APHRODITE [Yatagai et al., 2012]). UIB=upper Indus basin, UGB=upper 
Ganges basin, UBB=upper Brahmaputra basin, USB=upper Salween basin, UMB=upper Mekong 
basin.
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snow cover, glacier dynamics and runoff, appropriate adaptation and mitigation strategies can be 
developed [Sorg et al., 2012].

Here we use a fully distributed, high-resolution cryospheric-hydrological model to assess 
upstream runoff composition in five major Asian river basins (Figure 4.2), and we demonstrate how 
runoff composition and total runoff volume are expected to change until 2050 by forcing this model 
with an ensemble of the latest GCM outputs.

4.2	 Methods and Data

4.2.1	 Cryospheric-hydrological model
We use the Spatial Processes in Hydrology (SPHY) model [Terink et al., 2015], which is a high-
resolution raster based, fully distributed cryospheric-hydrological model. The model is based on 
commonly applied hydrological models: Soil Water Assessment Tool [Neitsch et al., 2011; Arnold 
et al., 2012], Soil Water Atmosphere Plant model [van Dam et al., 2008], Snowmelt Runoff Model 
[Gómez-Landesa and Bleiweiss, 2008] and PCRaster Global Water Balance model [Bierkens and van 
Beek, 2009; Wada et al., 2010]. The model runs at 1x1 km spatial resolution with daily time steps 
and incorporates all major hydrological and cryospheric processes. The key model processes are 
outlined below.

The actual runoff which is calculated for each grid cell consists of four possible contributing 
factors: rainfall-runoff, snow melt, glacier melt, and baseflow. For each grid cell the total runoff 
generated per time step (QTOT) is calculated:

Figure 4.2: Map of the study area showing the outlet locations of major rivers and station locations 
used for model calibration and validation.

= + + +  (4.1)
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where QGM is runoff from glacier melt, QSM is runoff from snow melt, QRR is rainfall-runoff and QBF 
is baseflow. To determine the contribution of each of the four components to the total runoff within 
a grid cell, a subgrid parameterization is used in which for each cell the fractional ice cover (GF), 
ranging from 0 (no ice cover) to 1 (complete ice cover), is determined. For the remaining fraction 
of the grid cell the model maintains a dynamic snow storage and soil water storage. As the glacier-
covered fraction can change over time, the size of the remaining fraction is adapted accordingly. 
A variable groundwater storage is maintained for the entire grid cell. Runoff from glacier melt is 
defined as all the melt generated in the glacierized cell fraction. Runoff from snow melt consists 
of the snow melt released from the snow storage. Rainfall-runoff consists of the surface runoff 
from rainfall and lateral flow released from the soil water storage. Baseflow is released from the 
groundwater storage. Each of these four runoff types is routed downstream using a digital elevation 
model (DEM) and a recession function.

A differentiation is made between debris free glaciers and debris-covered glaciers, based 
on altitude and slope. Glaciers at lower altitude tend to have more debris cover because of the 
cumulative accumulation of debris from higher grounds and glacier parts with a small slope 
have more debris cover compared to steep-sloped parts of the glacier. We use the same slope 
differentiation as observed in the European Alps [Paul et al., 2004]. Although we acknowledge 
that local geology and geomorphology could control debris dynamics, we have constrained our 
classification to a slope and elevation threshold.

The daily melt from debris free glaciers (ACI,[mm we]) is calculated as:

where TAVG is the average air temperature, DDFCI is a degree-day factor for debris free glaciers 
(mm °C-1day-1) and FCI is the fraction of debris free glaciers within the fractional glacier cover (GF) 
of a grid cell. The daily melt from debris-covered glaciers (ADC, [mm we]) is calculated in a similar 
way, but with a different degree-day factor:

where DDFDC is a degree-day factor for debris-covered glaciers (mm °C-1day-1) and FDC is the 
fraction of debris-covered glaciers within the fractional glacier cover (GF) of a grid cell. The total 
glacier melt per grid cell (AGLAC,[mm we]) is then calculated by summing the melt from the debris-
covered and debris-free glacier types and multiplying by the fractional glacier cover:

To model glacier changes at the large river basin scale, where hydrological models operate at a 
spatial resolution of 1x1 km or lower, parameterizations of future glacier changes become necessary 
[Huss et al., 2010; Lutz et al., 2013]. The future changes in fractional glacier cover are simulated 
according to a recently developed parameterization [Lutz et al., 2013], where basin-scale changes 
in glacier extent are a function of the glacier size distribution in the basins and projections of 
temperature and precipitation. We calibrate this parameterization to regional mass balance trends 
[Kääb et al., 2012].

A dynamic snow storage is simulated for each grid cell at a daily time step, based on the model 
presented by Kokkonen et al. [2006]. Similar as for glacier melt, a degree-day melt modeling 

= max ( , 0) ∙ ∙  (4.2)

 

= max ( , 0) ∙ ∙  (4.3)

= ( + ) ∙  (4.4)
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approach is used to calculate the snow melt. Besides the accumulation of snow to the snow storage, 
the process of refreezing of melt water within the existing snow storage is incorporated in the 
model.

Below the snow storage, a dynamic soil water storage is maintained to derive the amount of 
rainfall-runoff and infiltration to groundwater. The soil is split into a root zone layer and a subsoil 
layer as in SWAP [van Dam et al., 2008]. Quantitative soil properties, estimated using pedotransfer 
functions [Keshavarzi et al., 2010] and soil type, are used in the “van Genuchten model” to simulate 
soil water storage [van Genuchten and Nielsen, 1985]. Surface runoff is calculated as saturation 
excess runoff. For the root zone layer the actual evapotranspiration is calculated using the 
Modified Hargreaves reference evapotranspiration equation [Droogers and Allen, 2002] and a land 
use dependent crop coefficient. Lateral flow of water in the soil between cells, exchange of water 
between soil layers and the groundwater reservoir through percolation and capillary rise, as well 
as the release of baseflow from the groundwater reservoir, are calculated as in SWAT [Neitsch et al., 
2011].

4.2.2	 Data sources
We use the 15 arc-second void-filled and hydrologically conditioned HydroSHEDS DEM [Lehner et 
al., 2008], which is based on the SRTM DEM [Farr et al., 2007]. This DEM is resampled to 1x1 km 
spatial resolution in UTM projection.

Glacier outlines are extracted from an updated version of the Randolph Glacier Inventory 
[Arendt et al., 2012a], provided by ICIMOD [Bajracharya and Shrestha, 2011]. The outlines are 
recalculated to a fractional glacier cover per 1x1 km grid cell.

Land use characteristics are extracted from the MERIS Globcover product [Defourny et al., 2007] 
and soil characteristics are derived from the Harmonized World Soil Database [FAO/IIASA/ISRIC/
ISSCAS/JRC, 2012].

Records of observed discharge are provided by the Nepal Department of Hydrology and 
Meteorology, International Water Management Institute Pakistan, the Pakistan Water and Power 
Development Authority and the Pakistan Meteorological Department.

As meteorological forcing we use the Asian Precipitation Highly-Resolved Observational Data 
Integration Towards Evaluation of Water Resources (APHRODITE [Yatagai et al., 2012]) dataset 
for precipitation and Princeton’s Global Meteorological Forcing Dataset (PGMFD [Sheffield et al., 
2006]) for temperature. APHRODITE is a long-term continental-scale daily precipitation product 
based on a dense network of rain gauges, and the daily PGMFD was constructed by combining a 
suite of global observation-based datasets with the National Centers for Environmental Prediction – 
National Center for Atmospheric Research (NCEP – NCAR) reanalysis. Some caution is appropriate 
as the large-scale forcing datasets are (partly) based on ground observations. Ground observations 
in mountainous areas are sparse, especially in the studied region, and are mainly located in the 
valleys. In mountainous meteorology, vertical lapse rates are important characteristics of climatic 
variables as air temperature and especially precipitation. The vertical temperature lapse rate is 
largely dependent on the moisture content of the air and generally varies between the dry adiabatic 
lapse rate (-0.0098 °C m-1) and the saturated adiabatic lapse rate (typically -0.005 °C m-1, strongly 
dependent on the temperature). Thus, vertical temperature lapse rates tend to decrease with 
elevation as the air gets dryer with altitude [Tahir et al., 2011a]. This may not be well represented 
in the ground station data as the stations are located in the valley bottoms. Precipitation also varies 
greatly over short horizontal distances in mountain areas and although APHRODITE is considered 
to be the best performing precipitation dataset for the Himalayas [Andermann et al., 2011], strong 
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vertical lapse rates have been reported, in particular in the Karakoram in the upper Indus basin 
[Hewitt, 2005, 2011; Winiger et al., 2005]. An underestimate in precipitation may lead to problems 
in model calibration, by for example compensating the shortage of precipitation with increased 
melt [Schaefli et al., 2005]. To correct for the inherent underestimation of precipitation and avoid 
correcting for this with wrong melt parameters, we use a single precipitation multiplication factor 
subject to calibration. We stress the importance of improvements in meteorological forcing data for 
mountainous terrain facing data scarcity.

We use the latest climate model ensemble generated for the fifth assessment report of 
the Intergovernmental Panel on Climate Change by the fifth phase of the Climate Model 
Intercomparison Project (CMIP5 [Taylor et al., 2012]) as future climate forcing. We include two 
representative concentration pathways (RCPs): RCP4.5 and RCP8.5.

4.2.3	 Modeling strategy
Initially the model is forced with the meteorological forcing data for 1998-2007 and model 
parameters (Table 4.1) are calibrated to daily observed discharge at three locations (locations 
C, G and H in Figure 4.2). These locations were chosen because they have complete, high quality 
flow records for the reference period, represent a variety of catchment sizes and represent both 
climatological regimes (the monsoon dominated eastern and southern Himalayas and the upper 
Indus basin where the climate is influenced by westerly streams in addition to the monsoon).

The model is calibrated against total flow, not individual flow components, at a daily time step for 
the complete 10-year period using the PEST parameter estimation software [Doherty and Skahill, 
2006]. Averaged for the three locations the Nash-Sutcliffe criterion for model efficiency equals 0.79 
and the Pearson correlation coefficient equals 0.93 on average (Figure 4.3). The model performance 
is validated independently versus complete 10-years discharge records at five locations (locations A, 
B, D, E and F in Figure 4.2). For the five validation locations the average Nash-Sutcliffe criterion for 
model efficiency equals 0.65 and the average Pearson correlation coefficient is 0.87 (Figure 4.3). We 
conclude that the model performs satisfactory given the large scale, complexity and heterogeneity 
of the modeled region and data scarcity. We use one parameter set for the entire domain, which 
inherently means some stations perform better than others. In the particular case of the upper 
Indus, another possible explanation could be uncertainty in air temperature forcing in the highest 
parts of the upper Indus basin, since especially in this area, the used forcing datasets are based on 
very sparse observations.

Besides validation to observed discharge, the model’s runoff separation in different components 
is compared to findings in smaller scale modeling studies in the region (Table 4.2). Although the 

Table 4.1: Calibrated model parameters.
Parameter Description Units Calibrated value

DDFci Degree-day factor debris-free glaciers mm °C day-1 6.0

DDFdc Degree-day factor debris-covered glaciers mm °C day-1 3.0

DDFs Degree-day factor snow mm °C day-1 4.8

SnowSC Water storage capacity of snow pack mm mm-1 0.5

PrecF Multiplication factor for precipitation forcing - 1.17

αGW Baseflow recession constant - 0.05

kx Routing recession coefficient - 0.959



89

CH
A

PT
ER

 4

comparison is evidently hampered by differences in scale and model concepts, it does provide 
further confidence in the models capability. For the Satluj subbasin in the upper Indus basin an 
average contribution of glacier and snow melt of 59% was found for 1986-1996 [Singh and Jain, 
2002]. The remaining 41% were attributed to rain. In our results for 1998-2007, 48% of the runoff 
is glacier and snow melt, 39% is rainfall-runoff and 13% is baseflow. Hence the studies show 
reasonable agreement, especially considering that part of the baseflow originates from glacier 
and snow melt, which is not considered in the other study. In the Langtang watershed, compared 
to our study, Immerzeel et al. [2011] estimated very similar contributions using a high-resolution 
combined cryospheric hydrological model. Other estimates for the Langtang watershed by 
Racoviteanu et al. [2013] using a straightforward ice ablation model, which were validated using 

Figure 4.3: Average observed (blue line) and simulated (red line) annual hydrographs for 1998-
2007 at calibration stations (C, G, H) and independent validation stations (A, B, D, E, F). The 
geographical locations of the stations are listed in Figure 4.2. Each plot lists the Nash-Sutcliffe 
criterion of model efficiency, Pearson correlation coefficient and bias.
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isotope analysis and mixing models, indicated 58.3% annual average contribution of glacier melt, 
matching also well with the 53% contribution we estimated for 1998-2007 in the same watershed. 
Further downstream, for the Dudh Koshi river, the ice ablation model by Racoviteanu et al. 
simulates 7.4% contribution by glacier melt, where in this study 18.8% was found. At this location 
the ice ablation model results were however not validated. The discrepancy in the model results 
may result from the high sensitivity of the ice ablation model to the chosen equilibrium line altitude 
(ELA) and ice ablation gradient as well as the difference in scale of the applications. Mukhopadhyay 
and Khan [2014] estimated long-term contributions of melt water to total runoff for multiple 
locations in the upper Indus basin, by separating annual hydrographs in different flow regimes, 
using linear smoothing and recursive digital filtering techniques. Comparing our results to what 
Mukhopadhyay and Khan found at four locations covering large parts of the upper Indus basin, 
shows that our estimates of melt water contribution are consistently somewhat higher than their 
results. Nevertheless, the estimates in the two studies match quite well, given the differences in time 
period, scales, and approach. Hence, we conclude that the used model is capable of simulating the 
magnitude and composition of runoff.

We use the CMIP5 multi-model ensemble [Taylor et al., 2012], which is the set of global climate 
change simulations which is used as basis for the fifth assessment report of the Intergovernmental 
Panel on Climate Change (IPCC), as climate change forcing for our model. We analyzed the 
projected changes in average air temperature (°C) and precipitation (%) between 1961-1990 and 
2021-2050 for all available CMIP5 simulations for two emission scenarios: RCP4.5 (43 model runs) 
and RCP8.5 (41 model runs). Based on these projected differences four combinations (dry and cold; 

Table 4.2: Comparison of results regarding runoff contributions in this study to other studies1.

Site
(river, location) Reference

Period 
cited 
study

Contribution per component 
in cited study (%)

Contribution per component in 
this study for 1998-2007 (%)

Glacier 
melt

Snow 
melt

Rain 
runoff

Base 
flow

Glacier 
melt

Snow 
melt

Rain 
runoff

Base
flow

Satluj, Bhakra Dam Singh and Jain [2002] 1986-1996 59 41 - 27.6 20.8 38.6 13.0

Langtang Khola, 
Kyangjing

Immerzeel et al., 
[2011]

2001-2010
47.0 6.9 28.8 17.4 52.5 12.8 25.0 9.7

Langtang Khola, 
Kyangjing

Racoviteanu et al. 
[2013]

1988-2006
58.3 41.7 52.5 12.8 25.0 9.7

Dudh Koshi, 
Rabuwa Bazar

Racoviteanu et al. 
[2013]

1988-2006
7.4 92.6 18.8 4.8 64.8 11.6

Indus, Besham Qila Mukhopadhyay and 
Khan, [2014]

1969-2010
70 30 67.3 17.6 7.1 8.0

Hunza, Dainyor 
bridge 

Mukhopadhyay and 
Khan, [2014]

1966-2010
74 26 80.6 9.6 1.3 8.5

Gilgit, Gilgit Mukhopadhyay and 
Khan, [2014]

1980-2010
68 32 54.2 26.0 12.3 7.5

Indus, Kachura Mukhopadhyay and 
Khan, [2014]

1970-2010 71 29 72.7 15.1 4.1 8.2

1In the compared studies the separation in runoff contributors differs from our approach with 
differentiation of four components. Therefore values may represent multiple components as indicated by 
the number of columns covered in the table.
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dry and warm; wet and cold; wet and warm) for each RCP were derived based on the 10th and 
90th percentile values of the projected changes. The model runs closest to the percentile values were 
selected (Figure 4.4, Table 4.3).

Subsequently we apply the well-established “delta change” approach to generate time series of 
future air temperature and precipitation [Arnell, 1999; Kay et al., 2008]. For each selected model we 
compute a transient “delta change” value by linearly interpolating the changes between 1961–1990 
and 2021–2050 for the GCM grid cells at their nominal resolution. This is done for each month 
(Jan-Dec), to include possible seasonal differences in the GCM output. For each simulated year 
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RCP 4.5 GCM runs

RCP 8.5 GCM runs

RCP 4.5 selected GCM run

RCP 8.5 selected GCM run

Figure 4.4: Projected changes of temperature and precipitation between 1961-1990 and 2021-
2050 over the model domain for RCP4.5 (43 model runs, blue diamonds) and RCP8.5 (41 model 
runs, red dots). The selected model runs (marked with crosses) are located closest to the 10- and 
90-percentiles of temperature change and precipitation change, and are used as climatic forcing in 
the hydrological model.

Table 4.3: Projected changes in temperature (ΔT) and precipitation (ΔP) averaged over the five 
basins for 2021-2050 with respect to 1961-1990.

RCP Description GCM Ensemble ΔT (°C) ΔP (%)

RCP4.5

dry, cold GISS-E2-R r4i1p1 1.4 -4.2

dry, warm IPSL-CM5A-LR r4i1p1 2.1 -0.1

wet, cold CCSM4 r5i1p1 1.4 8.2

wet, warm CanESM2 r4i1p1 2.3 7.6

RCP8.5

dry, cold GFDL-ESM2G r1i1p1 1.8 -0.7

dry, warm IPSL-CM5A-LR r4i1p1 2.7 -1.1

wet, cold CSIRO-Mk3-6-0 r3i1p1 1.9 12.1

wet, warm CanESM2 r4i1p1 2.8 11.0
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in 2008–2050, we select a random year from the 1x1 km reference period climate dataset and we 
superimpose the monthly temperature and precipitation change grids to construct a transient time 
series from 2008 to 2050. These time series are then used as meteorological forcing for the SPHY 
model.

4.3	 Results and Discussion

4.3.1	 Hydrological regimes
In the upper Indus basin (UIB), stream flow is dominated by glacier melt water, contributing 
40.6% of the total runoff (Figure 4.5, Table 4.4). Despite its larger relative glacierized area, glacier 
melt only contributes 11.5% of the total runoff generated in the upper Ganges basin (UGB). Due 
to the monsoon-dominated precipitation regime in the UGB, the runoff regime is rain dominated 
here (Figure 4.5, Table 4.4). The hydrological regime in the upper Brahmaputra basin (UBB) is 
comparable to the UGB, although the relative contribution of glacier melt and snow melt in the UBB 
are slightly larger compared to the UGB. This can be explained by the differences in hypsometry 

Figure 4.5: The upstream basins of Indus (UIB, brown), Ganges (UGB, green), Brahmaputra (UBB, 
red), Salween (USB, purple) and Mekong (UMB, yellow). Bar plots show the average annual runoff 
generation (TR) for the reference period (1998-2007, REF, first column). The second column 
shows the mean projected annual total runoff (TR) for the future (2041-2050 RCP4.5) when 
the model is forced with an ensemble of 4 GCMs. In the subsequent columns TR is split in four 
contributors (BF: baseflow, GM: glacier melt, SM: snow melt, RR: rainfall-runoff ). Error bars 
indicate the spread in model outputs for the model forced by the ensemble of 4 GCMs.
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of these basins (Table 4.5), with the UBB having a larger portion of its area at higher elevations, 
favoring solid precipitation in this basin. Rainfall-runoff is the dominant component in the upper 
Salween basin (USB) and upper Mekong basin (UMB). Notably, however, is the large contribution 
of seasonal snow melt in these basins, compared to the three other basins (Figure 4.5, Figure 4.6), 
since large parts of these basins are located on the Tibetan Plateau (Table 4.5).

At the outlets of the UIB, the contribution of glacier melt in the Indus River is much larger 
compared to the Kabul and Satluj Rivers (Figure 4.7). The snow dominated Kabul River’s flow peaks 
during the spring months, while the glacier melt dominated Indus River peaks during summer, 
when glacier melt is at its maximum. The discharge in the Satluj River peaks during the summer 
months as well, but this is explained by a monsoon dominated rainfall regime in this basin (Figure 
4.8), rather than by glacier melt. Hence, the Satluj discharge peak is directly related to the peak in 
rainfall during the monsoon, which is also the case for the UGB, UBB, USB and UMB (Figure 4.7). 
In the UBB, glacier melt is important for the most eastern tributaries (Figure 4.8), enhancing the 
flow peak at the upstream basin outlet during the summer months (Figure 4.7). The Salween and 
Mekong discharges peak during the monsoon-months, where flow composition is dominated by 
snow melt during the first months and dominated by rainfall-runoff during the last months of the 
monsoon season (Figure 4.7). The contribution of baseflow to the total flow varies from 11% in the 
UIB to 23% in the UMB (Figure 4.5).

4.3.2	 Climate change scenarios
To estimate the impacts of climate change for the future hydrological regimes in the five basins, we 
force the model with the latest ensemble of climate models. While GCMs agree that, between the 

Table 4.5: Basin hypsometry expressed as basin area distributed over four elevation classes

Basin
Basin area (%) in elevation class

< 3000
m a.s.l.

3001-4000
m a.s.l.

4001-5000
m a.s.l.

5001-6000
m a.s.l.

Upper Indus 30.0 15.7 31.9 21.8

Upper Ganges 41.0 11.6 26.3 19.7

Upper Brahmaputra 16.3 13.2 41.0 29.2

Upper Salween 0.9 6.2 67.5 25.4

Upper Mekong 0.3 10.2 80.1 9.3

Table 4.4: Basin characteristics.

Basin Precipitation 
(mm yr-1)

Glacierized 
area (%)

Runoff 
(mm yr-1)

Contribution to total runoff (%)

Glacier 
melt

Snow 
melt

Rainfall-
runoff

Base 
flow

Upper Indus 346 4.9 574 40.6 21.8 26.8 10.8

Upper Ganges 900 5.4 1088 11.5 8.6 66.0 13.9

Upper Brahmaputra 573 3.1 691 15.9 9.0 58.9 16.2

Upper Salween 595 1.3 480 8.3 27.5 42.0 22.2

Upper Mekong 642 0.2 464 0.9 32.5 43.9 22.8
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Figure 4.6: Annual runoff generated during the reference period (1998-2007) at 1x1 km model 
resolution. Upper panels show the runoff generated by each component: a) rainfall-runoff, b) 
snow melt, c) glacier melt, d) baseflow. Panel e shows the total runoff (e.g. the sum of the four 
components).



95

CH
A

PT
ER

 4

reference period (1998-2007) and 2050, temperatures will increase in the region by ~1 to 2.2 °C, 
and with roughly the same magnitude throughout the year, precipitation projections are uncertain. 
Averaged over the five basins, changes in precipitation of -3.5% to +9.5% are projected for the same 
period. This uncertainty range is even larger for individual basins and for specific seasons (Figure 
4.9). On the whole, an increase in precipitation is projected for each basin except for the UIB, where 
projections of precipitation change show opposite signs.

4.3.3	 Future glacier extent
For the river basins with significant contribution of glacier melt to total flow, the future evolution of 
the glacier cover is crucial. Observed glacier changes are not uniform in the region [Hewitt, 2011; 
Bolch et al., 2012; Yao et al., 2012; Gardelle et al., 2013]. While glaciers are losing mass in most parts 
of the Himalayas, stability or even mass gain is observed in the Pamir and Karakoram ranges. Since 
the 1 km model resolution does not allow for explicit inclusion of ice flow, we use a parameterization 
of basin scale glacier changes [Lutz et al., 2013] calibrated to regional mass balance trends [Kääb et 
al., 2012], to simulate future glacier changes. As a result of increasing air temperatures, a decrease in 
glacier extent is projected for all basins for all ensemble members despite the projected precipitation 
increase in most ensemble members (Table 4.6). Our basin-scale estimates of future glacier changes 
are in good agreement with previous large-scale work [Radić et al., 2014].

4.3.4	 Future changes in hydrology
For all basins, the amount of glacier melt water contributing to the total flow does not change much 
at least until 2050 since the decrease in glacier area is compensated by an increase in melt rate 
(Figure 4.5, Figure 4.10, Table 4.7). For the UIB, increasing glacier melt water is projected by all 
ensemble members in both RCPs.

The future amount of snow melt in the UIB decreases slightly for all ensemble members in both 
RCPs, as the increasing temperatures and limited change in precipitation result in a shift towards 
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Figure 4.7: Average annual hydrographs for the reference period (1998-2007) at major river’s outlets 
from the upstream domain (locations indicated in Figure 4.2). The blue line indicates the total 
discharge. The stream flow composition is indicated for four components: baseflow (red), glacier 
melt (blue), snow melt (orange), rainfall-runoff (green).
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more liquid precipitation (Figure 4.5, Figure 4.10, Figure 4.9). Overall, for three out of four 
ensemble members in RCP4.5, the annual runoff generated in the UIB increases by 7-12% in 2041-
2050 with respect to the reference period. Only for the dry and warm scenario a decrease (-5%) 
in runoff is projected (Figure 4.5) primarily resulting from a precipitation decrease (Figure 4.9). 
For RCP8.5 three ensemble members project a 2-8% increase in runoff while the dry and warm 
scenario projects a -5% decrease in runoff (Figure 4.10). The projected changes in the average 
annual hydrographs of the Kabul, Indus and Satluj Rivers reveal how different the responses to 
climate change are between rivers with different stream flow composition (Figure 4.11, Figure 
4.12). For example, the flow in the Indus River is dominated by temperature driven glacier melt 
during summer, and the uncertainty in future flow is therefore relatively small as a result of small 
uncertainty in future temperature changes. The Kabul River on the other hand, has a much larger 
rainfall-runoff and snow component, leading to a larger uncertainty in future flow as a result of 
large uncertainties in future precipitation Figure 4.9, Figure 4.11, Figure 4.12).

Figure 4.8: Contribution to total flow by glacier melt (a), snow melt (b) and rainfall-runoff (c) 
for major streams during the reference period (1998-2007). Line thickness indicates the average 
discharge during the reference period.
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Figure 4.9: Projected changes in temperature (ΔT, red circles) and precipitation (ΔP, blue squares) 
for 2021-2050 with respect to 1961-1990 per basin for RCP4.5 (left panels) and RCP8.5 (right 
panels). Changes are shown on annual basis (a,d), for the monsoon period (b,e) and winter months 
(c,f ). Red circles and blue squares indicate the mean projection for an ensemble of four GCMs. The 
error bars indicate the full range of projections for the 4 GCM-ensemble. UIB = upper Indus basin, 
UGB = upper Ganges basin, UBB = upper Brahmaputra basin, USB = upper Salween basin, UMB 
= upper Mekong basin.

Table 4.6: Simulated remaining glacier area (%) in 2050 with respect to 2007.

RCP Description GCM Ensemble Upper 
Indus

Upper 
Ganges

Upper 
Brahmaputra

Upper 
Salween

Upper 
Mekong

RC
P4

.5

dry, cold GISS-E2-R r4i1p1 79 64 69 56 61

dry, warm IPSL-CM5A-LR r4i1p1 76 58 61 42 41

wet, cold CCSM4 r5i1p1 80 63 64 42 44

wet, warm CanESM2 r4i1p1 76 55 58 37 37

RC
P8

.5

dry, cold GFDL-ESM2G r1i1p1 76 59 61 40 41

dry, warm IPSL-CM5A-LR r4i1p1 72 55 57 38 37

wet, cold CSIRO-Mk3-6-0 r3i1p1 77 63 64 42 42

wet, warm CanESM2 r4i1p1 73 52 55 33 32
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For the rainfall-runoff dominated UGB the future hydrology largely depends on the precipitation 
projections. These projections have very large uncertainties, and large variation between the 
annually averaged and seasonal projections (Figure 4.9). Overall, all ensemble members in both 
RCPs project precipitation increases for the UGB during the monsoon, leading to increases in total 
annual runoff up to 10% for RCP4.5 and 27% for RCP8.5 respectively. The absolute amounts of 
glacier melt and snow melt do not change much, but their relative contributions decrease due to 
the increased rainfall-runoff. As a consequence, increased flows are observed during the discharge 
peak in the monsoon season, with large uncertainty in the magnitude of flow increase (Figure 4.11, 
Figure 4.12).

For the UBB, the uncertainty in the precipitation projections is small compared to the other 
basins, especially for RCP4.5 (Figure 4.9). An increase in precipitation up to 12% for RCP4.5 and 
up to 18% for RCP8.5 is projected, which in combination with rising temperatures leads to 3-8% 
increase in annual runoff for RCP4.5 and 1-13% increase for RCP8.5. This is also reflected in the 
Brahmaputra outlet’s average annual hydrograph for 2041-2050 (Figure 4.11, Figure 4.12), where 
year round increases in flow are projected due to the consistent increase in precipitation. Notably, 
the projected increase in precipitation during the monsoon months is small compared to the 
neighboring UGB and USB, explaining the smaller increase in runoff during the monsoon season. 
The relative contribution of baseflow remains unchanged for the future scenarios and therefore 
baseflow changes proportional to the change in total runoff.

Given the similarities of the hydrological regimes and climate change projections in the USB and 
UMB, their hydrological responses are similar. Projected precipitation increases are fairly constant 

Table 4.7: Simulated average annual runoff (mm) differentiated for each runoff component for 
the reference period (1998-2007) and future period (2041-2050). Values for the future period are 
the mean of the model output when forced with 4-GCM ensembles for RCP4.5 and RCP8.5 
respectively.

Basin Period Total runoff Glacier melt Snow melt Rainfall-
runoff Baseflow

Upper Indus

1998-2007 574 233 125 154 62

2041-2050 RCP4.5 609 250 109 180 71

2041-2050 RCP8.5 586 251 103 165 68

Upper Ganges

1998-2007 1088 125 94 718 151

2041-2050 RCP4.5 1156 115 81 789 172

2041-2050 RCP8.5 1238 116 74 862 185

Upper 
Brahmaputra

1998-2007 691 110 62 407 112

2041-2050 RCP4.5 722 99 56 443 126

2041-2050 RCP8.5 727 99 52 448 128

Upper 
Salween

1998-2007 480 40 132 202 107

2041-2050 RCP4.5 516 27 112 240 137

2041-2050 RCP8.5 523 25 107 248 144

Upper 
Mekong

1998-2007 464 4 151 204 106

2041-2050 RCP4.5 513 3 119 250 142

2041-2050 RCP8.5 511 3 113 252 143
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for all seasons and the uncertainty in precipitation projections is somewhat larger for the USB 
compared to the UMB (Figure 4.9). An associated increase in runoff is expected for all ensemble 
members (Figure 4.5, Figure 4.10). At the outlet of the upstream basins, increased flows are 
expected for August-May related to increased precipitation and a shift in snow melt peak to earlier 
spring, while decreasing flows are expected in June and July, related to the same shift (Figure 4.11, 
Figure 4.12). Furthermore, the snow melt peak decreases in magnitude as the ratio of liquid and 
solid precipitation shifts in favor of liquid precipitation in response to increased temperatures.

Figure 4.10: The upstream basins of Indus (brown), Ganges (green), Brahmaputra (red), Salween 
(purple) and Mekong (yellow). Glaciers are indicated as blue polygons (ICIMOD glacier inventory 
[Bajracharya and Shrestha, 2011]), major streams are indicated by blue lines (streams derived from 
HydroSHEDS [Lehner et al., 2008]). Bar plots show the average annual runoff generation (TR) for 
the reference period (1998-2007, REF, first column). The second column shows the mean projected 
annual total runoff (TR) for the future (2041-2050 RCP8.5) when the hydrological model is forced 
with an ensemble of 4 GCMs. In the subsequent columns the projected annual total runoff is split 
in four contributors to total runoff (BF: baseflow, GM: glacier melt, SM: snow melt, RR: rainfall-
runoff ). For the projections the error bars indicate the spread in model outputs for the model 
forced by the ensemble of 4 GCMs. UIB = upper Indus basin, UGB = upper Ganges basin, UBB = 
upper Brahmaputra basin, USB = upper Salween basin, UMB = upper Mekong basin.
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Figure 4.11: Average annual hydrographs for the future period (2041-2050, RCP4.5) at major 
river’s outlets from the upstream domain (locations are indicated in Figure 4.2). Plots show the 
mean projected discharge when forced with the 4 GCM ensemble (red line) and the discharge for 
the reference period (1998-2007, blue line). For the future period the stream flow composition is 
indicated for four components: baseflow (red), glacier melt (blue), snow melt (orange), rainfall-
runoff (green). The error bars indicate the spread in projections for the future period when forced 
with the ensemble of 4 GCMs.
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Figure 4.12: Average annual hydrographs for the future period (2041-2050, RCP8.5) at major 
river’s outlets from the upstream domain (locations indicated in Figure 4.2). Plots show the mean 
projected discharge when forced with the 4 GCM ensemble (red line) and the discharge for the 
reference period (1998-2007, blue line). For the future period the stream flow composition is 
indicated for four components: baseflow (red), glacier melt (blue), snow melt (orange), rainfall-
runoff (green). The error bars indicate the spread in projections for the future period when forced 
with the ensemble of 4 GCMs.
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4.4	 Conclusions

Previous work indicated future increases in runoff in two contrasting smaller catchments in the UIB 
and UGB [Immerzeel et al., 2013]. Here we use a novel high-resolution cryospheric-hydrological 
modeling approach to show that these findings also hold at large scale, despite the large differences 
in hydrological regimes between basins and between rivers and tributaries within basins. In contrast 
to the UGB, UBB, USB and UMB, where the main driver of runoff increase is the projected increase 
in precipitation, the main driver in the UIB is accelerated melt. The contradictory precipitation 
projections for this basin make water availability in the UIB highly uncertain in the long run, 
requiring further research. Since a consistent increase in runoff is expected for these five basins at 
least until 2050, a change of focus to coping with extreme events and intra-annual shifts in water 
availability is desirable. Changes in the frequency of extreme events, which are not addressed in this 
study, may increase natural hazards, while intra-annual shifts in water availability can have major 
consequences for regional food security when flow peaks and growing seasons are not coinciding. 
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Chapter 5

Modeling future changes in hydrological sources,
seasonal shifts and extremes in the
upper Indus basin 

Based on: Lutz, A.F., W.W. Immerzeel, P.D.A. Kraaijenbrink, and A.B. Shrestha (under review), 
Climate change impacts on the upper Indus hydrology: sources, shifts and extremes. PLOS-ONE.

Abstract 

The Indus basin heavily depends on its upstream mountainous part for the downstream supply 
of water while downstream demands are high. Since downstream demands will likely continue to 
increase, accurate hydrological projections for the future supply are important. We use an ensemble 
of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to 
force a cryospheric-hydrological model and generate transient hydrological projections for the 
entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) 
A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is 
used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass 
balance. (iii) An advanced statistical downscaling technique is used that accounts for changes 
in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, 
seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s 
water availability is highly uncertain in the long run, mainly due to the large spread in the future 
precipitation projections. Despite large uncertainties in the future climate and long-term water 
availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent 
across climate change scenarios. Most prominent is the attenuation of the annual hydrograph 
and shift from summer peak flow towards the other seasons for most ensemble members. In 
addition there are distinct spatial patterns in the response that relate to monsoon influence and the 
importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity 
and frequency of extreme discharges are very likely for most of the upper Indus basin and most 
ensemble members.

5.1	 Introduction

The water resources supplied by the upper Indus basin (UIB) are essential to millions of people 
and future changes in both demand and supply may have large impacts [Immerzeel and Bierkens, 
2012]. The UIB provides water for the world’s largest continuous irrigation scheme through several 
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large reservoirs (e.g. the Tarbela and Mangla dams, Figure 5.1), which depend for more than 50% 
of their annual inflow on snow and glacier melt water [Immerzeel et al., 2010; Lutz et al., 2014; 
Mukhopadhyay and Khan, 2014a, 2015a]. In combination with variable precipitation patterns, the 
intra-annual variation in streamflow is high [Reggiani and Rientjes, 2014] and so is the supply to the 
downstream areas. Water demands are high, primarily because of water consumption by irrigated 
agriculture [Jain et al., 2007], and hydropower generation [Mirza et al., 2008]. At the same time the 
downstream part of the basin is characterized by very dry conditions [Wanders and Wada, 2014], 
making it largely dependent on water supply from the upstream areas. The downstream demands 
exceed the supply and on an annual basis groundwater resources are depleted by an estimated 31 
km3 [Cheema et al., 2014], which makes the Indus basin aquifer the most overstressed aquifer in 
the world [Wada et al., 2010; Gleeson et al., 2012; Richey et al., 2015]. The strong dependence of 
river runoff on snow and glaciers in combination with a rapidly growing population and associated 
increase in water and energy demand make the Indus basin globally a climate change hotspot [De 
Souza et al., 2015].

The climate of the UIB is complex and is the result of an intricate interaction between monsoon 
circulation, westerlies and the topography [Hewitt, 2011; Scherler et al., 2011; Mölg et al., 2013; 
Maussion et al., 2014; Mishra, 2015]. The interaction between topography and precipitation 
manifests itself at various scales ranging from a synoptic scale of several hundreds of kilometers 
to an orographic meso-scale of less than 30 kilometers [Barros et al., 2004]. Along the Himalayan 
arc the monsoon influence is largest but this influence decreases in north-western direction where 
mid-latitude westerlies become increasingly important, e.g. at the junction of the Karakoram, 

Figure 5.1: The upper Indus basin. The map shows the main rivers, mountain ranges, digital 
elevation model and locations of the main dams. Numbered red dots indicate stream flow locations 
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Pamir and Hindu Kush mountain ranges (Figure 5.1). Precipitation from the westerlies is highest in 
winter when low-pressure systems reach the western margin of the greater Himalaya. This supply of 
moisture reaches higher elevations than the summer monsoon, which might be related to the higher 
tropospheric extent of the westerly airflow [Scherler et al., 2011].

Several studies investigated historical trends in precipitation and temperature in the UIB. 
Trend analysis on precipitation for 17 stations throughout the UIB showed statistically significant 
increasing trends in precipitation for several stations in annual, summer and winter precipitation 
between 1961 and 1990 [Archer and Fowler, 2004]. In a subsequent study by the same authors, 
trends in temperature between 1961 and 2000 were also assessed and it was found that (i) the 
diurnal temperature range is increasing consistently in all seasons, (ii) winter mean and maximum 
temperatures show significant increases and (iii) mean and minimum summer temperatures show 
a consistent declining trend [Fowler and Archer, 2006]. These findings were confirmed also for a 
more recent period (1980 – 2009) for roughly the same stations. In this study it was found that 
a few stations in the Karakoram and Gilgit regions (Figure 5.1) showed a significant increase in 
precipitation. Minimum temperatures are increasing throughout the year, except for summer, and 
maximum temperatures are increasing throughout all seasons [Bocchiola and Diolaiuti, 2013]. 
Trend analysis on the ERA40 reanalysis dataset for the Baltoro region in the Karakoram (Figure 5.1) 
showed negative summer temperature trends from 1958 until 1990 and a positive trend from 1991 
to 2001 [Quincey et al., 2009]. The authors also found an increasing trend in annual precipitation 
from 1970 to 1990 and a decreasing trend during the 1990s. This increase is attributed to trends 
in spring and summer. Trend analysis on several gridded precipitation products did not confirm 
these findings and although for several gridded products a negative precipitation trend was found 
for the Himalayan range, positive precipitation trends could not be confirmed for the Hindu 
Kush – Karakoram region [Palazzi et al., 2013]. Studies on the winter westerly disturbances, being 
the major source of winter precipitation, indicate strong intra-seasonal variability and a trend of 
enhanced frequency and strength of these disturbances in the Karakoram and western Himalaya 
between 1979 and 2010, leading to increased heavy winter precipitation [Cannon et al., 2014, 2015].

There is great debate on the response of glaciers in the UIB to climate change during the last 
decade. The glaciers in the Himalayan range are seemingly losing mass at rates similar to other 
mountainous regions in the world, however the glaciers in the Karakoram and Pamir mountain 
ranges have neutral mass balances on average and are characterized by a large number of surging 
glaciers [Hewitt, 2007; Kääb et al., 2012, 2015; Gardelle et al., 2013; Gardner et al., 2013; Quincey et 
al., 2015]. This so called Karakoram anomaly has not been explained, but a possible reason could 
be a combination of a decrease in summer temperatures and an increase in precipitation. However 
this is still speculative and requires further study and understanding of atmospheric processes 
leading to high-altitude precipitation. This hypothesis is supported by an increasing trend in 
snow cover that was found in the Hunza basin based on MODIS snow cover analysis [Tahir et al., 
2011b, 2015] and that the water balance of the UIB can be closed without large negative glacier 
mass balances [Reggiani and Rientjes, 2014]. On the other hand, decreasing trends in snow cover 
for the most westerly-influenced subbasins, including Hunza, and increasing trends for the more 
monsoon-influenced subbasins were found [Hasson et al., 2014]. A trend analysis of snow cover 
in the monsoon-dominated Sutlej basin indicated a trend of snow cover reduction between 2000 
and 2009 [Mir et al., 2015]. Kapnick et al. [2014] conclude that the Karakoram is protected from 
reductions in annual snowfall under climatic warming because the seasonal cycle is dominated by 
non-monsoonal winter precipitation.
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Rising temperatures in basins strongly depending on glacier melt are likely to result in an increase 
in stream flow in the near future and a decline in the far future. This is caused by the fact that the 
total amount of glacier melt is a tradeoff between increasing melt rates on one hand and reduced 
glacier areas on the other hand. The moment when the trend in glacier melt changes from positive 
to negative is highly variable [Immerzeel et al., 2013; Soncini et al., 2015]. Reggiani and Rientjes 
[2014] analyzed a 1961 to 2009 record of reservoir inflow at Tarbela, which is the largest reservoir 
on the main stem of the Indus river (Figure 5.1), and found a declining trend, although statistically 
insignificant. Further upstream trend analysis on streamflow records at different locations identified 
stable or declining trends in runoff too [Tahir et al., 2011b; Sharif et al., 2013; Mukhopadhyay and 
Khan, 2015b]. These studies are indicative that large parts of the UIB are (not yet) experiencing 
accelerated melt, which could indeed be partly attributed to the Karakoram anomaly. However, 
contrary to these findings, a recent study in the Shigar river basin [Mukhopadhyay and Khan, 
2014b] reports rising river flows. However, the authors do not relate this to the existence of the 
Karakoram anomaly. Instead, they argue that an increase in runoff is possible under neutral glacier 
mass balance conditions as a result of increasing temperature and precipitation, i.e. the mass 
turnover of the glacier is increasing, yet the mass balance remains neutral.

Climate simulations are used to generate projections of future climate change in the UIB. 
Analysis of precipitation change signals in a large number of General Circulation Model (GCM) 
runs indicates that an increase in summer precipitation and on average no significant change in 
winter precipitation are likely [Palazzi et al., 2014]. However, the spread in the precipitation changes 
from the GCM ensemble is large, because the complex UIB climate is difficult to simulate [Turner 
and Annamalai, 2012]. Analysis with regional climate models (RCM) reveals consistent warming 
until the end of the century with greater warming in the upper Indus than in the lower Indus. 
Precipitation projections show a non-uniform change with increases projected for the upper parts 
and decreases for the lower parts [Rajbhandari et al., 2014; Ali et al., 2015]. However care needs to 
be taken in using RCMs directly in impact studies. A recent study that analyzed the uncertainty of 
the CORDEX South Asia regional climate models showed that the RCMs exhibit large uncertainties 
in both temperature and precipitation, that they exhibit a large cold bias and that they are unable to 
reproduce observed warming trends [Mishra, 2015]. Empirical-statistical downscaling, which may 
be better suited under such complex conditions, is another approach to generate forcing for climate 
change impact models, where climate model output is statistically corrected using transfer functions 
with local observations during a historical period. Empirical-statistical downscaling of GCMs in 
the UIB based on an ensemble of selected GCMs showed a modest increase in precipitation and a 
consistent warming, which is stronger in the upper parts of the basin [Immerzeel et al., 2013; Lutz et 
al., 2014]. The application of a stochastic weather generator to downscale RCM data in the northern 
UIB lead to a projection of year-round increasing precipitation, with increased intensity during the 
wettest months and year-round uniformly increasing temperatures [Forsythe et al., 2014].

Hydrological impact studies have been conducted for the UIB at various spatial scales and key 
assumptions in those studies relate to (i) the reference climate dataset being used, (ii) the future 
climate forcing and downscaling method, (iii) the type and complexity of the hydrological model, 
(iv) the treatment of glacier evolution in the future and (v) the calibration and validation strategy. 
Immerzeel et al. [2010] used a simple lumped model, statistically downscaled GCM data for the A1B 
emission scenario and hypothetical glacier retreat scenarios to project a modest decrease in average 
upper Indus flow around 2050. For the Baltoro catchment in the upper parts of the Shigar river basin 
(Figure 5.1) it was shown that river runoff will be on the rise throughout this century as a result 
of a persistent high glacier melt water yield in combination with a modest projected increase in 
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precipitation [Immerzeel et al., 2013]. In this study a fully distributed glacio-hydrological model was 
used including a simple ice flow model. The model was calibrated using runoff and data on glacier 
extents and flow velocities and forced using an ensemble of empirical-statistically downscaled 
climate models. A recent study focusing on the Shigar river basin with a semi-distributed model 
also shows an increase in flow until the middle of the century and then a gradual decrease, but still 
higher than the control runs [Soncini et al., 2015]. A large-scale distributed modeling study focusing 
on assessing climate change impacts in the upstream parts of five major Asian river basins shows a 
consistent increase in average water availability until 2050 [Lutz et al., 2014]. Other studies covering 
the Indus upstream of Tarbela (Figure 5.1), but based on a limited number of climate models also 
project increasing flow throughout the 21st century [Ali et al., 2015; Khan et al., 2015b]. Projections 
of changes in hydrological extremes in the UIB are very limited [Bocchiola et al., 2011], but are at 
the same time very much desired [Lutz et al., 2014; Nepal and Shrestha, 2015; Soncini et al., 2015].

In this study we systematically assess present day hydrology of the UIB and the impacts of climate 
change using a new fully distributed cyrospheric-hydrological model at a high spatial resolution 
(1 km2) that includes all relevant components of the high altitude water balance [Terink et al., 2015]. 
We introduce several novel components which may advance our understanding of the complex 
impact of climate change on the UIB hydrology:

•	 A new historical precipitation dataset [Immerzeel et al., 2015] that corrects for the 
underestimation of high altitude precipitation is used.

•	 The model is calibrated on river runoff at several locations, MODIS based snow cover 
estimates and geodetic glacier mass balance data.

•	 An advanced statistical downscaling technique for climate change scenarios until 2100 is 
used that accounts for changes in precipitation extremes.

•	 The analysis is focusing on changes in sources of runoff, changes in seasonality and changes 
in hydrological extremes.

5.2	 Methods

5.2.1	 Cryospheric-hydrological model
We use the high-resolution, raster-based, fully distributed Spatial Processes in Hydrology (SPHY) 
cryospheric-hydrological model [Terink et al., 2015], which was applied in a river basin-scale study 
on climate change impacts for water availability in five major Asian river basins before [Lutz et al., 
2014]. The model runs at 1 km2 spatial resolution with a daily time step. The actual runoff, which 
is calculated for each grid cell, consists of four possible contributing factors: rainfall-runoff, snow 
melt, glacier melt, and baseflow. For each grid cell the total runoff generated per time step (QTOT) is 
calculated:

where QGM is runoff from glacier melt, QSM is runoff from snow melt, QRR is rainfall-runoff and QBF 
is baseflow. To determine the contribution of each of the four components to the total runoff within 
a grid cell, a subgrid parameterization is used in which for each cell the fractional ice cover (GF), 
ranging from 0 (no ice cover) to 1 (complete ice cover), is determined. Glacier melt is simulated 
using a degree-day modeling approach [Hock, 2003]. A differentiation in debris-covered and debris-
free glaciers is made based on thresholds for elevation and terrain slope [Paul et al., 2004], and 

= + + +  (5.1)
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different degree-day factors are used for both glacier types (Table 5.2). For the remaining fraction 
of the grid cell, the model maintains a dynamic snow and soil water storage. The glacier fraction per 
grid cell is adapted dynamically in time. A variable groundwater storage is maintained for the entire 
grid cell. A part of the glacier melt generated in the glacierized cell fraction is treated as surface 
runoff and the remaining part is treated as groundwater recharge. Runoff from snow melt consists 
of the snow melt released from the snow storage, which is simulated using a degree-day modeling 
approach. Besides accumulation and melt, refreezing of snow melt and rain water within the snow 
storage is included in the model. Gravitational snow transport between grid cells is simulated with 
the SnowSlide routine [Bernhardt and Schulz, 2010]. Snow sublimation is estimated using a simple 
elevation-dependent potential sublimation function. We assume that the majority of sublimation 
comes from snowblown sublimation with highest wind speeds prevailing at higher elevations, and 
therefore potential sublimation is assumed to increase linearly with elevation above 3000 m a.s.l. by 
a calibrated factor. The actual sublimation is the potential sublimation limited by the snow storage 
present in the grid cell. Rainfall-runoff consists of the surface runoff from rainfall and lateral flow 
released from the soil water storage. Soil water processes are simulated for a topsoil and subsoil layer 
and processes simulated include evapotranspiration, infiltration, percolation, capillary rise, surface 
runoff and lateral flow. Baseflow is released from the groundwater storage. Each of these four runoff 
types is routed downstream using a digital elevation model (DEM) and a routing recession function. 
The model is described in detail by Terink et al. [2015].

5.2.2	 Datasets
Meteorological observations from stations are sparse in the mountains, in particular in the 
upper Indus. Data mostly originates from valley stations which are not representative for high 
altitude precipitation. The few stations that are located at higher elevations are typically subject to 
undercatch in case of snow [Cheema and Bastiaanssen, 2012]. Therefore, meteorological datasets 
consistently seem to underestimate precipitation in the UIB [Immerzeel et al., 2012b; Palazzi 
et al., 2013]. As forcing for the SPHY-model we therefore use the precipitation dataset presented 
by Immerzeel et al. [2015], which uses the observation-based APHRODITE [Yatagai et al., 2012] 
dataset as a basis. The raw precipitation data are corrected by using IceSat-derived zonal glacier 
mass balances [Kääb et al., 2012] as a proxy to estimate high altitude precipitation. Details of the 
methodology and dataset are described by Immerzeel et al. [2015]. The correction factors that were 
found by Immerzeel et al. [2015] for 2003-2007 are applied to the daily APHRODITE data for 1971-
2000 to generate a 30-year reference climate dataset at 1 km2 spatial resolution and daily timestep. 
By using this dataset we aim to overcome the fundamental problem of underestimated precipitation 
in distributed modeling of high-mountain hydrology.

As digital elevation model (DEM) we use the 15 arc-second void-filled and hydrologically 
conditioned HydroSHEDS DEM [Lehner et al., 2008], which is based on the SRTM DEM [Farr et 
al., 2007]. This DEM is resampled to 1 km2 spatial resolution. Glacier outlines are extracted from 
the Randolph Glacier Inventory [Pfeffer et al., 2014], and they are recalculated to a fractional glacier 
cover per 1 km2 grid cell. Land use characteristics are extracted from the MERIS Globcover product 
[Defourny et al., 2007], and quantitative soil properties are derived from the Harmonized World 
Soil Database (HWSD, [FAO/IIASA/ISRIC/ISSCAS/JRC, 2012]) using pedotransfer functions 
[Keshavarzi et al., 2010].

MODIS snow cover data [Hall et al., 2002] and geodetic glacier mass balance data [Bolch et 
al., 2016, in preparation] are used for model calibration. Discharge observations provided by the 
Pakistan Water and Power Development Authority (WAPDA) are used for model calibration and 
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validation. IceSat-derived zonal glacier mass balance data [Kääb et al., 2012] are used for calibration 
of a basin-scale parameterization of glacier changes [Lutz et al., 2013].

5.2.3	 Calibration and validation
The model is calibrated using a systematic three-step approach to overcome equifinality problems 
[Beven, 2006; Pellicciotti et al., 2012]. First, parameters related to glacier melt are calibrated using 
geodetic mass balance data for the Hunza basin (Figure 5.1, Figure 5.2a). The geodetic mass balance 
data indicates differences in glacier surface elevation, from differencing SRTM [Farr et al., 2007] and 
ASTER [Tachikawa et al., 2011] DEMs. The SRTM DEM was acquired in February 2000, but due to 
radar penetration it underestimates glacier elevations and is likely to be more representative of the 
elevation of glaciers at the end of the 1999 melt season [Berthier et al., 2007]. The ASTER DEMs 
were collected in late September and early October 2008. The elevation differences are transformed 
to average annual glacier mass balances (m w.e. yr-1) for 30 individual glaciers by using an average 
ice density of 850 kg m-3 [Huss, 2013]. The 30 individual glaciers only include glaciers with a surface 
area covering at least 5 km2 (5 model grid cells) to avoid scale problems, and fractional glacier 
cover for the individual model grid cells are extracted from an updated version of the ICIMOD 
glacier inventory, which includes distinction of debris-free and debris-covered ice surfaces for the 
Hunza basin (courtesy of S.R. Bajracharya). Using the model temperature and precipitation forcing 
the glacier mass balances for the individual glaciers are simulated for October 1999 to September 
2007. Melt is calculated with a degree-day approach for the grid cells with a fractional glacier cover. 
Accumulation is calculated as solid precipitation falling on the grid cells with fractional glacier 
cover and the adjacent grid cells with a slope steeper than 0.2 towards the glacier surface [Immerzeel 
et al., 2015]. The simulated data does not coincide completely with the geodetic mass balance 
data because the forcing data is only available until 2007. The model parameters related to glacier 
melt (DDFci, DDFdc, see Table 5.2) are then optimized for agreement between the simulated and 
observed glacier mass balances and different melt parameters are used for debris-covered glaciers 
and debris-free glaciers.

Second, parameters related to snow storage and melt (DDFs, SnowSC, Sm, ShdMin, SubPot, see 
Table 5.2) are calibrated independently by comparing SPHY simulated snow cover and MODIS 
remotely sensed snow cover [Hall et al., 2002]. Remotely sensed snow cover has proven to be 
useful to improve model calibration in areas with high snow cover [Bookhagen and Burbank, 2010; 
Pellicciotti et al., 2012]. The same processed MOD10C2 dataset is used as by Immerzeel et al. [2009]. 
From the beginning of 2000 until halfway 2008 the snow cover imagery is averaged for 46 different 
periods of 8 days (5 days for the last period) to generate 46 different average snow cover maps. That 
means period 1 is the average snow cover for 1-8 January for 2000 until 2008, period 2 is the average 
snow cover for 9-16 January for 2000 until 2008, etc. Because the MODIS snow cover product is 
available at 0.05° x 0.05° spatial resolution, SPHY model snow cover output is averaged over 8 day 
periods, resampled and projected from 1 km2 spatial resolution to the same time periods, resolution 
and geographic projection as the MODIS product. Parameters related to snow melt are optimised 
to minimize the difference between SPHY simulated snow cover and MODIS observed snow cover.

Third, after calibration of the model parameters related to glacier melt and snow melt, remaining 
parameters related to baseflow and routing (αGW, kx, see Table 5.2) are calibrated to observed 
discharge at two locations in the UIB. The selection of locations is primarily dictated by data 
availability and data access. Secondly the selection is made such that it is a representative subset of 
the UIB, with different climatic and hydrological regimes. Calibration is performed at a daily time 
step for the same periods for which stream flow records are available. Parameter optimization is 
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done using PEST parameter estimation software [Doherty, 2005]. The calibrated parameters are 
assumed to be spatially uniform, i.e. one set of parameters is calibrated and assumed to be applicable 
to the entire UIB.

The calibrated SPHY model is independently validated to observed discharge at two locations 
that are not used in model calibration.

5.2.4	 GCM downscaling
We select two ensembles containing four GCM runs from the CMIP5 database [Taylor et al., 
2012]: one ensemble for the medium stabilization scenario RCP4.5 and one ensemble for the very 
high radiative forcing scenario RCP8.5. To include all possible futures and because for our study 
area there is no particular GCM performing best, and no GCM is able to simulate all aspects of 
the precipitation dynamics in the region satisfactory [Sperber et al., 2013; Palazzi et al., 2014; 
Sperber and Annamalai, 2014], we choose to use the entire range of projections available. For both 
ensembles we therefore select four GCM runs covering the entire spectrum of projected changes 
in temperature and precipitation, as projected by all the CMIP5 GCM runs with output available 
for that RCP (Table 5.1). We select the models closest to the 10th and 90th percentile values of the 
projections, to avoid the inclusion of outliers, similar as in other studies [Immerzeel et al., 2013; Lutz 
et al., 2014; Sorg et al., 2014].

The selected GCM runs are statistically downscaled by applying the Advanced Delta Change 
(ADC) method [van Pelt et al., 2012]. ADC has the advantage over the classical delta change 
method [Arnell, 1999; Kay et al., 2008] that it is not based on changes in the mean, but changes 
in the entire precipitation distribution, including extreme precipitation, which is a prerequisite 
for the assessment of changes in hydrological extremes. This is achieved by applying a non-
linear transformation to five-day sums of precipitation data. Five-day sums are considered 
because extreme discharge events usually depend on multiple days of extreme precipitation. The 
transformation parameters are determined from the GCM control and future runs. Because of the 
large difference in resolution between the historical dataset (1 km2) and the GCM data (~1.0 to 
2.5°), both datasets are interpolated to a common grid of 25 km2

 resolution. Because ADC focuses 
on increasing detail in the high end of the precipitation distributions, two different equations are 
used for the transformation of the observed 5-day precipitation sums, based on the 90% quantile. 

Table 5.1: GCM runs included in the climate model ensemble used to force the hydrological model, 
and projected changes in temperature and precipitation between 2071-2100 and 1961-1990, 
averaged over the GCM grid cells covering the upper Indus basin.

RCP Scenario GCM ΔT (°C) ΔP (%)

RCP4.5

DRY, COLD inmcm4_r1i1p1 2.1 -4.6

DRY, WARM IPSL-CM5A-LR_r3i1p1 4.3 -6.3

WET, COLD MRI-CGCM3_r1i1p1 2.5 10.5

WET, WARM CanESM2_r4i1p1 4.4 13.2

RCP8.5

DRY, COLD MPI-ESM-LR_r1i1p1 6.0 -7.9

DRY, WARM IPSL-CM5A-LR_r3i1p1 8.0 -10.2

WET, COLD CSIRO-Mk3-6-0_r1i1p1 5.6 29.8

WET, WARM MIROC5_r3i1p1 6.7 31.0
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This quantile is determined per calendar month over the entire reference period for every 25 km2 
grid cell. The two transformation equations are:

where P* represents the transformed 5-day sums, P the reference climate dataset 5-day sums, P90 the 
90% quantile and a and b are the transformation coefficients. The superscripts O, C and F denote 
whether the variable represents respectively the reference climate time series (O), the GCM control 
series (C) or the GCM future series (F). For 5-day precipitation sums that exceed the P90 of their 
month an excess value (E) is determined. The mean future excess (
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) in Eq. (5.3) are determined per calendar month over the entire future or control period for 
every 25 km2 grid cell:

The linear scaling of the transformed precipitation with the ratio of future and control excess 
in Eq. (5.3) expresses a change in the slope of the extreme value plot of the five-day maximum 
precipitation amounts [van Pelt et al., 2012].

The transformation coefficients a and b are derived from the 60% and 90% quantiles by:

Bias correction factors g1 and g2 account for systematic differences in P60 and P90 in the reference 
climate time series and GCM control series, and are determined by:

and

To reduce sampling variability in the transformation coefficients, the P60 and P90 are smoothed 
temporally by using a weighted mean with weights of 0.25, 0.5 and 0.25 on respectively the previous, 
current and next month. The mean excesses are smoothed temporally in a similar manner. The 
ADC-method is described in more detail in van Pelt et al. [2012b].

Because the variability in precipitation within a common grid cell in the UIB is much larger than 
in the Rhine basin, for which the ADC-method was originally developed, the a and b parameters are 
additionally capped to avoid unrealistically high transformed daily precipitation values, which can 
occur due to the non-linear transformation of the precipitation value. This is done by constraining 
the a parameter and associated b parameter as follows:
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This constraining is based on the distribution of a and b parameter values observed in the 
transformation in the Rhine basin [Kraaijenbrink, 2013].

The transformation parameters are determined and five-day sums are transformed for each 
future period spanning 10 years, by using a moving 30-year window from the GCM future series 
centered around the 10 year future period under consideration. For example, in the calculation of 
the transformation parameters for 2061-2070, the GCM future series for 2051-2080 is used. For 
the last future ten-year period (2091-2100) the GCM future series for 2071-2100 is used, similar 
as for 2081-2090, because most GCM runs do not go beyond 2100. After transformation a change 
factor can be determined for each five-day sum, which can be subsequently used to transform the 
individual days that belong to that specific sum. The change factor R is determined as:

To generate a baseline daily time series spanning 100 years from 2001 to 2100 that can be 
subjected to the change factors, a series of 100 years of daily precipitation is randomly selected from 
the 1971-2000 reference climate dataset (= ∙  ). The change factor (R) is used to transform the 
individual daily precipitation sums to future daily precipitation ( = ∙  ):

Due to the non-linear transformation of precipitation, the mean climate change signal in the bias-
corrected downscaled data is modified from the mean climate change signal in the raw GCM data. 
Such modification of the mean climate change signal is often observed in statistical bias-correction 
and downscaling methods and may be considered as an undesired deficiency of a bias-correction 
and downscaling method [Hempel et al., 2013], although this is a current topic of discussion [Ehret 
et al., 2012; Maurer and Pierce, 2014; Gobiet et al., 2015]. We choose to correct for this effect and 
therefore the transformed daily precipitation values are scaled for each future ten year period at the 
grid cell level at monthly scale to the ratio of future and reference precipitation sum according to the 
raw GCM data as follows:

with = ∙  ∙   being the final transformed daily precipitation value, PF being the future precipitation 
sum in the GCM future run, PC being the precipitation sum in the GCM control run, PO being the 
precipitation sum in the reference dataset and = ∙  ∙   being the initially transformed precipitation (Eq. 
(5.11)).

The temperature transformation, in contrast to that of precipitation, is linear in nature and has 
the form [van Pelt et al., 2012]:

where 

 

* = − + + −   represents the transformed temperature; T the temperature in the reference climate 
dataset; 

 

* = − + + −  , 

 

* = − + + −   and 

 

* = − + + −   the monthly mean of respectively the reference, GCM control and GCM 
future temperature; 

 

* = − + + −  
 and 

 

* = − + + −  
 the standard deviations of the daily GCM control and GCM future 

temperature calculated per calendar month. The temperature transformation is applied to daily 
temperature values directly. The same series of 100 years of randomly selected years from the 

= * ⁄  (5.10)

= ∙  (5.11)

= ∙  ∙  (5.12)

 

* = − + + −  (5.13)
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reference period as for precipitation is used for the transformation of air temperature data. The 
transformation is applied to mean, maximum and minimum air temperature separately (i.e.: T in 
Eq. (5.13) can be replaced by Tmean, Tmax or Tmin).

Each of the downscaled GCM scenarios is used to force the hydrological model with transient 
runs from 1 January 2001 until 31 December 2100.

5.2.5	 Future glacier changes
Future glacier changes are simulated at large scale for the UIB divided in three sub-regions: one 
sub-region for each of the mountain ranges Hindu Kush, Karakoram and Himalaya (Figure 5.1). For 
each of these three regions a regionalized glacier mass balance model is used to estimate changes in 
the regional glacier extent as a function of the glacier size distribution in the sub-regions and the 
downscaled future climate data [Lutz et al., 2013]. This glacier mass balance model is specifically 
developed for implementation in large-scale hydrological models, where the spatial resolution does 
not allow for the simulation of individual glaciers and data scarcity is an issue. The model is initially 
forced with the climatic forcing for the reference period and calibrated to sub-region-averaged 
glacier mass balance data derived from IceSat data [Kääb et al., 2012], before it is used to calculate 
sub-region-scale glacier changes for each of the downscaled GCM ensemble members from 2001 
until 2100. The Randolph Glacier Inventory [Pfeffer et al., 2014] is assumed to be representative for 
the state of the glacier extent at the start of the future simulation in 2001.

5.3	 Results and Discussion

5.3.1	 Calibration and validation
After calibration of the degree-day factors of debris-covered and debris-free glaciers (Table 5.2) the 
area-weighted mean glacier mass balance (+0.11 m we yr-1) matches very well with the observed 
area-weighted mean glacier mass balance (+0.12 m we yr-1) (Figure 5.2b). The interquartile range 
is also similar. However, the total spread within the sample of 30 individual glaciers is larger in 
the simulation than in the observations. The larger spread in the simulation stems most probably 
from the quite coarse model resolution at 1 km2. The calibrated values for the degree-day factors 
for debris-free and debris-covered glaciers (Table 5.2) fall well within the range of values derived in 
field experiments in the greater Hindu Kush-Himalayan region [Zhang et al., 2006]. Given the large 
scale and the fact that we use a fixed parameter set for all glaciers we conclude that the calibrated 
parameters can be considered representative for the UIB.

Averaged over the UIB, the calibrated SPHY model simulates snow cover reasonably well 
(Figure 5.2c, d). The largest overestimates occur in the Karakoram range and the Himalayan 
range in the most southeastern part of the UIB. The largest underestimates occur in the Hindu 
Kush and mountain ranges to the south of the Karakoram. At the basin scale, there is also a slight 
overestimation of snow cover during most parts of the year (Figure 5.2d). Overestimates may 
well be related to the fact that snow redistribution by wind from one grid cell to another is not 
included in the SPHY model. Another explanation could be related to the simple approach used to 
estimate sublimation, whereas sublimation can potentially be an important component of the high-
altitude water balance in the HKH region [Wagnon et al., 2013]. Studies in other areas revealed that 
blowing snow sublimation plays a larger role than ground sublimation from the snow pack, and that 
sublimation losses can be in the order of tens of percents of the total snow accumulation, and up to 
~90% on very windy ridges [Strasser et al., 2008; Lenaerts et al., 2010; MacDonald et al., 2010].
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Calibration to observed discharge shows that averaged over the two locations, the Nash-Sutcliffe 
efficiency [Nash and Sutcliffe, 1970] calculated at a daily time step equals 0.81, whereas Pearson’s 
correlation coefficient equals 0.92 (Table 5.3). For the location at Tarbela, covering a large part of 
the Indus basin, there is a positive bias of 9.7% in the simulation. The bias is largest during the 
months with high contribution of snow melt to the discharge (Figure 5.3a), and is thus likely related 
to the overestimate of snow cover on the part of the Tibetan Plateau that is part of this catchment 
(Figure 5.2d), which in turn relates to the high precipitation forcing in spring. For the Jhelum basin 
upstream of Mangla reservoir, with large contribution of snow melt to the stream flow, the model 
simulates the seasonal patterns in stream flow well (Figure 5.3b).

Table 5.2: Critical model parameters and their calibrated values.
Parameter
acronym Description Units Calibrated value

DDFci1 Degree-day factor debris-free glaciers mm °C day-1 7.1

DDFdc1 Degree-day factor debris-covered glaciers mm °C day--1 3.0

DDFs2 Degree-day factor snow mm °C day-1 5.0

SnowSC2 Water storage capacity of snow pack mm mm-1 0.5

Sm2 Minimum slope for gravitational snow 
transport m m-1 0.2

ShdMin2 Minimum snow holding depth mm 50

SubPot2 Potential sublimation function mm day-1 0.0015* (h -3000)
(for h > 3000 m a.s.l.)

αGW3 Baseflow recession constant - 0.005

kx3 Routing recession coefficient - 0.9476
1Calibrated with geodetic mass balance data [Bolch et al., 2016, in preparation] 
2Calibrated with MODIS snow cover data [Hall et al., 2002; Immerzeel et al., 2009] 
3Calibrated with observed discharge records (Pakistan Water and Power Development Authority)

Table 5.3: Correlation of observed and simulated discharge at locations used for model calibration 
and validation.

ID in 
Fig. 
5.1

Name River
Calibration (C)

or
Validation (V)

Used period 
(observation interval)

Nash-
Sutcliffe 

efficiency (-)

Pearson’s 
coefficient of 
correlation (-)

Bias 
(%)

10 Tarbela 
Inflow Indus C Apr 1976-Dec 2007 (10 

days) 0.78 0.91 9.7

14 Mangla 
inflow Jhelum C Apr 1976 – Dec 2007 (10 

days) 0.84 0.93 -6.4

1 Dainyor 
Bridge Hunza V 1966-2004 (daily) 0.76 0.88 -2.8

15 Marala 
Inflow Chenab V

Apr 1976-Dec 2007 (10 
days) 0.71 0.90 -23.1



115

CH
A

PT
ER

 5

For the Hunza basin upstream of Dainyor bridge, which harbours the highest and most scarcely 
monitored part of the UIB and is used for model validation, simulated stream flow is slightly 
underestimated during the peak season in July and August, and overestimated during September 
and October (Figure 5.3c). During these months the stream flow is dominated by glacier melt, 
which is driven by air temperature. This suggests that the APHRODITE temperature fields may 
lack some accuracy for this area where observations are very scarce. Besides the model slightly 
underestimates snow cover in the northern part of the Hunza basin (Figure 5.2c), which may 

Figure 5.2: Calibration results for model parameters related to glacier melt and snow melt. a) 
Elevation difference on glaciers for 1999-2009 derived from DEM-differencing. Outlines of 
glaciers used for calibration are indicated black. b) Box plots showing the distribution of observed 
and simulated glacier mass balances for 30 individual glaciers indicated in the area in panel a. 
Black dots indicate the observed and simulated area-weighted mean mass balance of all considered 
glaciers. c) Average difference between SPHY simulated snow cover and MODIS observed snow 
cover. d) MODIS observed and SPHY simulated fractional snow cover averaged over the UIB and 
averaged for 2000-2007.
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contribute to the underestimate of the flow peak. For the Chenab basin, located to the southeast of 
the Jhelum basin, the model underestimates the flow during July and August, leading to a negative 
bias (Figure 5.3d). In this case the bias is most likely related to a shortage of precipitation in the 
forcing data, being 1222 mm yr-1 for the validation period whereas the observed discharge is only 
slightly lower (1100 mm yr-1).

The annual water balance for 2003-2007, largely coinciding with the period covered by IceSat-
derived glacier mass balances for three sub-zones in the UIB (Figure 5.1), is plausible for the 
Indus upstream of Besham Qila with precipitation input being 664 mm yr-1, the negative glacier 
mass balance contributing 25 mm yr-1, and evapotranspiration, sublimation and discharge being 
174 mm yr-1, 139 mm yr-1 and 367 mm yr-1, respectively on the other side of the water balance. 
The gap in the water balance of 9 mm yr-1 is negligible and can be attributed to changes in storages 
in the soil, snow cover and groundwater. Given the complexity of high mountain hydrology, the 
scale of the application, the use of one parameter set for the entire basin, and large uncertainties in 
the meteorological model forcing, we conclude that the model performance is satisfactory for our 
purpose to estimate the impacts of climate change for the UIB’s future hydrology.
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Figure 5.3: Monthly-averages of most important water balance terms and observed discharge 
for catchments used for calibration and validation (Table 5.3). Plots show precipitation (P), 
evapotranspiration (ET), sublimation (SU), observed discharge (Q observed), baseflow (Q 
baseflow), glacier melt (Q glacier), snow melt (Q snow) and rainfall-runoff (Q rain).
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5.3.2	 Present day hydrology
The hydrological regimes during the reference period have a large spatial variation in the UIB 
(Figure 5.4). Strong south to north and east to west gradients are visible in the intensity of the 
rainfall-runoff generation, consistent with the intensity of the monsoon that comes in from the 
southeast during the monsoon season. In the monsoon-dominated Sutlej basin the contribution of 
rainfall to the total flow at the outlet is 74%, whereas this is 33% for the Indus at Tarbela. Snow 
melt has highest importance in the water coming from the Hindu Kush mountains in the Kabul 
basin, which receive large amounts of solid precipitation from westerly disturbances during the 
winter months. Glacier melt contribution is highest in the most glaciated Karakoram subbasins, 
like Hunza (85%) and Shigar (43%), and the upstream reaches of Kunar. This makes the Indus 
river the most melt-water dependent river leaving the UIB (55% glacier and snow melt at Tarbela). 
The lower-latitude Satluj, Beas, Ravi, Chenab and Jhelum rivers are dominated by input from 
rainfall, most of which falls during the monsoon season. The Jhelum river also has a substantial 
snow melt component (32%). Our estimates of stream flow composition match reasonably well 
with what others found based on a conceptual model [Mukhopadhyay and Khan, 2014a, 2015a]. 
The results from this study show a slight shift in runoff composition towards higher contribution 

Figure 5.4: Streamflow composition in the upper Indus basin. Contributions of glacier melt (a), 
snow melt (b) and rainfall-runoff (c) to the total flow averaged over the reference period (1971-
2000). The magnitude of streamflow is indicated by the symbol size.
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of snow melt and rainfall and lower contribution of glacier melt compared to our earlier findings 
[Lutz et al., 2014]. This is because the current study is focused on the UIB only whereas the earlier 
study comprised the upstream basins of five Asian rivers, and most importantly because in the 
current study we use precipitation forcing that is corrected for the underestimate of high altitude 
precipitation, whereas this was not available at the time of the 2014 study. In the 2014 results, the 
shortage of precipitation input is compensated by higher glacier melt rates when calibrated only to 
observed stream flow, a common problem in the simulation of mountain hydrology [Pellicciotti et 
al., 2012]. Associated to the large differences in the hydrological regimes between the tributaries are 
also differences in the intra-annual distribution of river discharge. Although the peak of glacier melt 
largely coincides with the peak in monsoonal rains, the snow melt peak occurs during spring. These 
contrasts in hydrological regimes of the different tributaries feeding the downstream basin may lead 
to different responses to future climate change.

5.3.3	 Future climate
The downscaled GCM ensembles for RCP4.5 and RCP8.5 show that the future climate in the UIB 
is highly uncertain. Both ensembles indicate strong warming (Figure 5.5a,b), with significantly 
stronger warming for the parts of the basin with the highest elevation. The difference in warming 
can be up to ~1 °C (RCP4.5) and ~2 °C (RCP8.5) between the lowest and the highest areas in the 
UIB. This is well in line with presently observed elevation-dependent warming [Rangwala and 
Miller, 2012; Pepin et al., 2015]. Comparing the average warming in the UIB (+2.1 to +8.0 °C 
between 1971-2000 and 2071-2100) to the global average (+1.8 to +4.4 between the same periods 
for the same RCPs [Knutti and Sedláček, 2012]), also demonstrates that the UIB is likely to warm 
stronger than other parts in the world. The uncertainty in warming is largest in the eastern and 
northern parts of the UIB. Seasonal differences in the temperature projections are limited. For both 
RCPs, strongest temperature increases are projected for January and June (Figure 5.5e,f). These 
projected temperature changes are well in line with what was found in other studies for the Indus 
basin [Rajbhandari et al., 2014; Ali et al., 2015], although the different scenarios and climate models 
used in those studies make a direct comparison difficult.

The precipitation projections are highly uncertain. The RCP4.5 mean projection shows clear 
contrasting trends of precipitation increase in the southeastern part and precipitation decrease 
in the northwestern part of the UIB (Figure 5.5c). This contrast is also observed for the RCP8.5 
mean projection (Figure 5.5d), although the area with a projected increase in precipitation is larger. 
Besides, the precipitation increase is much higher for RCP8.5 than for RCP4.5, and the magnitude 
of precipitation decrease is smaller. The range of the precipitation projections however is very 
large. For both ensembles, for each geographical location there are both ensemble members that 
predict an increase and a decrease in precipitation. The ensemble range is much larger for RCP8.5 
compared to RCP4.5 and can be up to 100% for the most downstream parts. The mean projected 
precipitation trend in the southeastern parts of the UIB suggest that monsoon intensity increases, 
and that the monsoon protrudes further to the northwest with increasing temperatures. Averaged 
over the UIB, significant seasonal patterns can be observed in the precipitation projections (Figure 
5.5e,f). In general, although subject to a large uncertainty, the mean projection in both ensembles 
is indicating precipitation decrease during February-May and increase in October-January, with 
the increase being strongest in October. Especially the months October through January have 
very large uncertainties in RCP8.5. Despite this large uncertainty, an increase in precipitation is 
likely. Shifts in precipitation patterns originating from westerly disturbances are more difficult to 
interpret. The increasing precipitation during winter months combined with decreases during the 
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early spring months could suggest that the westerly disturbances set in earlier, however the spatial 
pattern reveals mostly a precipitation decrease (on annual scale) in those areas where westerly 
disturbances are the main contributor to total precipitation. The trends, and large uncertainties of 
precipitation change we find in our ensembles are similar to what was found in an analysis of 32 
CMIP5 GCMs over the Hindu Kush-Karakoram-Himalaya region [Palazzi et al., 2014], and once 

Figure 5.5: Projected changes in temperature and precipitation for 2071-2100 compared to 1971-
2000. Projections are shown for the RCP4.5 (left panels) and RCP8.5 ensembles (right panels). 
a,b) Ensemble mean change in air temperature. Contour lines denote the ensemble range of 
projections. c,d) Ensemble mean change in annual precipitation sum. Contour lines denote the 
ensemble range of projections. e,f ) Ensemble mean changes in air temperature and precipitation 
per month of the year. Shading denotes the ensemble range of projections.
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more demonstrate the need for improvement of climate simulations in this region, to lower the 
uncertainty in the future’s climate.

5.3.4	 Future glacier extent
The large uncertainty in the climate change scenarios translates in the projected changes in glacier 
extent (Table 5.4). Even though the wet scenarios project large increases in precipitation, glacier 
area decreases considerably during the 21st century throughout the basin, since the precipitation 
increases cannot compensate for the ample rises in temperature. Our projections are in the same 
order as projections made in recent other studies at large scale [Radić et al., 2014; Zhao et al., 2014].

5.3.5	 Future hydrology
The uncertainty in UIB’s future climate evidently also reflects in the projections of the future 
hydrology. Nevertheless, several remarkably consistent patterns of projected hydrological changes 
can be observed across the range of scenarios.

5.3.5.1	 Stream flow composition
The contribution of glacier melt has decreased by the end of the century across all scenarios (Figure 
5.6a,d,g,j). For RCP8.5 the decrease is strongest for the wet, warm scenario and smallest for the 
dry, cold scenario. The changes in snow melt contribution also show a consistent signal across 
scenarios, but with high spatial variation (Figure 5.6b,e,h,k). The strongest decreases are projected 
for the Hindu Kush mountain range consistent with the high warming rates. In the Karakoram 
and in the Zanskar subbasin, the contribution of snow melt increases in favor of glacier melt, since 
the glacier area is reduced but seasonal snow still provides a considerable amount of melt water. 
Although the strongest precipitation increases are projected for the winter months (Figure 5.5e,f), 
all year increases in temperature lead to a shift in the precipitation regime to more precipitation 
falling as rain instead of snow. For the ensemble means, averaged over the UIB the portion of the 
precipitation falling as rain changes from 58% during 1971-2000 to 66% during 2071-2100 for 
RCP4.5 and 75% for RCP8.5, consistent with earlier projections of changes in UIB snowfall [Viste 
and Sorteberg, 2015]. Remarkably, despite this shift in precipitation regime, snow melt contribution 
to total runoff increases or stays equal in most parts of the UIB except for the Kabul basin (Figure 

Table 5.4: Projected remaining glacier area (%) in 2100 compared to the reference situation for 
three sub-regions in the upper Indus basin, when forced by the individual ensemble members.

RCP Scenario GCM run
Remaining glacier area (%) in 2100 compared to RGI

Himalaya Hindu Kush Karakoram

RCP4.5

DRY, COLD inmcm4_r1i1p1 34.6 29.5 50.3

DRY, WARM IPSL-CM5A-LR_r3i1p1 17.7 12.3 27.1

WET, COLD MRI-CGCM3_r1i1p1 41.6 54.5 64.9

WET, WARM CanESM2_r4i1p1 15.4 8.0 26.1

RCP8.5

DRY, COLD MPI-ESM-LR_r1i1p1 13.8 12.6 28.6

DRY, WARM IPSL-CM5A-LR_r3i1p1 9.5 7.7 13.6

WET, COLD CSIRO-Mk3-6-0_r1i1p1 15.2 12.9 30.9

WET, WARM MIROC5_r3i1p1 12.4 6.4 14.0
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5.5b,e,h). This can be explained by the combined effect of increased evapotranspiration due to 
higher temperatures and increased water availability in the soil and a reduction of sublimation 
due to decreases in snow cover. For the western part of the Kabul basin the strongest increases in 
temperature are projected (Figure 5.5a,b), leading to a reduction in snow melt contribution and 
increase in rainfall-runoff contribution across scenarios. The RCP8.5 wet & warm scenario leads to 
largest increases in rainfall-runoff contribution (Figure 5.6l) and for this scenario the contribution 
of snow melt is mostly reduced (Figure 5.6k).

5.3.5.2	 Water availability and intra-annual shifts
Changes in stream flow composition are also related to changing hydrological regimes in different 
times of the year (Figure 5.7). For most catchments (1-11) in the near future (2021-2050) for 
RCP4.5, flows show little changes during the high flow season and increase during autumn 
and especially spring. This is most likely due to an increase in autumn and winter precipitation 
(Figure 5.5e,f) and earlier onset of snow- and glacier melt. Despite the projected decrease in 
annual precipitation in most of the main Indus branch’s basin (Figure 5.5c), annual-averaged 
water availability is unchanged for the locations in the Indus river (6-10), and increases slightly 
for the upstream subbasins of Hunza, Shigar and Shyok. For Hunza and Shigar this is most likely 
related to increased glacier melt, and for the Shyok basin upstream of Yogo it is a combination of 
precipitation increases for the mean of the scenarios (Figure 5.5c) and increased glacier melt. The 

Figure 5.6: Changes in the contributions of individual components to the total flow for 2071-2100 
compared to 1971-2000 for the cryospheric-hydrological model forced by the downscaled GCMs 
in the RCP8.5 ensemble. Changes are calculated as the contribution to stream flow in the future 
period (%) minus the contribution to stream flow in the reference period (%).
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lower altitude subbasins (12-15) show a different pattern of seasonal shifts, with strong decreases in 
flow during June and July and often also for the spring months. Autumn and winter flows increase 
slightly, and annual-averaged water availability decreases slightly for these sub-basins. These basins 
have large rainfall-runoff and snow melt components, and decreases in precipitation during spring 
and the monsoon season combined with higher evapotranspiration rates, most likely cause runoff 
to decrease during those months, whereas precipitation increases during the winter months, cause 
increasing runoff during winter (Figure 5.5e). For the end of the century (2071-2100), the mean 
projection for RCP4.5 shows similar changes in intra-annual water distribution as for the near 
future, but much more pronounced. As glacier areas have reduced significantly by then, the amount 
of glacier melt water decreases substantially, causing reductions in discharge during the summer 
months. In addition, flows in the high flow season decline further by reduced precipitation during 
the monsoon season, and total water availability decreases for the entire UIB due to reduced 
precipitation in combination with increased evapotranspiration. Flows in spring tend to increase 
more strongly due to earlier onset of snow and glacier melt during these months. Only for the Satluj 
river, being the most rain-dominated river in the UIB, increases in water availability are projected 
for the far future according to the RCP4.5 ensemble mean since precipitation is projected to increase 
for this part of the UIB (Figure 5.5c).

In terms of total water availability, the RCP8.5 ensemble shows quite contrasting projections 
with increases in annual water availability in the near and far future. The patterns in the shifts 
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Figure 5.7: Ensemble mean monthly average changes in discharge at individual locations in the 
upper Indus basin (left) and coefficient of variation for the entire ensemble (right). Changes are 
shown for the near future (2021-2050) and the far future (2071-2100) compared to 1971-2000, for 
the RCP4.5 and RCP8.5 ensembles. Numbers in parentheses behind the location names refer to 
the locations in Figure 5.1.
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in the ensemble mean projection however are consistent with RCP4.5, implying a transition to a 
more attenuated hydrograph. That flows increase during all parts of the year, including the high 
flow season, is most likely because precipitation is projected to increase for all seasons except spring 
and glacier melt rates in the near future increase stronger compared to RCP4.5 due to stronger 
temperature increase. Earlier onset of melt in spring causes runoff to increase during spring 
despite reduced precipitation input during this season. The projection for the far future shows that 
despite strong precipitation increases, the glacier melt dominated Chitral, Hunza, Gilgit and Shigar 
subbasins experience reductions in flow during the high flow season, since the glacier extent has 
decreased strongly by then (Table 5.4). The similar contrasting shifts between the high-altitude and 
lower altitude subbasins as for RCP4.5 can be observed. Besides, the contrast in the precipitation 
projections between the Kabul subbasin and the remaining part of the UIB (Figure 5.5d) are also 
visible in the projections of changes in total water availability. The remarkable strong year-round 
increase in flows in the near future as well as far future for the Shyok subbasin upstream of Yogo, 
can most likely be explained by the fact that projected precipitation increases are strongest in this 
subbasin (Figure 5.5d). Similarly strong year-round increases in flow for the rain-dominated Satluj 
river can be explained by strong precipitation increases in this subbasin.

Our results of intra-annual changes are in line with the projections made for the Shigar 
catchment [Soncini et al., 2015]. There, the initial increase of summer flows is projected halfway 
through the century followed by a decline at the end of the century, that is accompanied by 
increasing flows in spring. Ali et al. [2015] project increasing flow in the UIB until the end of the 21st 
century, with more rapid increase during the first half of the century. The authors assessed changes 
for RCP4.5 and RCP8.5, and used one downscaled GCM and one RCM for their projections. They 
project stronger increase in winter flows compared to summer flows, consistent with our results. 
Similar results were found using the previous generation IPCC scenarios A2 and B2 for one RCM 
[Khan et al., 2015b]. Accurate comparisons to the cited studies is however hampered by the use of 
different scenarios and climate models.

The patterns are consistent for both RCPs, but the uncertainty is large: for the combined RCP4.5 
and RCP8.5 ensembles total water supply from the UIB in 2071-2100 changes by -15% to +60% with 
respect to 1971-2000. Large uncertainties in hydrological projections have also been found earlier 
for the Shigar catchment [Immerzeel et al., 2013; Soncini et al., 2015], and at larger scale [Bliss et al., 
2014]. Striking is the particularly large uncertainty observed for the Gilgit subbasin in both RCPs 
(Figure 5.7), which is most likely caused by a particularly large uncertainty in monsoon and autumn 
precipitation and summer air temperatures in both RCPs for this subbasin.

5.3.5.3	 Hydrological extremes
Large changes in extreme discharges can be expected for most parts of the UIB (Figure 5.8). For 
most rivers, the highest water levels occur during the coinciding melting and monsoon season, 
and therefore the changes in return levels are largely determined by the projected climate changes 
during those months. However, the peak flows are also significantly determined by the meltwater 
from snow and glacier melt stemming from winter precipitation, forming a basic flow level 
during the melting and monsoon season which is exacerbated by runoff originating from extreme 
precipitation events.

Remarkably, the return levels for extreme discharges in the very upstream Hunza river with its 
highly glaciated basin increase for all scenarios, including the scenarios projecting overall dryer 
conditions. For the Hunza river with a large contribution of glacier melt, the decreases in glacier 
extent play a large role, lowering the continuous flow from glacier melt during the melting season. 
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Dainyor bridge (1), Hunza
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Figure 5.8: Return levels at four locations in the UIB for 2, 5, 10, 20, 50 years return periods for the 
hydrological model forced with the individual downscaled GCMs, for the near future (2021-2050) 
and the far future (2071-2100). Dashed lines indicate the corresponding return levels during the 
reference period (1971-2000). Return levels were obtained by fitting a Gumbel extreme value 
distribution [Gumbel, 1941] through the simulated annual flow maxima for the 30-year periods.
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Nevertheless, even for the far future, when the contribution of glacier melt and the total flow 
has significantly decreased, the extremes in discharge are clearly increasing, due to increases in 
extreme precipitation, across scenarios. Earlier work in the Shigar subbasin to the east of Hunza 
also indicates that hydrological extremes may considerably increase until the end of the century 
[Bocchiola et al., 2011; Soncini et al., 2015].

The return levels for extreme discharges at Tarbela, where the main Indus branch leaves the UIB, 
increase for most scenarios as well, except the RCP8.5 dry & warm scenario, because precipitation 
events are projected to be more intense across the climate model ensemble. At Tarbela, the most 
extreme changes in return levels are projected for the RCP8.5 wet & warm scenario, with 100-years 
return level increasing by more than 100% between 1971-2000 and 2071-2100.

For the Shyok basin, return levels clearly increase most for the RCP8.5 wet & warm scenario, 
which also project the largest precipitation increases. Interestingly, the RCP4.5 wet & warm scenario 
projects stronger return level increases for the near future compared to the far future, despite 
increasing precipitation intensity. Since the Shyok river has a large glacier melt contribution, this is 
related to the lower continuous flow from glacier melt during the melting season in the far future.

At the outlet of the rainfall-runoff dominated Satluj basin the range of projected changes in 
return levels is largest. As this is the most rainfall-runoff dominated river, the discharge of this river 
is also most sensitive to changes in extreme precipitation. In addition, precipitation projections have 
large spread for this part of the UIB (Figure 5.5c,d), which may also imply a large spread in the 
projected precipitation extremes.

The model runs forced with the RCP8.5 MIROC5 and CSIRO-Mk3 GCMs clearly stand out from 
the other model runs for Satluj, Shyok, and the Indus at Tarbela, projecting the wettest future and 
strongest increases in precipitation intensity. Since the uncertainty in future climate is larger for 
the RCP8.5 ensemble compared to the RCP4.5 ensemble, it is not surprising that the range of the 
projected return levels is also larger for the RCP8.5 ensemble.

5.3.6	 Uncertainty
This study sheds light on the propagation of uncertainty in the future climate for the future 
hydrology. We emphasize that the future climate in the upper Indus basin is highly uncertain as 
none of the current state-of-the art GCMs and RCMs satisfactory simulates the monsoon and 
westerly dynamics in the region [Sperber et al., 2013; Ramesh and Goswami, 2014; Mishra, 2015], 
making the reliability of future scenarios questionable. We stress the importance of improvement 
in the representation of the complex climate in High Mountain Asia in order to be able to narrow 
down the uncertainty in future projections.

Besides the uncertainty within climate model ensembles and climate models themselves, 
additional uncertainties are introduced in the hydrological model forcing and other data, 
parameters, and representation of physical processes. Although we use climate model forcing that 
is corrected for the underestimate of high-altitude precipitation [Immerzeel et al., 2015], these data 
can still have large biases. For example, the UIB-averaged corrected precipitation is estimated to be 
913±323 mm yr-1 between 2003 and 2007. Further narrowing down of the uncertainty in historical 
precipitation data is a prerequisite for better estimates of future climate change impacts. Important 
data used in this study that also introduce uncertainty are the subregion-averaged glacier mass 
balance data derived from IceSat data [Kääb et al., 2012], since they are used for the calibration of 
the large-scale glacier change parameterization.

Uncertainties are introduced by using a single set of calibrated model parameters for the entire 
domain, and parameters themselves have their own uncertainties, which are ideally all taken into 
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account [Ragettli et al., 2013]. Currently no basin-wide map with distinction of debris-free and 
debris-covered glaciers is available for the UIB, and thus the differentiation of both glacier surface 
types is based on assumptions of elevation and slope constraints controlling the glacier surface type. 
A map with distinction of both glacier surface types would solve this key issue. Another key issue is 
the limited understanding of the role of sublimation in the high mountain water balance [Strasser et 
al., 2008; Wagnon et al., 2013].

5.4	 Conclusions

In this study we use a distributed hydrological model which we force with the latest suite of climate 
models using an advanced statistical downscaling technique. This study stands out from previous 
work as for the first time shifts in seasonal water availability are assessed in combination with 
changes in hydrological extremes at basin scale for the upper Indus basin.

The main conclusion that can be drawn from this study is that the upper Indus basin faces a 
very uncertain future in terms of water availability in the long run. Projections of changes in water 
availability from the upper Indus basin at the end of the 21st century range from -15% to +60% 
with respect to 1971-2000. This uncertainty mainly stems from the large spread in the projections 
of precipitation change throughout the 21st century. Therefore, formulating adequate adaptation 
measures which take into account the uncertain future is of vital importance, thus requiring 
hydrological projections to be made based on an ensemble of climate models representing all 
possible futures.

Despite the large uncertainties in future climate and water availability, basin-wide patterns and 
trends of intra-annual shifts in water availability are consistent across climate change scenarios. 
These trends mainly consist of minor increases in summer flows combined with increased flows 
during other seasons in the near future (2021-2050) and decreases in summer flows combined 
with stronger increasing flows during the other seasons in the far future (2071-2100). Furthermore, 
increases in intensity and frequency of extreme discharges are found for most of the UIB and for 
most scenarios and models considered, implying increases in flooding events during the 21st 
century.

Population growth in combination with increasing standards of living and associated increases 
in energy and food production will continue to expand the downstream water and energy demand 
[Qureshi, 2011; Siddiqi et al., 2012]. This implies a growing dependency on the uncertain future 
water resources, which calls for sound basin-wide adaptation strategies to be developed across 
sectors that take into account the changing demand and supply in the Indus basin as well as 
uncertainties therein.
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Chapter 6

Synthesis

In Asia, water resources largely depend on water generated in the mountainous upstream parts 
of several large river basins, and millions of people depend on their waters downstream. Water 
demands are high, primarily because of water consumption by irrigated agriculture, and the water 
demand for hydropower generation. Future hydrological changes may have large environmental and 
societal impacts. The impacts of climate change for the water resources in the high mountains of 
Asia are poorly quantified. To contribute to the quantification of these impacts in High Mountain 
Asia (HMA) the main research question of this thesis is:

•	 What are the impacts of climate change on the hydrology in High Mountain Asia?

I identified major challenges hampering the quantification of these impacts at the large river basin 
scale, which I tried to overcome by answering the following questions:

•	 How can we select an ensemble of climate models that represents the uncertainty in the future’s 
climate?

•	 How can we use climate change projections to assess changes in mountainous climate including 
seasonal changes and changes in extremes?

•	 How can we make robust simulations of future glacio-hydrological changes under data-scarce 
conditions at the large river basin scale?

In this chapter, the main findings of my research are synthesized, placed in a broader perspective 
and integrated. In addition, the uncertainties and limitations associated to the used methodologies 
and resulting projections are summarized. Finally, the implications of the findings and future 
research priorities are discussed. In section 6.4, where the main research question is discussed, 
I summarize the impacts of climate change on the hydrology in High Mountain Asia (HMA), as 
demonstrated by this study, and I speculate about the possible consequences of the findings.

6.1	 Selecting a representative ensemble of climate models

Climate change impact studies depend on projections of future climate provided by climate models. 
The number of climate models is large and increasing, yet limitations in computational capacity 
make it (still) necessary to compromise the number of climate models that can be included in a 
climate change impact study. The selection of climate models however is a crucial step in any 
climate change impact assessment, since the assessment’s outcome depends heavily on which 
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climate models are included. Selecting climate models is not straightforward and can be done 
following different methods. Usually the selection is either based on the entire range of changes 
in climatic variables as projected by the total ensemble of available climate models, or on the skill 
of climate models to simulate past climate. In chapter 2 a novel approach is presented where the 
aforementioned approaches are combined in a three-step sequential climate model selection 
procedure: 1) initial selection of climate models based on the range of projected changes in climatic 
means, 2) refined selection based on the range of projected changes in climatic extremes, and 3) 
final selection based on the climate model skill to simulate past climate. The aim of adopting this 
procedure is to end up with an ensemble of climate models that covers all possible futures in terms 
of changes in climatic means, extremes and including only climate models that show sufficient 
performance in simulating the observed climate in HMA. In chapter 2 I show that this selection 
procedure leads to a representative ensemble of climate models, covering the majority of the 
possible futures, without compromising model skill. This is a significant step forward with respect 
to other studies where model ensembles are selected based on only one of the mentioned criteria, 
or where no ensemble is used but just one or two climate models. Climate change impact studies 
that rely on such a very limited amount of climate models are less robust, since they cover only 
a limited part of the possible trajectories of future climate change. Adequate and robust climate 
change adaptation policies can only be formulated when climate change impact studies are based on 
an ensemble of climate models covering a broad range of possible futures.

Although the approach described in chapter 2 proves to be a robust way to establish such 
an ensemble, the design of the procedure is prone to a certain level of subjectivity. Each of these 
subjectivities can be a point of discussion where other well-argued choices could also have been 
made. First, different ordering of the selection steps will lead to different ensembles of selected 
models. The alternative choice to make the climate model’s performance in simulating historical 
climate the leading criterion can be made, which can be justified given the complexity of the 
monsoon-dominated climate [McSweeney et al., 2012]. Second, instead of excluding climate models 
in each selection step, scoring in each of the selection steps could be combined [Cannon, 2014], 
thereby avoiding removal of the models with best skill from the ensemble. Further attempts should 
be made to quantify model interdependency [Knutti et al., 2013; Sanderson et al., 2015a, 2015b] and 
include this aspect in the climate model selection procedure. In this study, multiple climate model 
runs with differing initial conditions were considered as individual model runs, thereby giving that 
particular model a larger probability of being selected over other models. Also, climate models from 
different institutes share parts of their code that represents physical processes, and are therefore not 
independent [Knutti et al., 2013]. Another important issue in selecting climate models is related to 
spatial scale. In the approach described in chapter 2, but also in other approaches covering a large 
spatial domain, projected changes are averaged over the entire study area and this may dilute the 
spatial variation in projected changes. A potential solution is to divide the study area into multiple 
parts and apply the selection approach to each part independently. However, the drawback of this 
approach is the introduction of physical inconsistencies and erroneous boundary effects in the 
climate forcing at the transition from one General Circulation Model (GCM) to another. Therefore, 
if selecting climate models for multiple river basins at once, as done for the study described in 
chapter 2, the selection area should not be smaller than a physically confined river basin, keeping 
climate forcing physically consistent over such a system.

Recent research suggests that modified climate change signals in empirical-statistically 
downscaled data may be more realistic than the climate change signals carried by the raw data of 
the same GCM run [Gobiet et al., 2015]. This would have ample consequences for the selection 
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procedure presented here and proper assessment of the spread in climate change projections would 
require empirical-statistical downscaling of all climate models prior to making the selection. At 
this moment this is not feasible computationally and timewise, but it might be in the future. It is 
however important to keep in mind that a climate model ensemble that is selected for a climate 
change impact study by any envelope-based approach, may turn out to be not as representative as 
thought.

6.2	 Using climate change projections to assess changes in  
mountainous climate

A large scale gap exists between GCMs and hydrological models, which are forced by climate 
scenarios driven by GCMs. For large-scale studies, empirical-statistical downscaling methods 
are required to bridge the scale gap between a GCM and a hydrological model. In the research 
described in this thesis two different empirical-statistical downscaling techniques are used. In 
chapter 4, the delta change approach is used to downscale an ensemble of eight GCMs and generate 
climate change scenarios until 2050. In the delta change approach, climate change signals are 
estimated as the difference in mean air temperature and mean precipitation between the raw GCM 
data for the future and the raw GCM data for a historical control run. This approach was applied 
on a monthly scale and subsequently the change grids were superimposed on randomly selected 
years from historical climate dataset with high spatial and temporal resolution. The design of this 
approach allows including changes in the means of the temperature and precipitation distributions 
whereas changes in other parts of the distributions are corrected with the same factors as the mean. 
When used to generate climate change forcing for hydrological models, this approach is suitable to 
assess changes in overall future water availability, as described in chapter 4. In chapter 5, the more 
sophisticated Advanced Delta Change approach is used to downscale an ensemble of eight GCMs. 
The Advanced Delta Change approach allows for a non-linear transformation of climate change 
signals in the projected precipitation data. This approach focuses on proper transformation in the 
high tail of the precipitation distribution, i.e. the precipitation extremes. Therewith the basin-scale 
assessment presented in chapter 4 could be taken a step further and allowed the analysis of changes 
in hydrological extremes in the upper Indus basin as described in chapter 5. This study leads to the 
conclusion that the frequency and magnitude of extreme discharges is very likely to increase during 
the 21st century.

A main feature of empirical-statistical downscaling techniques is that they require high-
resolution historical climate data with sufficient quality to derive accurate transfer functions 
between GCM-simulated climate and real climate. This remains challenging in the data-scarce 
HMA region. At smaller scales, improvement of present-climate forcing data can be achieved by 
making existing ground data more accessible, expanding existing field monitoring networks and 
initiating new measurement campaigns. The improved understanding of the dynamics of high-
altitude precipitation has key importance in that respect. Progress has been made over the past 
years and the knowledge of HMA climates is growing. Work at smaller scales tremendously helps 
to improve our understanding of underlying processes and feedbacks. At the large scale however, we 
rely on regional and global datasets to be used as historical reference climate data. Bias-correction 
of these datasets, integrating information from different sources should have major priority. An 
example is the use of observed glacier mass balance data to correct precipitation estimates at large 
scale [Immerzeel et al., 2015]. Such efforts should be further developed and data from stations, 
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remote sensing and weather models should be combined to improve climatic datasets in HMA. 
The venture of new satellite derived precipitation products, such as the recently established Global 
Precipitation Measurement Mission may help in better quantification of precipitation patterns in 
HMA at large scale.

There are many different statistical downscaling approaches and choosing the most appropriate 
method is challenging, especially for complex climate types like in HMA. Themeßl et al. [2011b] 
compared different empirical-statistical downscaling methods for precipitation in the Austrian 
Alps and found that the Quantile Mapping method has best performance in mountainous 
climate, particularly at high quantiles, which is promising for assessing future changes in extreme 
precipitation events. Another advantage of Quantile Mapping is that it can be applied to other 
climatic variables, including air temperature, as well. A catchment scale application of the Quantile 
Mapping approach to downscale GCM data to station level in HMA was successful [Immerzeel et 
al., 2013], and applications of the method at large scale should be explored as well. The Advanced 
Delta Change approach applied in chapter 5 proved to be useful in assessing future changes in 
precipitation extremes, but its performance was not compared to other statistical downscaling 
techniques. Direct comparison to for example the Quantile Mapping method could provide more 
insight in its performance.

Another basic assumption of empirical-statistical downscaling methods is the assumed 
stationarity of biases between GCM data and observed data through time. How large the 
consequences of this assumption in terms of errors in the projections are remains unclear.  
Empirical-statistical downscaling methods often modify the climate change signal from the raw 
GCM data, i.e. climate change signals in the downscaled data differ from climate change signals in 
the raw GCM data. Often, this is regarded as an undesired consequence of an empirical-statistical 
downscaling method [Hempel et al., 2013]. Other research suggests that the modification of the 
climate change signal is actually improvement of the climate change signal [Maurer and Pierce, 
2014; Gobiet et al., 2015]. This clearly needs further research as clarity about this issue is necessary 
to gain better understanding of the actual added value of empirical-statistical downscaling.

From the analysis in chapter 2 in this thesis and research by others it is clear that CMIP5 GCMs 
as well as state-of-the-art RCMs have poor skills in simulating the important features of the 
precipitation dynamics (monsoon and westerly systems) in HMA [Sperber et al., 2013; Palazzi et al., 
2014; Ramesh and Goswami, 2014; Sperber and Annamalai, 2014; Mishra, 2015]. This is what leads 
to the large uncertainty in the future climate projections for HMA which in turn leads, to a large 
extent, to the large uncertainties in hydrological projections presented in this thesis. Dynamic and 
empirical-statistical downscaling and bias-correction methods may help to reduce the biases, but 
cannot completely bridge them [Pielke and Wilby, 2012]. This stresses that the currently available 
climate change projections must be used with caution when defining climate change adaptation 
policies.

To narrow down these uncertainties in HMA, priority should be on improvement of the climate 
models. Since computational capacities continue to increase, spatial resolution and representation 
of processes of climate models can and will improve in the future. Combined with increasing 
knowledge of the relevant climate dynamics, ultimately the climatic projections will get better. 
Knowledge gained in climate modeling efforts at smaller scales [e.g. Collier and Immerzeel, 2015], 
could be used to improve larger scale climate models. However, in the meantime we will have to deal 
with this uncertainty in the future climate and try to reduce the overall uncertainty by improving 
reference climate forcing data, representation of processes in glaciological and hydrological models, 
and other input data.
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6.3	 Simulating future glacio-hydrological changes under data scarcity at the 
large river basin scale

The research presented in this thesis constitutes a significant step forward in our understanding 
of the hydrological cycle in HMA and the impacts that climate change will have in this region 
throughout the 21st century. The thesis describes the first river basin scale study in High Mountain 
Asia that integrates:

•	 a new high-resolution, fully distributed cryospheric-hydrologic modeling approach, that can 
operate under data-scarce conditions,

•	 downscaled climate change scenarios based on representative ensembles of statistically 
downscaled General Circulation Models, allowing the assessment of changes in overall water 
availability, seasonal shifts and changes in the frequency and magnitude of hydrological 
extremes,

•	 a novel approach to estimate future glacier changes at the large river basin scale.

Integrating these components in an approach to quantify the impacts of climate change for 
high mountain hydrology clearly fills a scientific knowledge gap since the majority of climate 
change impact assessments in HMA is either conducted at the catchment scale [Tahir et al., 2011a; 
Immerzeel et al., 2013; Ragettli et al., 2013; Soncini et al., 2015], or based on simpler modeling 
approaches and crude assumptions on changes in future glacier cover [Immerzeel et al., 2010]. 
Besides, previous large-scale studies only used a limited number of climate models. With the 
approach described in this thesis robust hydrological projections were generated for HMA.

Besides the selection of representative climate models and choosing suitable empirical-statistical 
downscaling methods, a key challenge is the simulation of future changes in glacier extent, which 
is not straightforward at large river basin scale because the spatial resolution of modeling (1 km2 
in this case) does not allow for the explicit simulation of ice flow. In chapter 3 a novel basin-scale 
parameterization of future glacier changes under data-scarce conditions is presented. This approach 
fills the gap between approaches that simulate glacier changes at catchment scale, including 
dynamics of ice flow [Jouvet et al., 2008; Immerzeel et al., 2013] and large-scale applications based 
on crude assumptions of hypothetical glacier changes [Rees and Collins, 2006; Immerzeel et al., 
2010]. The improved ability to simulate glacier changes at the basin scale is one of the key advances 
that allowed for improvement in hydrological projections for HMA, as described in chapter 4 and 
chapter 5.

Although the adoption of this novel method is a significant step forward, the design of the 
approach for data-scarce regions and large-scale applications does come with some limitations. 
As the approach heavily relies on volume-area scaling it is very sensitive to the value used for the 
multiplicative scaling parameter. Attempts to define different scaling parameters based on glacier 
size and region have been undertaken but yield a large range of outcomes [Grinsted, 2013]. Volume-
are scaling has been widely applied [Bahr et al., 2015], and many recent efforts for simulating future 
glacier evolution at large scale rely on it, at least for estimating initial ice volumes.

A future improvement that should be explored is better estimation of the spatial distribution 
of glacier changes within the river basin, since the current approach assesses climatic and glacier 
changes only at the basin scale. Applying the model to smaller groups of glaciers should be possible, 
now that spatially distributed geodetic mass balance data which can be used for model calibration 
become more widely available. The eventual goal is to be able to simulate the evolution of individual 
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glaciers satisfactory, but this will remain challenging given the mismatch in scale between 
meteorological forcing data and the actual climatology over individual glaciers. The models which  
simulate the evolution of individual glaciers [Huss and Hock, 2015; Radić et al., 2014; Marzeion et 
al., 2012], all require significant correction of forcing data through calibration parameters, and rely 
on sparse observed glacier mass balance data. However, the development of these approaches, in 
combination with the continuous improvement in global and regional datasets of glacier outlines 
and other properties, and mass balance data from multiple sources certainly leads to improved 
simulation of future glacier extent and application of these approaches or adopted versions thereof 
should be explored at river basin scale in HMA.

The use of a fully distributed cryospheric-hydrological model to simulate hydrology for five large 
Asian river basins (chapter 4) and the upper Indus basin (chapter 5) at high spatial resolution under 
data-scarce conditions, is unique and has led to more robust projections of climate change impact 
for hydrology in HMA than previous assessments. The study in five Asian river basins described 
in chapter 4 produced a set of water availability scenarios up to 2050, covering the majority of 
possible futures as projected by the current state-of-the-art climate models. It also produced new 
knowledge on the spatial distribution of relative contributions of snow- and glacier melt and 
rainfall to total flow in HMA. The study in the upper Indus basin, described in chapter 5 went a 
step further and in addition produced hydrological projections for the entire 21st century, and 
allowed for the assessment of changes in hydrological extremes. Besides, the quantification of the 
spatial distribution of relative contributions of snow melt and glacier melt and rainfall was further 
refined with respect to the study described in chapter 4 by using improved historical precipitation 
fields [Immerzeel et al., 2015], and improved calibration of model parameters, by integrating data 
of geodetic glacier mass balance, remotely sensed snow cover, and observed discharge in the 
calibration procedure, in an attempt to overcome equifinality problems.

Although the presented approach is advanced, robust, and brought new insights, there are some 
points that require attention in the future. Besides historical meteorological forcing, which should 
be further improved as already stated in section 6.2, the modeling approach relies on other input 
data from regional and global datasets. Major improvements in the simulation of glacier melt can be 
reached when a better distinction of debris-covered and debris-free glaciers becomes available for 
HMA. However, even if such a mapping effort becomes available, it has to be kept in mind that our 
understanding of processes related to glacier melt under debris cover in particular is still limited, 
although it is advancing [e.g. Collier et al., 2014; Nicholson and Benn, 2013]. Improvements in the 
soil and land use data can lead to improvements in the model performance. A better quantification 
of the contribution of glacier melt and snow melt to total stream flow can be made when seasonal 
snow melt from the glacier surface is included in the model. In the current version of the model 
all melt generated in the glacier-covered part of a grid-cell is defined as glacier melt, whereas the 
contribution of seasonal snow melt from the glacier surface is substantial in reality. Although a 
groundwater reservoir is simulated in the model, the processes related to this groundwater reservoir 
are largely based on assumptions. Paying more attention to improved representation of processes 
related to groundwater is justified, given that the role of groundwater for HMA’s discharge may be 
larger than the role of snow melt and glacier melt in the central and Eastern Himalayas [Andermann 
et al., 2012; Bookhagen, 2012].

One other important aspect that has come forward from the analyses in this thesis is the lack 
of understanding of the role of sublimation of snow and ice in the water balance of HMA. No 
published results on sublimation quantities in HMA are available, but research in other regions with 
high amounts of snow suggest that the amount of snow going back to the atmosphere can be in 
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the order of 10-50% of seasonal snowfall and up to 90% at mountain crests [Pomeroy and Essery, 
1999; Strasser et al., 2008; MacDonald et al., 2010]. A study on Himalayan glaciers also suggests 
that sublimation fluxes may be high [Wagnon et al., 2013]. The study in the upper Indus basin 
presented in chapter 5 estimates the sublimation flux to amount ~20% of the annual precipitation, 
with a simplified method to estimate sublimation, suggesting that this is indeed an important water 
balance component in HMA. Therefore, the quantification of this flux, as well as the development of 
approaches to simulate this flux under data-scarce conditions and at river basin scale should have 
high research priority.

The analysis of changes in the frequency and magnitude of extreme discharge events could form 
a first step to more detailed hazard and risk mapping in the region. As the analysis in chapter 5 
shows that the frequency and magnitude of extreme precipitation and discharge events will most 
likely increase, this will lead to increases in hazards related to flooding events, glacier lake outburst 
floods (GLOFs) [Fujita et al., 2009; Komori et al., 2012; Wang et al., 2015] and landslides [Hewitt, 
1998; Dahal et al., 2008; Sharma and Kumar, 2008]. Integrating large-scale projections of changes 
in extreme precipitation and discharge with risk and susceptibility mapping could lead to improved 
regional projections of changes in natural hazards.

6.4	 Climate change impacts on the hydrology of High Mountain Asia

The presented basin-scale integration of representative downscaled climate change scenarios, with 
a novel approach to assess future changes in glacier extent, and a high-resolution cryospheric-
hydrological model suitable for application under data-scarce conditions, produced robust climate 
change impact projections for the hydrology in HMA. The most important results show that further 
shrinkage of the glacier extent is likely for all of HMA, but that water availability is most probably 
secured for most of HMA at least until 2050. This is due to increased glacier melt in the upper Indus 
basin and increased precipitation in the upper Ganges, Brahmaputra, Salween and Mekong basins, 
but with large uncertainty ranges. Although no projections have been made for the second half of 
the century for the upper Ganges, Brahmaputra, Salween and Mekong river basins, water availability 
will most probably increase since most climate models project further increases in precipitation 
in these basins towards 2100 (chapter 2). For the upper Indus basin, projections until the end of 
the 21st century indicate that water availability in this basin is highly uncertain in the long run. 
Discharge in HMA peaks during the monsoon season (June-September) which coincides with the 
period of maximum melt. Analysis of seasonal shifts indicates that the distribution of water is likely 
to be more equal over the seasons in the future, with shifts towards the low flow season. Also for 
the seasonal shifts, uncertainty is large because of the large uncertainty in future climate. Analysis 
of changes in meteorological extremes and associated hydrological extremes indicates that the 
frequency and magnitude of extreme discharges is likely to increase for the majority of the upper 
Indus basin. Strongest increases are projected for the rivers with large contribution of rainfall to the 
flow. This suggests more frequent and more severe occurrence of flooding events in the future.

Although the scope of the research presented in this thesis is limited to the upstream parts of the 
large river basins studied, I will use this paragraph to speculate about the downstream consequences 
of the findings presented in this thesis. First of all, I want to emphasize that the consequences may 
affect hundreds of millions of people living in the downstream areas of Asia’s large river basins, 
implying the importance of this study. One major, and positive, conclusion that can be drawn from 
this study is that the Asian water towers are likely to continue to fulfill their role for decades to 
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come. However, changes are imminent. Seasonal shifts in water availability towards the low flow 
seasons can be beneficial for agriculture, since with the increasing temperatures, growing seasons 
may be extended and periods of water deficit may shorten. On the other hand, if water availability 
is reduced during the current growing season, this may hamper the agricultural production. For the 
generation of hydropower, increases of discharge during the low-flow season are beneficial, allowing 
higher production levels. Increases in the frequency and magnitude of hydrological extremes 
however will likely lead to severe flooding, whereas many parts of the HMA region already face 
severe flooding in the present situation. Besides direct damage of flooding, an increase in extreme 
discharges also enhances sedimentation rates into hydropower structures and reservoirs, lowering 
their lifetimes and storage capacities. Even if the water supply from upstream does not lessen or 
even increase, the expected large increases in downstream demand will increase pressure on the 
already stressed water resources in Asian river basins. As changes are imminent, adaptation to these 
changes is of key importance. In this respect, the entire range of projections should be considered 
as possible futures, making the formulation of adequate and robust adaptation options an enormous 
challenge. For proper assessment of the speculations drawn here, basin-wide integrated approaches 
are needed, which combine projections of changes in upstream supply with projections of changes 
in downstream demand, across sectors and across seasons.

6.5	 How are the projections generated in these studies used?

The results described in this thesis are based on outcomes of multiple applied research projects 
with strong focus on regional climate change adaptation. I feel confident that the most important 
conclusions drawn from these studies will find their way to regional decision and policy makers, 
in its present form or through other knowledge products. An excellent example is the Himalayan 
Climate and Water Atlas [Shrestha et al., 2015], featuring many of the results described in chapter 
4, which was presented at the COP Climate Summit in Paris, 2015. Besides, the large-scale work 
described in this thesis serves as a starting point for future catchment-scale studies on water 
availability and flood hazards in High Mountain Asia.
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Summary

The hydrological cycle can be considered as the most important recycling system of matter on 
Earth, since water is an essential and widely used substance in every living organism. Water is used 
for food production, production of raw materials and goods, energy generation, consumption, 
and sanitation. Mountains play a special role in the hydrological cycle, acting as water towers, 
storing water as snow and ice and supplying water to downstream areas. In Asia, water resources 
largely depend on water generated in the mountainous upstream parts of several large river basins 
and hundreds of millions of people depend on their waters downstream. The large-scale impacts 
of climate change for the water resources in High Mountain Asia are poorly understood, because 
the area has a complex climate, which is poorly monitored. Climate change may have large 
consequences for water availability, seasonal changes in runoff generation and the frequency and 
magnitude of hydrological extremes. Climate change impact assessments in this region are lacking, 
covering only small catchments, or based on crude assumptions and simple approaches. In the 
research described in this thesis robust climate change impact assessments for water resources in 
High Mountain Asia have been made. To achieve this, novel approaches have been developed to 
improve the understanding of the impacts future climate change may have in this region.

Climate change impact studies depend on projections of future climate provided by climate 
models. The number of climate models is large and increasing, yet limitations in computational 
capacity make it necessary to compromise the number of climate models that can be included in a 
climate change impact study. The selection of climate models is not straightforward and can be done 
following different methods. Usually the selection is either based on the entire range of changes in 
climatic variables as projected by the total ensemble of available climate models, or on the skill of 
climate models to simulate past climate. In the research presented in this thesis, these approaches 
are combined in a novel selection procedure that aims at defining an ensemble of climate models 
that covers the full range of possible futures in terms of changes in mean temperature and 
precipitation, and changes in temperature and precipitation extremes, while at the same time only 
including climate models that have sufficient skill in simulating historical climate. The selected 
ensembles indicate that climate projections in High Mountain Asia are highly uncertain, especially 
for precipitation, but that changes are imminent.

To bridge the scale gap between climate models and hydrological models for river basin scale 
assessments, empirical-statistical downscaling and bias-correction methods are used. In this study 
two existing downscaling techniques are implemented. Using the delta change method, climate 
change projections are generated, and then used to force a cryospheric-hydrological model to assess 
climate change impact for hydrology in the upstream basins of the Indus, Ganges, Brahmaputra, 
Salween and Mekong rivers until 2050. This downscaling method allows for the assessment of 
changes in overall water availability. For the upper Indus basin, which has the largest glacier and 
snow melt dependency, and is Asia’s climate change hotspot, the Advanced Delta Change method is 
used to generate climate change scenarios up to 2100 which allow for the simulation of changes in 
hydrological extremes.

A novel regionalized glacier mass balance model, which is suitable to estimate future changes 
in glacier extent at river basin scale is presented. This glacier mass balance model is specifically 
developed for implementation in large-scale hydrological models, where the spatial resolution does 
not allow for simulating individual glaciers and data-scarcity is an issue. Forcing this model with 
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downscaled climate change projections shows that glacier extent in High Mountain Asia will be 
reduced strongly during the 21st century.

The downscaled climate change scenarios and associated projections of future glacier extent are 
used to force a new high-resolution, fully distributed cryospheric-hydrological model to assess 
changes in future hydrology. In a first impact assessment, future water availability in the upstream 
basins of the Indus, Ganges, Brahmaputra, Salween and Mekong rivers until 2050 is assessed. 
Water availability is expected to increase in each of the five basins, despite the large differences 
in hydrological regimes between basins and between rivers and tributaries within basins. For the 
upper Ganges, Brahmaputra, Salween and Mekong river basins this is due to increased precipitation, 
whereas for the upper Indus basin the main driver is accelerated melt. A second impact assessment 
is done for the upper Indus basin. For this basin, hydrological projections until 2100 are generated 
and the analysis focuses on seasonal shifts and changes in extreme discharges. Besides, the 
cryospheric-hydrological is calibrated using as three-step calibration approach, integrating data of 
geodetic glacier mass balances, remotely sensed snow cover, and observed discharge. The analysis 
reveals that the upper Indus basin faces a very uncertain future in terms of water availability in 
the long run. Projections of changes in water availability at the end of the 21st century range from 
-15% to +60% with respect to the reference. This uncertainty mainly stems from the large spread 
in the precipitation projections throughout the 21st century. Despite the large uncertainties in 
future climate and water availability, basin-wide patterns and trends of intra-annual shifts in water 
availability are consistent across climate change scenarios. For the near future (2021-2050), these 
trends mainly consist of minor increases in summer flows combined with increased flows during 
other seasons. For the far future (2071-2100) the trends show decreases in summer flows combined 
with stronger increasing flows during the other seasons. Furthermore, increases in intensity and 
frequency of extreme discharges are found for most of the upper Indus basin and for most scenarios 
and models considered, implying increases in flooding events during the 21st century.

Since a consistent increase in water availability and increase in extreme discharges is projected for 
the upstream river basins in High Mountain Asia at least until 2050, a change of focus in adaptation 
strategies to coping with extreme events and intra-annual shifts in water availability is desirable. The 
approaches described in this thesis stand out from previous research in the region and generated 
robust projections, new insights and understanding. Limitations and possibilities for further 
improvement have been identified, which provide new challenges for future research.
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Samenvatting

De hydrologische kringloop kan worden beschouwd als het belangrijkste natuurlijke recycling-
mechanisme op Aarde. Water is immers een essentieel en veel gebruikte stof in ieder levend 
organisme. De mens gebruikt water voor de productie van voedsel, grondstoffen en goederen, 
voor het genereren van energie, voor consumptie en voor sanitatie. Gebergten spelen een 
speciale rol in de hydrologische kringloop, waarin ze functioneren als watertorens die water in de 
vorm van sneeuw en ijs opslaan en benedenstroomse gebieden van water voorzien. In Azië is de 
watervoorziening voor een groot deel afhankelijk van water dat wordt gegenereerd in de bergachtige 
bovenstroomse stroomgebieden van een aantal grote rivieren. Benedenstrooms zijn honderden 
miljoenen mensen afhankelijk van dit water. De grootschalige effecten van klimaatverandering 
op de watervoorraden in de hooggebergten van Azië zijn nog slecht begrepen, omdat het gebied 
een complex klimaat heeft en er weinig metingen worden gedaan. Klimaatverandering zou echter 
grote consequenties kunnen hebben voor de waterbeschikbaarheid, seizoenale veranderingen 
in afvoer, en de frequentie en grootte van hydrologische extremen. Studies naar de effecten 
van klimaatverandering in deze regio ontbreken, beslaan slechts kleine stroomgebieden, of 
zijn gebaseerd op grove aannames en eenvoudige benaderingen. Voor het onderzoek dat in dit 
proefschrift wordt beschreven zijn gedegen studies naar de effecten van klimaatverandering op de 
watervoorraden in de hooggebergten van Azië uitgevoerd. Om dit te bereiken zijn vernieuwende 
methoden ontwikkeld om het begrip van de effecten die klimaatverandering op deze regio heeft te 
vergroten.

Studies naar de effecten van klimaatverandering zijn afhankelijk van projecties van het 
toekomstige klimaat die door klimaatmodellen worden geleverd. Het aantal beschikbare 
klimaatmodellen is groot en neemt toe. Vanwege de gelimiteerde rekenkracht van computers 
is het noodzakelijk om het aantal klimaatmodellen, dat in een studie naar de effecten van 
klimaatverandering kan worden meegenomen, te beperken. De selectie van klimaatmodellen 
is niet eenvoudig en kan op verschillende manieren worden gedaan. Meestal is het selectieproces 
óf gebaseerd op de bandbreedte van voorspelde veranderingen in het volledige ensemble van 
klimaatmodellen, óf op de kwaliteit van klimaatmodellen om historisch klimaat correct te 
simuleren. In het onderzoek dat in dit proefschrift wordt gepresenteerd zijn deze twee benaderingen 
gecombineerd in een nieuwe selectieprocedure. Het doel van deze procedure is om een ensemble 
van klimaatmodellen te selecteren dat de volledige bandbreedte van mogelijke toekomsten voor 
wat betreft veranderingen in gemiddelden van temperatuur en neerslag en veranderingen in 
extremen van temperatuur en neerslag beslaat. Daarnaast worden in deze selectieprocedure alleen 
klimaatmodellen gekozen die het historische klimaat met voldoende nauwkeurigheid kunnen 
simuleren. De geselecteerde ensembles van klimaatmodellen wijzen er op dat klimaatprojecties 
voor de hooggebergten in Azië zeer onzeker zijn, met name voor neerslag, maar dat veranderingen 
ophanden zijn.

Om het gat in ruimtelijke schaal tussen klimaatmodellen en hydrologische modellen te 
overbruggen worden methoden voor empirisch-statistische neerschaling en afwijkingscorrectie 
gebruikt. In deze studie worden twee verschillende neerschalingstechnieken geïmplementeerd. 
Met behulp van de “delta change” methode worden klimaatprojecties gegenereerd die gebruikt 
worden om een cryosferisch-hydrologisch model aan te sturen. Met dit model worden de 
effecten van klimaatverandering op de hydrologie van de bovenstroomse stroomgebieden van 
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de Indus, Ganges, Brahmaputra, Salween en Mekong tot en met het jaar 2050 geanalyseerd. 
De gebruikte neerschalingsmethode maakt het mogelijk om veranderingen in algehele 
waterbeschikbaarheid te analyseren. Voor het bovenstroomse deel van het Indus-stroomgebied, 
dat de grootste afhankelijkheid van gletsjer- en sneeuwsmelt heeft, is de “Advanced Delta Change” 
neerschalingsmethode gebruikt om klimaatprojecties tot en met het jaar 2100 te genereren. Deze 
methode biedt de mogelijkheid om veranderingen in hydrologische extremen te simuleren.

In dit proefschrift wordt een nieuw regionaal massabalansmodel voor gletsjers gepresenteerd, 
dat geschikt is om toekomstige veranderingen in gletsjer-areaal op rivierstroomgebiedsschaal 
te schatten. Dit massabalansmodel is specifiek ontwikkeld voor implementatie in hydrologische 
modellen met een grote ruimtelijke schaal, waarin het vanwege de beperkte ruimtelijke resolutie 
niet mogelijk is om individuele gletsjers te simuleren en waar gedetailleerde gegevens schaars zijn. 
Het aansturen van dit model met neergeschaalde klimaatprojecties toont aan dat het areaal van 
gletsjers in de hooggebergten van Azië waarschijnlijk sterk zal afnemen gedurende de 21e eeuw.

De neergeschaalde klimaatscenarios en bijbehorende projecties van toekomstige gletsjer-areaal 
zijn gebruikt om een nieuw, ruimtelijk gedistribueerd cryosferisch-hydrologisch model met een 
hoge resolutie aan te sturen om toekomstige veranderingen in de hydrologie te analyseren. In een 
eerste studie naar de effecten van klimaatverandering, is de toekomstige waterbeschikbaarheid 
in de bovenstroomse stroomgebieden van de Indus, Ganges, Brahmaputra, Salween en Mekong 
geanalyseerd tot en met het jaar 2050. Verwacht wordt dat de waterbeschikbaarheid in elk van de 
vijf stroomgebieden toeneemt ondanks de grote verschillen in hydrologische eigenschappen tussen 
de stroomgebieden onderling, en tussen de hoofdrivieren en zijrivieren binnen de stroomgebieden. 
Voor de bovenstroomse Ganges, Brahmaputra, Salween en Mekong komt deze toename door 
toenemende neerslag, terwijl de toename in de bovenstroomse Indus voornamelijk door versnelde 
gletsjersmelt komt. Een tweede studie naar de effecten van klimaatverandering is uitgevoerd voor 
het bovenstroomse deel van het Indus-stroomgebied. Voor dit stroomgebied zijn hydrologische 
projecties tot en met het jaar 2100 gegenereerd, waarbij de analyse zich richt op seizoenale 
verschuivingen en veranderingen in extreme afvoeren. Daarnaast is in deze studie het cryosferisch-
hydrologische model gecalibreerd met een calibratieprocedure in drie stappen, waarbij gegevens van 
geodetische gletsjermassabalansen, sneeuwbedekking afgeleid van satellietwaarnemingen, en in de 
rivier gemeten afvoergegevens, zijn geïntegreerd. De analyse toont aan dat de bovenstroomse Indus 
voor wat betreft de waterbeschikbaarheid op lange termijn een zeer onzekere toekomst tegemoet 
gaat. Projecties van veranderingen in waterbeschikbaarheid aan het einde van de 21e eeuw variëren 
van -15% tot +60% in vergelijking met de referentieperiode (1971-2000). Deze onzekerheid komt 
voornamelijk door de grote spreiding in neerslagprojecties voor de 21e eeuw. Ondanks de grote 
onzekerheden in het toekomstige klimaat en de toekomstige waterbeschikbaarheid, zijn patronen en 
trends van seizoenale verschuivingen in waterbeschikbaarheid voor alle klimaatscenarios consistent. 
Deze trends bestaan voor de nabije toekomst (2021-2050) voornamelijk uit kleine toenamen in 
zomerafvoeren en toenemende afvoeren in andere seizoenen. Voor de verre toekomst (2071-2100) 
bestaan de trends uit afnames in zomerafvoeren gecombineerd met sterker toenemende afvoeren 
in andere seizoenen. Bovendien zijn toenamen in de frequentie en grootte van extreme afvoeren 
gevonden voor het grootste deel van de bovenstroomse Indus en voor de meeste scenarios en 
klimaatmodellen, wat impliceert dat overstromingen waarschijnlijk toe zullen nemen gedurende de 
21e eeuw.

Omdat tenminste tot en met het jaar 2050 een consistente toename van waterbeschikbaarheid 
die gepaard gaat met een toename van extreme afvoeren wordt verwacht voor de bovenstroomse 
stroomgebieden van rivieren die in de hooggebergten van Azië ontspringen, is het wenselijk dat 
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bij het bepalen van klimaatadaptatiestrategieën de aandacht verschuift naar het aanpassen aan 
seizoenale verschuivingen in waterbeschikbaarheid en toenames in extreme gebeurtenissen. De 
methodes die in dit proefschrift worden beschreven onderscheiden zich van eerder onderzoek in 
de regio en hebben geleid tot gedegen projecties en nieuwe inzichten en kennis. Beperkingen in de 
gebruikte methoden en mogelijkheden voor toekomstige verbeteringen zijn beschreven en bieden 
nieuwe uitdagingen voor toekomstig onderzoek.
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