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Abstract: Compared with the previous full-waveform data, the new generation of ICESat-2/ATLAS
(Advanced Terrain Laser Altimeter System) has a larger footprint overlap density and a smaller
footprint area. This study used ATLAS data to estimate forest aboveground biomass (AGB) in
a high-altitude, ecologically fragile area. The paper used ATLAS data as the main information source
and a typical mountainous area in Shangri-La, northwestern Yunnan Province, China, as the study
area. Then, we combined biomass data from 54 ground samples to obtain the estimated AGB of
74,873 footprints using a hyperparametric optimized random forest (RF) model. The total AGB was
estimated by combining the best variance function model in geostatistics with the slope that is the
covariates. The results showed that among the 50 index parameters and three topographic variables
extracted based on ATLAS, six variables showed a significant correlation with AGB. They were, in
order, number of canopy photons, Landsat percentage canopy, canopy photon rate, slope, number of
photons, and apparent surface reflectance. The optimized random forest model was used to estimate
the AGB within the footprints. The model accuracy was the coefficient of determination (R2) = 0.93,
the root mean square error (RMSE) = 10.13 t/hm2, and the population estimation accuracy was 83.3%.
The optimized model has a good estimation effect and can be used for footprint AGB estimation.
The spatial structure analysis of the variance function of footprint AGB showed that the spherical
model had the largest fitting accuracy (R2 = 0.65, the residual sum of squares (RSS) = 2.65 × 10−4),
the nugget (C0) was 0.21, and the spatial structure ratio was 94.0%. It showed that the AGB of
footprints had strong spatial correlation and could be interpolated by kriging. Finally, the slope
in the topographic variables was selected as the co-interpolation variable, and cokriging spatial
interpolation was performed. Furthermore, a continuous map of AGB spatial distribution was
obtained, and the total AGB was 6.07 × 107 t. The spatial distribution of AGB showed the same
trend as the distribution of forest stock. The absolute accuracy of the estimation was 82.6%, using the
statistical value of the forest resource planning and design survey as a reference. The ATLAS data
can improve the accuracy of AGB estimation in mountain forests.

Keywords: ICESat-2/ATLAS; cokriging; random forest; hyperparametric optimization; aboveground
biomass

1. Introduction

Forest biomass, as a quantitative representation of material cycling and energy ex-
change in forest ecosystems [1], is also a key indicator for assessing the carbon sink capacity
of forests [2]. Therefore, accurate estimation of changes in forest biomass, carbon stocks,
and total area at large scales can help analyze uncertainties in the forest carbon cycle under
conditions of global climate change. Traditional methods for measuring forest biomass
require a lot of time, cost, and effort, while it is difficult to obtain highly time-sensitive
and comprehensive forest resource survey results under large-scale conditions [3]. With
the development of remote sensing technology, it is possible to monitor forest biomass
and carbon stock in real time over a large area. Common optical remote sensing data
have the disadvantages of being susceptible to weather, low estimation saturation point,
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and difficulty in obtaining the vertical structure information of the forest. In the study by
López-Serrano et al. to estimate the biomass of temperate forests in Mexico, the saturation
of NDVI influenced the results of predicting biomass for high values [4]. Therefore, LiDAR
has great advantages in the inversion of forest canopy height (FCH), leaf area index (LAI),
and aboveground biomass (AGB) of forests [5]. Although microwave remote sensing also
has the ability to penetrate the forest canopy to extract forest parameters, it is significantly
affected by the topography, and synthetic aperture radar (SAR) has the problem of satura-
tion point in AGB estimation [6,7]. In LiDAR classification systems, satellite LiDAR data
have high spatial and temporal resolution, low data acquisition cost, and large monitoring
area. They outperform both airborne and ground-based LiDAR in large-scale AGB inver-
sion [8–10]. After the retirement of ICESat-1/GLAS (Geoscience Laser Altimeter System) in
2009, NASA successfully launched the ICESat-2 satellite to replace ICESat-1 for follow-up
global Earth observations in 2018 [11–14]. Unlike ICESat-1/GLAS full waveform data,
the ICESat-2 satellite carries the Advanced Terrain Laser Altimeter System (ATLAS) with
micropulse, multibeam, and photon-counting LiDAR technologies [15,16]. These improved
techniques allow ATLAS to acquire photon point cloud data with smaller footprint and
larger sampling density. On the other hand, The ATLAS data solve the problems of the
inverse ratio of observed spatial coverage to spatial resolution and high cost proposed by
Wulder [17]. ICESat-2 provides more accurate scientific data for inversion of high-resolution
forest canopy height, canopy cover, and AGB studies [18].

Narine et al. [19,20] constructed two AGB estimation models, a linear regression
model and a deep learning (DL) neural network model (DNN), using ICESat-2/ATLAS
as the data source. Since DL requires a certain number of samples, using a huge ground
survey sample for AGB estimation will increase the research cost exponentially. Meanwhile,
there is a certain error propagation in using airborne LiDAR combined with satellite
LiDAR to invert the AGB, and the limitation of airborne LiDAR data made it impossible
to continuously cover the globe. To overcome the limitations and the low saturation
points of optical and SAR data, ICESat-2/ATLAS was used for spatial mapping of regional
AGB or FCH in concert with other optical image data or SAR data [20–23]. The DNN
models, constructed by Landsat 5 (TM) in collaboration with ATLAS data, differed in
the accuracy of the models under daytime, nighttime, and noiseless scenarios. Overall,
the predicted AGB map was consistent with the vegetation distribution in the study
area. The DNN model overestimates AGB in the noiseless scenario and the DNN model
underestimates AGB in the daytime scenario [20]. Narine et al. [21] used the spectral
features extracted from Landsat 8 OLI, NLCD canopy cover, and land cover as independent
variables for the AGB model. The AGB estimates for the 100 m segment on the ICESat-2
sample strip (strong beam) were extrapolated, and the AGB model had an R2 = 0.58 and
RMSE = 23.89 Mg/ha, but the estimates showed an increase in saturation with increasing
AGB [21]. Landsat-8 performed relatively weakly in FCH prediction compared to Sentinel
data [22]. Furthermore, Narine et al. [22] constructed a DL model and an RF model with
Sentinel-1 and Sentinel-2 data in collaboration with ATLAS data. However, the DL model
(R2 = 0.78; RMSE = 2.64 m) and the RF model (R2 = 0.68; RMSE = 2.93 m) underestimated
the FCH [22]. In addition, Silva et al. [23] selected Sonoma County with an elevation range
of 0 m to 1366 m as the study area, used GEDI and NISAR data fused with ICESat-2 data for
AGB estimation, and finally described a good result generated by the combination of GEDI
+ ICESat-2 + NISAR. However, these studies ignored the spatial and temporal heterogeneity
of AGB or other forest parameters, and the problem of unclear geospatial information
and physical modeling mechanisms of AGB. The geostatistical method can explain spatial
heterogeneity and correlation and build spatial prediction models for estimation [24].

The method can not only solve the saturation problem of remote sensing data but also
has spatial mapping capability [25]. The geostatistical method has been widely used to
estimate forest-related parameters [26–29]. Additionally, the interpolation accuracy of the
cokriging method is higher than that of the ordinary kriging method [25]. In conclusion,
spatial estimation of AGB, using cokriging based on ICESat-2/ATLAS data, has rarely been
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reported in high-elevation ecologically fragile areas in northwestern Yunnan Province, China.
Moreover, determining how to find the optimal remote sensing estimation model for accurate
estimation of AGB in the area and to reduce the errors in the process of scale extrapolation of
AGB are the urgent issues to be optimized in the current forestry remote sensing research.

This study addresses the following problem: establishing a parameter index system
for building an AGB footprint model based on ATLAS data under the typical mountainous
terrain in northwestern Yunnan Province, China. The optimized RF model was selected
to predict AGB within all footprints in the study area. Finally, the AGB was simulated
using the cokriging method after optimizing the variance function model, and the spatial
distribution of AGB was obtained. The research can provide research cases for remote
sensing monitoring of AGB at low latitudes and high altitudes in ecologically fragile areas
at large scales.

2. Materials and Methods
2.1. Study Area

The study was carried out in Shangri-La City, Yunnan Province, China (latitude
26◦52′ N~28◦52′ N, longitude 99◦20′ E~100◦19′ E), as shown in Figure 1. The terrain shows
a high northwest and low southeast elevation. Elevation has a large altitude interval
range, with an average of 3459 m. The climate is a mountainous cold-temperate monsoon
climate, with four seasons that do not differ, and dry and wet seasons that are distinct. The
forest coverage rate reaches 74.99%, with obvious differences in the distribution of forest
vegetation from north to south. The site is predominated by Quercus semecarpifolia, Picea
asperata, Abies fabri, Larix gmelinii, Pinus densata, and Pinus armandii [30,31].
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2.2. ATLAS Data Products

The ICESat-2 satellite enables measurement up to 88◦ north and south latitudes, with
a repeat cycle of 91 days. ICESat-2 carries an ATLAS instrument with a laser pulse of
10 kHz. ATLAS transmits six laser beams, and the beams are arranged along the track in
three parallel groups of strong and weak beams. Each group is separated by 3.3 km. In
each pair, the strong and weak beams are 2.5 km apart in the cross-track and 90 m apart
along the track [32,33]. Footprints spaced 70 cm apart were produced along each track of
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ICESat-2 with a footprint diameter of 17 m [32,33]. ICESat-2 includes 22 standard data
products of four levels. The products are named ATL01~ATL22, and the data products are
stored in HDF5 format.

This study uses ATL03 (Global Geolocated Photon Data) and ATL08 (Land and Veg-
etation Height) as data sources. ATL03 is a secondary product that provides geospatial
location information such as time, latitude, longitude, and geolocated ellipsoidal height for
each photon. ATL08 is a level 3A product that is generated by estimating topography and
canopy height from the ATL03 photon cloud using the ATL08 algorithm. After the photon
point cloud data are denoised using the differential, regressive, and Gaussian adaptive
nearest neighbor (DRAGANN) [32] algorithm, each photon is classified into noise, ground,
canopy, or top of canopy photon using a photon classification algorithm. The ATL08 data
product provides index ID values for each tagged photon (ground, canopy, top of canopy)
that can be linked to the ATL03 data product [34]. ATL08 provides index parameters such
as surface reflectance and elevation maxima, minima, means, and medians of photons per
100 m that are related to canopy and topography [32,35].

To ensure that the ATLAS orbits covered the entire study area evenly, we selected
ATL08 data from January 2020 to June 2021. The data can be downloaded from the National
Snow and Ice Data Center’s ICESat-2 website (https://nsidc.org/data/icesat-2, accessed
on 13 January 2022).

2.3. Sample Plots Design

In order to avoid the rainy and snowy seasons in the study area, the field sample data
were surveyed in November 2021. Based on the principle of representativeness, 54 circular
sample plots (8.5 m radius) were set up with an area of about 0.023 hm2. The diameter and
center point coordinates of the sample plots were consistent with the footprints emitted
by ICESat-2/ATLAS. The survey was carried out by using the instrument of Thousand
Seeker SR3 (Pro version), and the instrument was ensured to be in a fixed solution state
during the sample plot centroid coordinates acquisition. The coordinates were averaged
after five acquisitions. The error between the center point coordinates of all sample sites
and those of the footprints was less than 0.02 m. Finally, the coordinates of sample sites,
tree species, diameter at breast height, and tree height were recorded.

This study used the literature empirical method to calculate AGB (see Table 1 for
details). For some difficult-to-collect tree species biomass calculation formulae, the study
used the formulae of tree species with higher affinity or that of the same tree species
distributed in other regions instead [36–38]. D and H in the footprints were substituted
into the biomass formula of the corresponding tree species to calculate the AGB. Table 2
shows the statistical information of biomass in the sample site.

Table 1. Biomass model of main tree species in Shangri-La City.

Tree Species Diameter at Breast Height Aboveground Biomass Model

Abies fabri D ≥ 5 MA = 0.06127D2.05753H0.50839 [36]
D < 5 MA = 0.19406D1.34122H0.50839 [36]

Quercus D ≥ 5 MA = 0.07806D2.06321H0.57393 [36]
D < 5 MA = 0.22999D1.39183H0.57393 [36]

Pinus densata D > 0 MA = 0.0730D2.3560H0.1090 [36]

Picea asperata D ≥ 5 MA = 0.09152D2.2106H0.25663 [36]
D < 5 MA = 0.16923D1.82866H0.25663 [36]

Pinus yunnanensis D > 0 MA = 0.070231D2.10392H0.41120 [36]

Larix gmelinii D ≥ 5 MA = 0.05577D2.01549H0.59146 [36]
D < 5 MA = 0.15678D1.37332H0.59146 [36]

Pinus armandii D > 0 MA = 0.009512(D2H)1.138665 [37]

Populus D > 0
MB = 2.83252G0.000 00H−0.46615M [38]

M = 1.37840G1.08641H0.57336 [38]

MA is stand biomass (kg), MB is biomass per unit area (t/hm2), M is volume per unit area (m3/hm2), D is diameter
at breast height (cm), H is tree height (m), H is stand mean height (m), and G is stand section area (m2/hm2).

https://nsidc.org/data/icesat-2
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Table 2. Statistical information of AGB in plots.

Numbers Mean Mean Standard Error Standard Deviation Max Min

54 59.48 5.29 37.45 126.00 0.88

Note: The statistical units in the table are t·hm−2.

2.4. Determine the Scope of Woodland

In the annual basic work of Chinese forestry, regular forest land change turnover
surveys are of great significance for the scientific management and development planning
of forest resources. In this study, the forest land extent is determined based on the forest
land change data of forest resources in 2021 (Figure 2). The data can be used to assist in the
deployment of survey sample plots and for the spatial overlay analysis of footprints within
the forest land extent, etc.
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2.5. Digital Elevation Model

The Advanced Land Observing Satellite-1 (ALOS-1) was launched by Japan in 2006,
and this study used the digital elevation model (DEM) with a resolution of 12.5 m acquired
by the phased-array type L-band synthetic aperture radar (PALSAR) on board the satellite.
The slope, aspect, and elevation of the study area were extracted using a raster surface
algorithm (Figure 3).
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2.6. Research Methods

The main steps for constructing AGB models based on ICESat-2/ATLAS data and per-
forming regional-scale extrapolation of footprints AGB are as follows: photon point cloud
denoising, photon point cloud classification, footprints AGB estimation model construction
and evaluation, and AGB spatial interpolation and validation (as shown in Figure 4).
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2.6.1. ICESat-2/ATLAS Data Processing Methods

(1) Photon point cloud denoising algorithmA comprehensive denoising algorithm consist-
ing of the density difference-based spatial clustering noise algorithm (DDBSCAN) [39]
and the K-nearest-neighbor-based denoising algorithm (KNNB) [40] was used to
remove noisy photons. Zhang et al. [41] used the maximum density difference in
the DDBSCAN algorithm as the final metric in the DDBSCAN algorithm in order to
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compensate for the effect of photon density inconsistency on the performance of the
localized statistics-based algorithm.

(2) Photon classification algorithm

The progressive triangular irregular network (TIN) densification (PTD) method was
used to distinguish the photon point cloud data into ground photons and canopy photons.
Since the farthest point from the initial TIN in ICESat-2 data may be the ground point or
the canopy point, this study chose the lowest elevation point below the farthest point from
the initial TIN as the ground point [42].

The ICESat-2/ATLAS parameter extraction module was built based on the Python
3.7 environment with the Pycharm platform for parameter extraction. Then, the spatial
overlay analysis of forest land change data of forest resources and ICESat-2 footprints was
performed under ArcGIS 10.5 software. The final number of effective footprints within
the forested area was determined to be 74,873 and 19,213 within the nonforested area (as
shown in Figure 5).
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2.6.2. Optimized RF Algorithm

Random forest (RF) is a machine learning algorithm based on statistical theory. The
algorithm can quickly process a large number of datasets, and it can be directly used to
train data with high-dimensional features, with strong model generalization and good
fitting [43]. The parameters of machine learning algorithms are classified into two types:
model parameters and model hyperparameters [44]. The hyperparameters of the RF model
were optimized with the RandomizedSearchCV function [45] from the Scikit-learn library
of the Python language, which was validated by the ten-fold cross-validation method.
The parameters for hyperparameter optimization are n_estimators, min_samples_split,
min_samples_leaf, max_features, max_depth, and bootstrap (see Table 3 for the definition
of each parameter).
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Table 3. Description of random forest algorithm optimization parameters.

Parameters Description [43,46] Type

n_estimators The number of trees in the forest. int
min_samples_split The minimum number of samples required to split an internal node. int or float
min_samples_leaf The minimum number of samples required to be at a leaf node. int or float

max_features The number of features to consider when looking for the best split. int or float
max_depth The maximum depth of the tree. int
bootstrap Whether bootstrap samples are used when building trees. bool

2.6.3. Geostatistical Methods

Geostatistics is a method for the study of natural phenomena that show a random and
structural distribution in space with the help of variational functions [24]. One of the main
elements of geostatistics is the kriging method. The kriging method is based on statistical
correlations and spatial relationships of variables. It provides linear unbiased and optimal
estimates of the values of regionalized variables within a limited area [24,29].

(1) Semivariance function

If the regionalized variable footprints AGB Z(x) satisfies the second-order smooth or
intrinsic hypothesis, the AGB variance function is as follows [25]:

r(h) =
1

2N(h)

N(h)

∑
i=1

(Z(xi)− Z(xi + h))2 (1)

where r(h) is the AGB variation function; N(h) is the number of pairs of points with
distance equal to h in a certain direction; Z(xi) is the measured value of AGB of the variable
at point xi; Z(xi + h) is the value of AGB of the variable at point xi deviated from h.

(2) Cokriging (COK) is a linear unbiased optimal estimation method that uses readily
available variables in conjunction with hard-to-obtain variables. The formula is
as follows:

Z∗(x0) =
n

∑
i=1

λaiZa(xi) +
m

∑
j=1

λbjZ
(
xj
)

(2)

where Z∗(x0) is the estimated AGB at the point to be estimated; λai, λbj are the weights of
the measured values of the primary variable Z1 and the secondary variable Z2; m is the
number of measured values of the secondary variable Z2.

This study used the collaborative kriging method in the Geostatistical Analyst module
of ArcGIS 10.5 software to spatially interpolate the AGB in the study area. To verify the
accuracy of the cokriging interpolation results, 50,923 footprints were selected as training
samples and 12,731 footprints were randomly selected as validation samples in a ratio of 8:2
from 63,654 footprints after removing the outliers. Cokriging was performed with the foot-
print AGB in the training sample as the main variable, and the slope factor that correlated
with the AGB that covered the area of unsampled points in the sample as the covariate.
Variance functions of footprint AGB and the covariate and cross-variance functions of both
were fitted in GS+9.0 software, and then the footprint AGB was spatially interpolated. The
interpolated AGB result was extracted by masking the study area with the forest land
extent, and a map of AGB was obtained. To verify the accuracy of the interpolated AGB, we
used SPSS software to establish a linear regression model, by comparing with the randomly
selected validation points.
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2.7. Evaluation of Model Accuracy

Leave-one-out cross-validation (LOOCV) has the advantages of low generalization
error and the ability to exclude the influence of random factors, compared to other cross-
validation methods. The method is suitable for a small number of samples, and the
validation results are stable, reproducible, and closest to the true sample [47]. The basic
principle of the leave-one-out cross-validation method is that, based on m samples, one
sample is taken as the validation sample at a time, and the remaining m − 1 samples
are the training samples, cycling until each sample is taken as a validation sample once.
Finally, all results are averaged as an estimate of the generalization error [48]. We evaluated
the model using root mean square error (RMSE), coefficient of determination (R2), and
population estimation accuracy (P1) as model evaluation metrics. Each indicator was
calculated as follows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n− 1
(3)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

P1 =

(
1− RMSE

y

)
× 100% (5)

where yi is the true value; ŷi is the estimated value; y is the mean of true value; and n is
the number.

The prediction accuracy of cokriging was evaluated with the cross-validation results
in the Geostatistical Analyst module [49]. The variance function model was evaluated
by the coefficient of determination (R2) and the residual sum of squares (RSS), and the
structure ratio (SR) was used as an indicator to evaluate the spatial correlation of the system
variables. The formula is as follows:

SR =
C1

C0 + C1
(6)

where SR is the structure ratio; C0 is nugget; C1 is partial sill; C0 + C1 is sill.

RSS =
n

∑
i=1

(yi − ŷi)
2 (7)

where yi is the true value (m); ŷi is the estimated value (m); and n is the number.

3. Results
3.1. Correlation Analysis of Model Variables

The ICESat-2/ATLAS parameters with significant correlation were screened as in-
dependent variables of the RF regression model. The SPSS 21.0 software was used to
analyze the correlation between AGB and 53 variable parameters (including three topo-
graphic factors: aspect, slope, and elevation) of the sample sites by Pearson correlation
coefficient analysis. Five variables were correlated with AGB at the 0.05 level, namely,
Landsat percentage canopy, canopy photon rate, slope, number of photons, and apparent
surface reflectance. One variable correlated with AGB at the 0.01 level was number canopy
photons (see Table 4 for description of each parameter). The absolute magnitudes of the
correlation coefficients of the six variables that were correlated with AGB were in the
following order: number canopy photons > Landsat percentage canopy > canopy photon
rate > slope > number of photons > apparent surface reflectance. The correlation analysis is
shown in Figure 6.
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Table 4. Parameter definitions for significant correlation with AGB.

Serial Number Parameter Long Name Description

1 n_seg_ph Number of photons Number of photons within each land segment.
2 asr Apparent surface reflectance Apparent surface reflectance.

3 landsat_perc Landsat percentage canopy Average percentage value of the valid (value ≤ 100) Landsat Tree Cover
Continuous Fields product for each 100 m segment.

4 n_ca_photons Number canopy photons The number of photons classified as canopy within the segment.
5 photon_rate_can Canopy photon rate Calculated photon rate of canopy photons within each 100 m segment.
6 Slope Slope Calculated based on DEM.
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3.2. AGB Model Construction Based on Optimized RF

To further improve the accuracy and operational efficiency of the RF model, this
study performed hyperparameter optimization of the model with the help of the Random-
izedSearchCV function in the Scikit-learn library [50]. In this study, 100, 1000, 3000, and
5000 sets of parameter combinations were experimented with, and 10-fold cross-validation
method was used to determine the optimal parameters among 50,000 sets of parameter
combinations as follows: ‘n_estimators’: 1340, ‘min_samples_split’: 2, ‘min_samples_leaf’:
2, ‘max_features’: auto, ‘max_depth’: none, ‘bootstrap’: false (see Table 3 for parameter
definitions). The accuracy of the optimized model was R2 = 0.93, RMSE = 10.13 t/hm2, and
P1 = 83.3% (as shown in Figure 7). The accuracy of the model was good and could be used
to estimate the AGB of footprints within the woodland area of the study area.
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3.3. AGB Estimation Results within ATLAS Footprints

The AGB of footprints was estimated using an optimized RF algorithm, and the AGB
of 74,873 footprints was obtained in the study area. The population AGB of footprints was
1.32 × 105 t with the mean of 77.41 t/hm2, the maximum of 126 t/hm2, and the minimum
of 0.88 t/hm2. The spatial distribution of AGB of footprints was plotted according to the
coordinates of the center of footprints in the study area (as shown in Figure 8a). Figure 8a
demonstrates that the population AGB of footprints is relatively large in the study area, but
the AGB shows uneven distribution and large regional differences. The main reason is that
Shangri-La is located at low latitudes and high altitudes, which means it is susceptible to
the influence of vertical zonation and forms a unique “vertical climate”. The distribution of
large AGB footprints was from the north to the southeast and it was mainly concentrated
in the northern region, which coincided with the spatial distribution of forest stock in the
study area (as shown in Figure 8b). The areas with large AGB were mostly natural scenic
areas, while the areas with small AGB were mainly distributed in snow- and ice-covered
areas, next to water areas, and next to cities, which also verified the validity of the results
of the footprints AGB estimation model.
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3.4. Statistical Analysis of Interpolated Variables and Determination of Variance Functions

According to the results of the correlation analysis in Section 3.1, the slope factor,
which was easily obtained and significantly correlated with AGB, was selected as the
covariable of the cokriging method, and we analyzed the distribution characteristics of
the samples after removing the outliers. From Figure 9, it is clear that the AGB and slope
factor obeyed normal distribution and satisfied the interpolation conditions of cokriging
(see Table 5 for statistical information).
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Table 5. Statistical characteristics of AGB and covariable.

Variables Mean Standard Deviation Max Min

AGB/(t·hm−2) 64.32 20.71 126.00 0.88
Slope (◦) 25.40 12.30 82.53 0.00

The interpolation results of different variance functions are different, and in order to
determine the optimal variance function model, the variance function needs to be simulated
before interpolation is performed. In this study, three models (spherical, exponential, and
Gaussian) were selected to fit the variance functions under GS+9.0 software. The results of
fitting each model are shown in Table 6. The R2 of all three models were similar, and the
RSS of the spherical and Gaussian models were the smallest; both were 2.65 × 10−4. The
nugget is often used to measure the variability of variables and experimental error at small
sampling scales [29]. Because the nugget of the spherical model was 0.01, which was the
smallest degree of variation, we finally selected the spherical model as the optimal variance
function model for the collaborative kriging method.

Table 6. The related parameters and evaluation index of cokriging variation function.

Model Variable Nugget Sill SR (%) Range (%) R2 RSS

Spherical Main variable 0.01 0.22 94.0 6700.00 0.65 2.65 × 10−4

Covariate 0.10 125.90 99.9 8300.00

Exponential Main variable 0.03 0.22 87.9 6600.00 0.64 2.76 × 10−4

Covariate 94.20 188.50 50.0 404,400.00

Gaussian
Main variable 0.04 0.22 82.1 5715.77 0.65 2.65 × 10−4

Covariate 0.10 126.00 99.9 6928.20

The SR is used to measure the degree of spatial autocorrelation of the system variables.
SR > 75%, SR between 25% and 75%, and SR < 25%, respectively, indicate strong, moderate,
and weak spatial autocorrelation of the variables [51]. The SR of the main variable of the
spherical model was 94% in Table 6, which was much greater than 75%. This indicated that
the AGB had a strong spatial correlation in the study area. The main reason is that biomass
distribution is influenced by spatial factors such as topographic factors, climate, and soil
type. The variance function of ABG was fitted with nugget of 0.01, sill of 0.22, and range of
6700.00 m. The spatial variability reaches its maximum when the range is exceeded and there
is no correlation between two points. The spherical model equation for AGB was as follows:

γ(h) =


0 , h = 0

0.01 + 0.21
(

3h
13, 400

− h3

6.02× 1011

)
, 0 < h ≤ 6700

0.22 , h > 6700

(8)
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The covariate slope variation function was fitted with nugget of 0.10, sill of 125.90, and
range of 8300.00 m. The spherical model equation for the covariate slope was as follows:

(h) =


0 , h = 0

0.10 + 125.89
(

3h
16, 600

− h3

1.14× 1012

)
, 0 < h ≤ 8300

125.90 , h > 8300

(9)

A cross-variance function was established based on the spatial correlation between
AGB and slope, with nugget of 0.25, sill of 1.42, and range of 7200.00 m. The Gaussian
model equation was as follows:

γ(h) =


0 , h = 0

0.25 + 1.16
(

3h
14, 400

− h3

7.47× 1011

)
, 0 < h ≤ 7200

1.42 , h > 7200

(10)

3.5. Validation of Interpolation Results

The study examined the interpolation results using 12,731 randomly selected foot-
prints, and the results are shown in Figure 10. The linear equation was y = 0.47x + 33.62,
R2 = 0.43, RMSE = 5.29 t/hm2, and the interpolation results showed a certain convergence
trend with the AGB of the footprints.
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3.6. Spatial Distribution Analysis of AGB

Figure 11 reveals the spatial distribution and standard error prediction results of AGB
generated by collaborative kriging in Shangri-La. The population AGB was 6.07 × 107 t.
As shown in Figure 11a, the spatial distribution of AGB was heterogeneous, and the SR of
the variables was 94.0% (Table 6), indicating that spatial correlation was one of the factors
that led to the heterogeneous spatial distribution of AGB in the study area. On the other
hand, this is related to the complex topographic structure and the typical “vertical climate”
of Shangri-La. The result was consistent with the spatial distribution of forest stock in the
study area in 2021 shown in Figure 8. In addition, Figure 11b,c display smaller standard
error of prediction in the area of ICESat-2 footprints distribution, demonstrating that the
large sampling density of ATLAS data can improve spatial interpolation accuracy.
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4. Discussion
4.1. Validity Analysis of Estimation Results

The estimation of AGB was performed using traditional-class Forest Resources Plan-
ning and Design Survey and remote sensing techniques in Shangri-La. Feng et al. [31]
used texture factors extracted from ZY3-01 data as independent variables and footprints
AGB predicted from GLAS data as dependent variables to establish a multiple stepwise
regression model to estimate that the population AGB was 1.3 × 108 t in Shangri-La.
Yue [52] used Landsat TM images as the data source and support vector machines as the
optimal modeling method to establish a biomass estimation model for four dominant tree
species in Shangri-La, and the population AGB of the four tree species was 1.407 × 108 t.
Wang et al. [53] established a remote sensing estimation model for the biomass of four con-
structive tree species in Shangri-La and estimated the population AGB of four tree species
to be 1.14 × 108 t. In 2021, the AGB was estimated to be 7.35 × 107 t, which was estimated
by Wang et al. [36] using data from the 2016 Forest Resources Planning and Design Survey
with a biomass model for different types of dominant tree species in Shangri-La. Because
the results come from the 2016 Forest Resources Planning and Design Survey, it is reliable
as the reference standard for the estimation accuracy of AGB in this study. The estimation
of population AGB was 6.07 × 107 t in this study, which was the same order of magnitude
as the reference standard, while the estimations of other scholars were quite different from
the reference standard [31,52,53]. Finally, we describe the results of the absolute precision
of the estimation, which was 82.6%.

4.2. Elimination of Error Transmission Feasibility Analysis

In this paper, we investigated the feasibility of ICESat-2/ATLAS data for estimating
AGB in montane forests, and an optimized random forest model was used to establish
a montane AGB estimation model. The results showed that despite the complex terrain,
broad elevation difference, and large forest cover in the study area [30], the estimation
accuracy of the RF model using ICESat-2 data was still high. The main reason might
possibly be that ICESat-2/ATLAS has a larger density and smaller footprint area compared
to ICESat-1/GLAS. Even if the terrain is undulating, the footprints of ATLAS are less
influenced by the terrain than GLAS data, and ATLAS data are more suitable for inversion
of forest measurement parameters in complex mountainous terrain. In order to further
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improve the accuracy of AGB scale nudging and reduce the error transfer in the nudging
process, other models, for example, other machine learning methods such as K-nearest
neighbors (KNN) [48] or deep learning [54], suitable for handling multidimensional data,
can be selected for further examination. In addition, Bayesian optimization [55] can be
tried for random forest hyperparameter tuning, which can relatively reduce the number
of iterations in the optimization process and make full use of the information from each
test point. Narine et al. [21] found that strong beam inversion had higher accuracy than
weak beam inversion for AGB, with R2 = 0.60 for the strong beam model and R2 = 0.37 for
the weak beam model. Therefore, in order to reduce error transfer, further studies should
investigate the strong beam for prediction. On the other hand, Moradi et al. found that
indices extracted from Sentinel-2 multispectral imagery can provide good results in the
AGB estimation of the Hyrcanian Forests and a Mediterranean coppice oak forest. In this
sense, future studies can use ICESat-2 in collaboration with Sentinel 2 data for multisource
remote sensing synergy to estimate AGB [56,57].

4.3. Analysis of the Interpolation Result String Phenomenon Is Obvious

As described in Figures 8 and 11, the spatial distribution pattern of AGB is consis-
tent with that of forest stock in Shangri-La City. However, the strong spatial correlation
between biomass and ATLAS data affected the prediction results of cokriging interpolation.
Figure 11b,c show the small prediction standard error of the location of the footprints dis-
tribution, which validates the conclusion of Tsui et al. [27] that the narrower the sampling
band interval, the lower the standard error of the predicted biomass. It is also consistent
with the conclusion that the higher the number of samples within the same topographic
cell, the higher the interpolation accuracy [58]. In the present study, the large-overlap
ATLAS footprints were used as interpolation sample points, but the spatial distribution
of AGB was influenced by the string effect (as shown in Figure 11). Further research is
needed to optimize the number or layout of sample points for ATLAS data at different
scales to improve the accuracy. In addition, since the satellite-based LiDAR footprints are
generally uniformly distributed along the track on the ground, satellite-based LiDAR data
from different sensor platforms can be fused to increase the randomness of the footprint
distribution in the future, which can mitigate the string effect [59]. Furthermore, the choice
of interpolation methods and covariates may cause the interpolation results to be affected
by string effect under different topographic conditions. In this study, the cokriging inter-
polation could reduce the smoothing effect, but the effect was not eliminated, making the
AGB estimations underestimated. Accordingly, regression kriging and sequential Gaussian
co-interpolation methods [28,60] can be carried out. In addition, mainly considering that
the study area was located in a mountainous region with complex topography, the slope
factor was chosen as a covariate. Furthermore, other factors with strong spatial autocorrela-
tion, such as climate factors and vegetation index, can be considered comprehensively as
covariates for estimation in flatter areas.

5. Conclusions

In the present study, a hyperparameter-optimized RF model was constructed after
parameter extraction for ICESat-2 footprints within the forested area using data of 54 mea-
sured sample plots. Then, we selected the spherical model to fit the variance function based
on the estimations of all footprint AGB. Finally, the continuous spatial distribution of AGB
was obtained by interpolation using the cokriging method. Our results demonstrated that
the optimized RF model had a good effect for estimation of AGB within the footprint. The
model had R2 = 0.93, RMSE = 10.13 t/hm2, and P1 = 83.3%. The spatial distribution pattern
of estimated AGB is basically consistent with that of forest stock in the study area. The
estimated population AGB was 6.07 × 107 t in Shangri-La, with an absolute accuracy of
82.6%. The findings make full use of the advantage of easy access to ATLAS data and dense
footprints, and can quickly and effectively extrapolate the biomass scale while optimizing
the AGB estimation model.
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