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ABSTRACT. Debris-covered glaciers play an important role in the high-altitude water cycle in the
Himalaya, yet their dynamics are poorly understood, partly because of the difficult fieldwork
conditions. In this study we therefore deploy an unmanned aerial vehicle (UAV) three times (May 2013,
October 2013 and May 2014) over the debris-covered Lirung Glacier in Nepal. The acquired data are
processed into orthomosaics and elevation models by a Structure from Motion workflow, and seasonal
surface velocity is derived using frequency cross-correlation. In order to obtain optimal surface velocity
products, the effects of different input data and correlator configurations are evaluated, which reveals
that the orthomosaic as input paired with moderate correlator settings provides the best results. The
glacier has considerable spatial and seasonal differences in surface velocity, with maximum summer
and winter velocities 6 and 2.5 m a–1, respectively, in the upper part of the tongue, while the lower part
is nearly stagnant. It is hypothesized that the higher velocities during summer are caused by basal
sliding due to increased lubrication of the bed. We conclude that UAVs have great potential to quantify
seasonal and annual variations in flow and can help to further our understanding of debris-covered
glaciers.

KEYWORDS: debris-covered glaciers, glacier flow, glacier mapping, glaciological instruments and
methods, remote sensing

INTRODUCTION
Himalayan glaciers play a varying, but generally important,
role in the water supply of many regions in Asia (Immerzeel
and others, 2010; Kaser and others, 2010; Lutz and others,
2014). Most glaciers in High Mountain Asia are losing mass
at rates similar to other regions in the world, except for the
Karakoram mountain range, where there are indications of
positive mass balances (Bolch and others, 2012; Gardelle
and others, 2012). In the central Himalaya, for example,
negative mass balances of � 0:26� 0:13mw.e. a–1 for the
Everest region and of � 0:32� 0:13mw.e. a–1 for west
Nepal are reported for the period 1999–2011 (Gardelle
and others, 2013), whereas for the Langtang catchment in
central Nepal a mass balance of � 0:33� 0:18mw.e. a–1 is
reported (Pellicciotti and others, 2015). These negative mass
balances temporarily result in higher water availability, until
the glaciers recede so far that absolute meltwater yield starts
to decline (Immerzeel and others, 2013).
Around 10% of the Himalayan glacierized area is debris-

covered (Bolch and others, 2012) and the debris-covered
tongues are generally located at the lowest elevation. Most
debris-covered tongues exhibit slower rates of retreat than
debris-free glaciers, but they thin at substantial rates
(Scherler and others, 2011). Theoretically, the debris, when
thicker than a few centimetres, should insulate the ice from
melt (Östrem, 1959). However, recent work suggests that
the debris-covered tongues lose mass at the same rates as
debris-free glaciers (Kääb and others, 2012; Gardelle and
others, 2013; Pellicciotti and others, 2015). The underlying
reason may be the presence of supraglacial lakes and ice

cliffs that accelerate melt significantly (Sakai and others,
1998; Benn and others, 2012; Immerzeel and others, 2014).
Little is known, however, about the behaviour and response
of debris-covered glaciers, as they are generally inaccessible
and the spatial and temporal resolution of satellite remote-
sensing products limits our ability to understand the
processes governing thinning.
The flow velocity and the associated mass turnover deter-

mine, to a large extent, the sensitivity of a glacier to climate
change. Recent work has shown that many of the mountain
glaciers are slowing considerably. Glaciers in the Pamir, for
example, slowed by 43% between 2000 and 2010 (Heid and
Kääb, 2012). A 70% reduction in flow velocity was reported
for Yala Glacier in the Langtang catchment in Nepal between
1982 and 2009 (Sugiyama and others, 2013). In contrast,
Karakoram glaciers again exhibit anomalous behaviour, as
glaciers there generally have accelerated (Heid and Kääb,
2012). Recent work in the central Himalaya shows great
variation in surface velocities. To the north side of the
Himalayan arc, near Bhutan on the Tibetan Plateau, flow
velocities of 100–200ma–1 are reported, whereas on the
south side maximum flow velocities of a few tens of metres
are reported (Kääb, 2005). This is confirmed for the south
side of the Everest region, where flow velocities for debris-
covered tongues vary from 0 to 37ma–1 (Quincey and
others, 2009a). Most of the glacier velocity studies in the
Himalaya are based on optical, spaceborne satellite remote
sensing and feature tracking. The first automated approach
applied to glaciers was published >20 years ago (Scambos
and others, 1992), and over the years the approach has
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proved very powerful and reasonably accurate (Scherler and
others, 2008; Copland and others, 2009; Quincey and
others, 2009a,b).
Unmanned aerial vehicles (UAVs) have great potential in

glaciology, in particular for debris-covered glaciers, as was
shown in a recent study of Lirung Glacier in central Nepal
(Immerzeel and others, 2014). The study revealed a highly
heterogeneous pattern of mass loss on the debris-covered
tongue over a single monsoon season, with a possibly
important catalytic role for supraglacial lakes and ice cliffs.
Additionally, the study showed that it is possible to
determine the glacier’s surface velocity and its general
spatial pattern by manual digitization and interpolation of
the displacements found between UAV image pairs. Such a
digitization method, however, does not optimally use the
full information content present in the UAV data, is subject
to human error and is time-consuming. To overcome these
issues, an automated feature-tracking approach could be
applied to the high-resolution UAV imagery. This would
result in surface velocity products with better accuracy and
spatial resolution, that may achieve a level of detail that is
currently unobtainable with spaceborne remote sensing.
In this study we derive surface velocities of Lirung Glacier

in central Nepal for both the summer monsoon and the dry
winter season by applying frequency cross-correlation
algorithms (Leprince and others, 2007) on UAV-acquired
imagery of May 2013, October 2013 and May 2014. Our
objectives are twofold. First, we evaluate the effect of two
high-resolution image products on the correlation output,
i.e. digital elevation models (DEMs) and orthomosaics, and
different settings for the cross-correlation algorithm. Based
on the best-performing configuration we then assess
differences between monsoon and winter velocities, and
discuss implications for debris-covered glacier dynamics.
The two 2013 datasets have already been presented
(Immerzeel and others, 2014), but are reanalysed in this
study, using the frequency cross-correlation technique to
improve the detail of the surface velocity product and to
increase its comparability with the 2014 data.

STUDY AREA
Lirung Glacier is located in Langtang National Park in the
Nepalese Himalaya (Fig. 1). It is part of the Langtang
catchment and it has a typical summer monsoon from June
to September, in which most of the annual precipitation of
�800mm occurs. The glacier is characterized by a debris-
covered tongue, 500m wide and 3000m long. The terminus
of the glacier tongue lies at an elevation of �4050m above
mean sea level (a.m.s.l.) and the remainder of the tongue
slopes up to �4350ma.m.s.l.
The glacier tongue is detached from the steep accumu-

lation slopes below Lantang Lirung Peak (7235ma.m.s.l.)
and it is currently fed only by avalanches and occasional
snowfall on the tongue itself. The heterogeneous pattern of
surface lowering found over the monsoon season was
1.09m on average (Immerzeel and others, 2014), which is
comparable to other debris-covered glaciers in these parts of
the Himalaya (Bolch and others, 2011; Kääb and others,
2012). The ice cliffs present on the glacier appear more
dynamic, with reported melt rates of up to �8 cmd–1 (Sakai
and others, 1998; Buri and others, 2016; Steiner and others,
in press). Surface velocities determined by manual feature
tracking are �2.5m over the monsoon season in the
glacier’s upstream area (Immerzeel and others, 2014), i.e.
5.8m a–1, relatively low compared with other findings
(Quincey and others, 2009b).

DATA AND METHODS
UAV surveys
Lirung Glacier was surveyed by UAV three times, on 18 May
2013, 22 October 2013 and 1 May 2014. A Swinglet CAM
UAV from the company senseFly (SenseFly, 2015) was used
in 2013. In May 2014 an eBee from the same company was
used. The months May and October were chosen as ideal
survey and fieldwork conditions usually prevail, i.e. calm
winds, moderate temperatures and little or no precipitation.
Also, they are just before and after the monsoon, which is

Fig. 1. Location of the study area (top left), view of Lirung Glacier from across valley (bottom left), and UAV-derived orthomosaic (middle)
and DEM (right) for May 2014.
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the most dynamic season when synchronous accumulation
(at high altitudes) and ablation (on the tongue) processes
prevail (Immerzeel and others, 2013). These months are
therefore optimal for understanding the difference in
behaviour of the glacier between the monsoon and the
remainder of the year, which is generally colder and drier.
The monsoon and dry seasons covered by the three datasets
are hereafter referred to as, respectively, summer (May–
October 2013; 157 days) and winter (October 2013–May
2014; 191 days).
To obtain the required imagery the UAV was deployed

over the glacier in 11 separate flights (Fig. 2) over the course
of the three survey dates. A total of 284, 307 and 314 usable
JPEG images (May 2013, October 2013 and May 2014,
respectively), with ground resolutions of 4–7 cm and
sufficient overlap of �60% were acquired with a 16 mega-
pixel consumer-grade digital camera, using a fixed focal
length. Images that were either redundant, had too much
motion blur or strong rolling shutter distortions were
removed from the image set. Although the lossy compres-
sion associated with the JPEG format is not ideal for data
analysis and consistent results, it is currently a limitation of
the UAV system in use.
During the October 2013 field campaign a total of

19 ground-control points (GCPs) were collected on Lirung
Glacier’s lateral moraines, using differential GPS to geo-
reference the imagery. During the other two campaigns no
GCPs of sufficient quality were collected. It was therefore
decided to tie the data together geodetically, by sampling
47 tie points from the October 2013 data, which were used
as GCPs in the processing of the May 2013 and 2014
datasets (similar to the approach taken by Immerzeel and
others, 2014).

UAV data processing
For each of the three dates, the UAV-acquired images were
processed using a Structure from Motion (SfM) workflow
(Westoby and others, 2012; Lucieer and others, 2013;
Immerzeel and others, 2014). In the workflow, feature
recognition and matching algorithms, together with multi-
view stereo techniques (Szeliski, 2010; Westoby and others,
2012), are applied to the overlapping input images to obtain
per-image depth maps and camera orientations. This
information is used to construct three-dimensional (3-D)
point clouds that can be triangulated and interpolated into
gridded DEMs and to stitch the input imagery into geo-
metrically corrected image mosaics, called orthomosaics.
By marking the measured GCPs and/or tie points on the
input images during the SfM workflow, xyz-georeferencing
of the output is obtained. In this study we use the SfM
workflow as implemented in the software package Agisoft
Photoscan Professional version 0.9.1 (Agisoft, 2013).
To obtain optimal results from the SfM workflow in

Agisoft, each processing step was performed using high-
quality settings. The 3-D point clouds were cleaned in a
three-step iterative process, using the point reprojection
error. High reprojection errors indicate poor localization
accuracy of the corresponding point projections at the
point-matching step and are also typical for false matches
(Agisoft, 2013). Points with a reprojection error >1.5 pixels
(i.e. �10 cm for most input images) were therefore removed
at each iteration. After removal the point coordinates and
camera calibrations were optimized each time by minimiz-
ing the sum of the reprojection error (Agisoft, 2013). If
camera calibration estimates are inaccurate, the SfM
matching algorithms can introduce a doming or bowl effect
in the output 3-D model. This was counteracted using

Fig. 2. Overview of the 11 UAV flights over the three survey periods, their approximate ground coverage, positions of the gathered images
selected for processing, locations of the GCP and locations of the tie points.
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spatially well-distributed GCPs and tie points during the
optimizations. The output orthomosaics and DEMs, which
have 0.1m and 0.15–0.2m resolutions, respectively, were
all resampled to a 0.2m resolution to reduce the effects of
any remaining motion blur as well as JPEG artefacts for
further processing.
During the May 2014 field campaign the UAV had

difficulty acquiring GPS fixes, causing the UAV to skip a
number of image captures. Consequently, a handful of tie
points could not be placed during the SfM workflow and the
quality of the output was reduced considerably. As a
solution some off-glacier images of static areas from the
October 2013 set (Fig. 2) were added to the May 2014
image set during processing, which allowed placement of
all but two of the tie points.
An indication of the horizontal accuracy of the DEMs and

the orthomosaics is obtained by measuring the difference
between the GCP or tie-point coordinates and their
positions on the output orthomosaics. The vertical accuracy
is determined by calculating the differences between the
GCP or tie-point elevations and the output DEMs, while
correcting for the horizontal error. The number of GCPs
collected in October 2013 was limited because of the
inaccessible terrain and all points were required for the SfM
processing. This led to the absence of redundant GCPs that
could be used for independent accuracy checks.

Surface velocity determination
Cross-correlation feature tracking
COSI-Corr (Co-registration of Optically Sensed Images and
Correlation) is a software tool developed to co-register pairs
of satellite images, perform orthorectification and also sub-
pixel automated image correlation (Leprince and others,
2007; Ayoub and others, 2009). Its correlation algorithms
are used for the determination of surface velocity of glaciers,
but until now they have only been applied to comparatively
much coarser resolution satellite imagery (Leprince and
others, 2008; Scherler and others, 2008; Herman and
others, 2011). Here we apply COSI-Corr’s correlation
algorithms to the high-resolution UAV data.
The software provides two ways to correlate images,

either statistical or frequential. Both act on a moving
window level. It is advisable to use the frequential correl-
ation method when performing feature tracking on optical
images that are relatively noise-free and the statistical
method when images have considerable amounts of noise
or when image pairs have different content, such as when
correlating an orthomosaic with an elevation model (Ayoub
and others, 2009). As we have relatively noise-free data,
frequency correlation is used. The correlator obtains image-
to-image displacements by determining phase differences
between Fourier transforms of the moving window of both
images. It does this in a twofold process, first roughly at the
pixel level and subsequently at a sub-pixel level (Leprince
and others, 2007).

Multi-scale windows
Lirung Glacier, besides its general ice flow, has considerable
temporal surface variations that are unrelated to the flow of
the ice but are clearly noticeable in the high-resolution UAV
data. Examples are the melt of ice cliffs, tumbling of
boulders and collapse of debris slopes. Ideally these features
are not detected by the correlation algorithm, as the aim is to
extract surface velocities only. It was therefore decided to

use the COSI-Corr frequency correlator’s multi-scale mode
(Ayoub and others, 2009), as it has the potential to filter out
these unwanted disturbances.
In the multi-scale mode, windows of decreasing sizes are

correlated iteratively, using a preconfigured initial and final
window size. The dominant displacement is first detected by
correlation at the initial window scale. Increasingly smaller
windows are then used while accounting for the dominant
signals that were found. If a correlation at a current iteration
deviates too much from the previous one, the iteration is
stopped and the previous window’s results are used.
The multi-scale mode decreases the amount of irregularly

distributed noise in the output (Ayoub and others, 2009), i.e.
small displacements present in the images that are unrelated
to the dominant signal. The use of larger initial window sizes
allows for the reduction of more noise. However, it is a
trade-off, as too large initial window sizes may result in loss
of detail that is relevant. Some of this detail can be retained
by using a smaller final window size, but the use of smaller
final windows introduces more uniformly distributed noise
(Ayoub and others, 2009). A correct balance of the settings
with respect to the input data is therefore of key importance
to obtain the best results.

Input and setting assessment
Most studies use optical imagery as input data for automated
feature tracking (Kääb, 2005; Scherler and others, 2008;
Copland and others, 2009). However, a correlation algo-
rithm has been applied successfully to a UAV-derived
hillshade (Lucieer and others, 2013). In order to achieve
optimal results we therefore first assess the use of three
different input data types: the orthomosaic, a hillshade and
the DEM processed by the Sobel edge-detection operator
(Szeliski, 2010). COSI-Corr requires a single-band raster as
input and it was decided to use the orthomosaic’s red band,
as its longer wavelength experiences less influence from
atmospheric scattering (Lillesand and others, 2003). The
hillshade was created using a solar azimuth of 120° and a
zenith angle of 45°. The edge-detected DEM is added, as it
accentuates the outlines of the boulders that are abundantly
present on the glacier. It presents a strong contrast that may
be picked up by the correlation algorithm. All assessments
are performed using the summer dataset only, as the
expected higher flow velocities in this season will allow
for a better evaluation of possible differences in the
correlation output. Initial and final window size settings
are held equal for each input data type. Their optimal
settings are determined by trial and error, keeping in mind
the suggestion to work with window sizes that are at least
five times the expected displacement (Leprince and others,
2007), which is �3m (15 pixels) in this case (Immerzeel and
others, 2014).
To assess the effects of varying window sizes the

frequency correlator is applied to the input dataset with
the most satisfying correlation results by testing various
combinations of initial and final window size. The start
window sizes are varied so that they yield increasing levels
of irregularly distributed noise reduction and detail retention
with respect to the input data resolution. The final window
sizes are always chosen to have a good balance, visually
determined, between detail and noise. After the evaluation
of the effects of different input data and correlation settings,
the single optimal configuration found for the summer
period is applied to the winter data as well. To be able to

Kraaijenbrink and others: Glacier velocities derived from UAV imagery106

https:/www.cambridge.org/core/terms. https://doi.org/10.3189/2016AoG71A072
Downloaded from https:/www.cambridge.org/core. IP address: 110.44.113.18, on 26 Apr 2017 at 04:57:14, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.3189/2016AoG71A072
https:/www.cambridge.org/core


compare the surface velocities measured over summer and
winter, the values are scaled to year-equivalent values
(m a–1) throughout this paper.
COSI-Corr analyses the input data using a moving

window that has the preconfigured initial window size.
The moving window samples the input data at a configur-
able spatial interval, called the step size. This step size can
be set to be both smaller and larger than the size of
the moving window itself. Note that the chosen setting for
the step size also predetermines the output pixel size of the
velocity field, i.e. input resolution multiplied by the step
size. For consistency, this parameter is held constant at a
value that provides good output resolution while limiting
noise in the output and the processing time required.

Post-correlation noise reduction
The use of optimal correlator settings will result in a good
balance between noise and detail, but, to a certain extent,
noise will persist after the cross-correlation procedure. This
comprises both Gaussian noise and some remaining non-
normally distributed noise. To further improve the final
surface velocity products for summer and winter, two
separate noise-reduction methods are applied to the velocity
fields. First, Gaussian noise is targeted using non-local
means filtering (Buades and Coll, 2005), as implemented in
COSI-Corr (Ayoub and others, 2009). The algorithm is
applied using moderate noise reduction settings that are
able to reduce most noise without having too much of a
smoothing effect, determined by visual inspection of the
output. Patches of irregular noise are subsequently targeted,
by removing velocity values above a threshold if the focal
standard deviation is high. The threshold values for the
velocity and the focal standard deviation are determined by
trial and error. The noise is replaced by values that are

calculated by an ordinary kriging approach (Davis, 2002),
applied to the values on the perimeter of the patches.

Correlation accuracy
A proper assessment of the accuracy of the frequency cross-
correlation algorithms is difficult, as there are no quality
reference data available. To estimate accuracy we assess
whether the algorithm can reproduce surface velocities that
are derived by a manual digitization. A comprehensive
manual image matching for the summer period is performed
by digitizing flow vectors on the image pair visually in a GIS.
Only surface features are selected for matching that
encounter no displacements that are unrelated to the flow
of the ice, as determined by expert opinion. The differences
between the two methods are assessed by plotting the
digitized data against the correlation output value for each
window setting, which is sampled from COSI-Corr’s gridded
velocity field output at the coordinates of the digitized
vectors’ origin. Linear regression models are fitted to the
data to quantify the velocity differences.
To get another measure of the possible errors involved,

horizontal displacements found by the correlator for a static
off-glacier area of 0.18 km2 are evaluated and compared
with the errors of the SfM output. Signal-to-noise ratios
(SNRs) provided by COSI-Corr (Leprince and others, 2007)
are evaluated for the three different window settings as
another indicator of the quality of the frequency cross-
correlation.

RESULTS AND DISCUSSION
UAV product accuracy
Figure 3a shows the horizontal errors of the UAV products
obtained by SfM processing. It shows the differences found
between the GCP or tie-point coordinates and their positions
on the output orthomosaics for the three periods. Only the
errors found for the May datasets are reflected in the accur-
acy of the derived surface velocities, as they are directly
georeferenced to the October 2013 dataset using the tie
points. The accuracy of the surface velocity products is not
affected by the true geodetic accuracy of the data, which is
indicated by the GCP errors for October 2013. The errors
found for both May datasets have a similar distribution and
range. About 75% of the tie points are located on the ortho-
mosaic within 0.2m of their original position, with only a
few outliers that go up to 0.6m. Errors found further away
from the tie points on the off-glacier moraine area and on the
glacier surface itself are assumed to be similar due to the high
density of tie points used. The bulk of the vertical errors at the
tie points are within 50 cm, and 75% are even within
�25 cm. The vertical errors, however, do not contribute
much to the accuracy of the surface velocity product deter-
mined by feature tracking, as they have little to no influence
on the orthomosaic, hillshade and edge-detected DEM.

Correlation assessment
Optical vs DEM derivatives
COSI-Corr’s frequency correlator is applied to the UAV-
derived orthomosaic, hillshade and edge-detected DEM
using an initial window size of 128 pixels (px) and a final
window size of 64 px (coded as W128 F64). It was found
that a step size of 16 px provides a good balance between
output detail, noise and processing times while working
with the 0.2m resampled input data. Note that the output

Fig. 3. (a) Box plots of the horizontal errors between GCP (October
2013) and tie-point (May 2013 and 2014) coordinates and their
positions on the orthomosaics. (b) Histogram of displacements at
static off-glacier areas (0.18 km2), as calculated by frequency cross-
correlation using W256 F64.
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resolution of COSI-Corr’s velocity field is consequently
3.2m. The resulting surface velocities are shown in Figure 4.
The vectors plotted on the map denote the detected flow
direction. Vectors that have a magnitude of less than the
maximum horizontal error of �0.6m (Fig. 3), i.e. 1.4ma–1,
are left out.
The general pattern of flow velocity and direction that is

detected by the correlation algorithm is similar for each type
of input data. A noticeable difference, however, is that
irregularly distributed noise is abundant in the correlated
hillshade and edge-detected DEM, while the orthomosaic
reveals this type of noise almost exclusively at and around
the ice cliffs. This higher noise abundance is possibly
because the hillshade and edge-detected data both contain
similar recurring patterns of crests and edges that result in
mismatches of the correlator. The edge-detected DEM,
while showing slightly less irregular noise than the
hillshade, does experience more erratic variation in flow
directions. This is probably because the edge-detection filter
also enhances the pattern of tiny edges that results from
triangulation of the point cloud, which spatially varies
independently from image to image. Also, the very strong
contrast and lack of clear gradients may play a role.
The noise near the ice cliffs in the correlated orthomosaic

arises because the cliffs on Lirung Glacier are generally
larger (Immerzeel and others, 2014) than the initial window
size of 128 px, which equates to 25.6m in case of the 0.2m
resampled input data. As a result, the melt of the ice cliff
will be the local dominant signal picked up by the moving
window. In terms of noise filtering, the opposite of the
desired filter effect now occurs, as the cliff-unrelated
displacement is filtered locally (e.g. the flow). Additionally,
other mismatches might be introduced near the ice cliffs, as
they are not merely displaced features, but represent an
actual change in their appearance and shape due to melt
(Immerzeel and others, 2014). Most other displacements
that are unrelated to flow have been filtered out at W128

F64, except for some slope anomalies on the lateral
moraine walls.

Window size assessment
The results show that use of the orthomosaic as input to the
frequency correlator yields the best, noise-free output to be
used for determination of the surface velocities. We there-
fore assess the effects of varying the window sizes by using
this input data type.
As ice-cliff-related noise persists at a window size setting

of W128 F64, it is chosen to assess changes in noise level
and detail retention by using two larger initial windows, i.e.
W256 F64 and W512 F128 (Fig. 5). To limit the amount of
uniformly distributed noise in the output, a final window
size of 128 px was chosen for the correlation with the initial
window size of 512 px.
The pixel values for the surface velocity are very similar

between the three settings. Excluding noise and outliers that
are >6ma–1, the averages found over the entire area for the
different window settings (small to large) are 1.62, 1.59 and
1.57ma–1. Furthermore, 90% of the pixel-by-pixel differ-
ences between W512 F128 and W128 F64 are within � 0:56
and 0.29ma–1 and 75% are even within � 8:78� 10� 2 and
6:59� 10� 3 m a–1. In terms of SNR, larger window sizes
yield more pixels that are reported to have little-to-no
correlation. The percentage of pixels reported to have a SNR
of <0.75, i.e. little correlation quality, are 7.09, 11.15 and
13.80% (small to large windows).
As shown, larger initial window sizes are capable of

reducing most cliff-related noise present in the output.
However, they introduce sharper, unrealistic boundaries
between areas with contrasting velocities. Additionally,
much of the finer spatial variability that is present in the
W128 F64 results is lost at W512 F128. To balance
noise levels, artefact presence and measured correlation
performance, the results from W256 F64 are chosen as the
optimal configuration.

Fig. 4. Surface velocity results obtained by frequency cross-correlation of three different input data types for the summer period: the
orthomosaic, hillshade and edge-detected DEM. Every input image product consisted of a 0.2m resampled raster, and was processed using
an initial window size of 128 px and a final window size of 64 px. Note that the vectors are not linearly scaled and that vectors with a
magnitude of <1.4ma–1 are not displayed.
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To further improve the W256 F64 output, moderate non-
local means filtering is effective regarding Gaussian noise.
Almost all noise is removed, while the detail is largely
retained. Replacement of correlated velocities with inter-
polated values proves to be effective in removing any
remaining patches of irregular noise near the ice cliffs and
terminus (Fig. 7). For the summer dataset, the use of a
threshold of 7.5ma–1 on the velocity values if the focal
standard deviation of a 9 px by 9px window is larger than
the 95th percentile of all focal standard deviations shows
good results. A threshold of 5ma–1 while using the same
settings for the focal standard deviation suffices for the
winter velocity product.
Figure 3b shows a histogram of the displacements over a

static off-glacier area of 0.18 km2, as calculated by COSI-
Corr using W256 F64. The off-glacier displacements have a
mean of 0.14m, and 95% of the values are <0.34m, which
are acceptable errors. Note that the errors of the SfM output
(Fig. 3a) are, besides the cross-correlation error, also
reflected by these displacements and that the actual
frequency cross-correlation output errors thus are probably
smaller than the values shown in the histogram.

Digitized vs correlated flow
To evaluate and compare the results of the summer
correlation output, visual interpretation and manual digit-
ization were performed on the summer image pair by
manually digitizing 459 vectors in a GIS. Note that this was
performed on the original orthomosaic of 0.1m resolution.
A higher sampling density inareas with higher surface
velocities was used to obtain more detail there, but
generally the measurements are well distributed over the
glacier’s surface. Figure 6 shows a scatter plot of the
correlation output for the three different window sizes
against the manually digitized flow, as well as the spatial
distribution of the point measurements. Extreme and unreal-
istic outliers that are due to noise in the correlation output
are removed from the scatter plot, i.e. values >8ma–1

(n ¼ 6). The results of linear regression models that were
fitted to the filtered results are shown in the inset table.
Reproduction of the manually digitized flow by the

frequency correlator is very good and the overall flow
pattern found is similar. Points scatter close to the 1:1 line
with R2 values of 0.83 to 0.90 and with relatively small root-
mean-square errors of �0.6ma–1 over the observed period.
Mean velocity errors between the two methods are �0.10–
0.15m. The slopes of the fitted model indicate a slight
underestimation of surface velocity by the correlator, as
compared with the manual digitization. The cause for this is
unclear and it has not yet been possible to attribute this
specifically to one of the methods.
The flow directions that follow from correlation and

digitization have, similarly to the velocities, the same overall
trend and only slight differences between the two methods
are found locally. Compared with W256 F64, half of the
digitized vectors have differences in bearing of <8.0° and
75% are within 19.6°.
Note that small differences in velocity and direction are

expected here for two main reasons. Firstly, the digitized
surface velocities at a point scale are compared with those
that are measured for blocks of 16 px by a correlator that
bases itself on windows of 128, 256 and 512 px. Secondly,
manual digitization is not always completely accurate.
Differences in lighting conditions can cause the small
surface features on the glacier used for digitization to
appear quite differently from image to image. It is estimated
that the visual pixel-matching errors may be as large as 2–
4 px on the 0.1m resolution orthomosaic. This is equal to
�0.2–0.4m over the summer period, i.e. 0.46–0.93ma–1.

Seasonal surface velocities
Our finding of different flow velocities in summer and
winter is notable, as velocity measurements on debris-
covered glaciers are rare (Quincey and others, 2009a).
While it is possible that short-term and unmeasured
variations in velocity may contribute to the overall

Fig. 5. Summer period frequency cross-correlation results for three different window size settings applied to the 0.2m resampled
orthomosaic. The initial and final window sizes used in each case are denoted by W and F respectively. Note that the vectors are not linearly
scaled and that vectors with a magnitude of <1.4ma–1 are not displayed.
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differences, the seasonal patterns point towards differences
in flow regimes. During the summer period, surface
velocities of Lirung Glacier range from completely stagnant
in the lower (southern) sections of the terminus to �6ma–1

in the upper (northernmost) surveyed area (Fig. 7). Surface
velocities decrease gradually down-glacier to �2ma–1 at
the junction between southeastward and southward flow
vectors. Due to this velocity gradient, longitudinal ice

compression and a related emergence velocity are ex-
pected to occur here, which coincides with the reported
elevation gain of þ0.5m over the summer (Immerzeel and
others, 2014). We find summer velocities for Lirung Glacier
that are considerably lower than those reported by Naito
and others (1998). They state the glacier had moved
between 2.8 and 7.5m (�6.5 and 18.0ma–1) in the middle
part and between 1.9 and 2.5m (�4.5 and 6.0ma–1)

Fig. 7. Surface velocity and flow direction obtained by noise-filtered frequency cross-correlation (W256 F64) for the summer (left) and
winter (middle) period. The plots on the right show transverse surface velocity profiles for both seasons taken at the three indicated
locations.

Fig. 6. Manually digitized surface velocity measurements (n ¼ 453) plotted against the three different frequency cross-correlation outputs for
the summer period (left) and the locations of the measurements plotted over an interpolated surface obtained by ordinary kriging (right). The
results of fitted linear models and mean velocity errors (MVE) are shown in the inset table.
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in the lower area over the period June–October in the
years 1994–96. In two decades the glacier thus seems to
have reduced its flow velocity by about a factor of two,
though short-term velocity variations could contribute to
this difference.
The winter period shows a considerably different picture

to that of the summer. Here the high velocities for the upper
area are absent and have reduced to �2–3ma–1. Velocities
on the lower (southward-flowing) portion of the terminus are
similar to those found in the summer period. Combining and
rescaling the summer and winter velocities, respectively
valid for 157 and 191 days, to full-year values, the upper
portion of the surveyed area has velocities of �3.5ma–1 and
velocities at the transition zone between upper and lower
regions are �1.5ma–1.
The distinct contrasts between (1) the surface velocities

for the upper and lower portions of the terminus in the
summer and (2) the summer and winter velocity fields,
indicate the presence of two different dominant flow
regimes (Copland and others, 2009). We hypothesize that
the faster flow in summer is caused by basal-sliding-
dominated processes, while the lower velocities found in
winter and in the lower portions are mainly due to
deformation. The large amounts of monsoon precipitation
and the opening of sub- and englacial conduits due
to rising temperatures (Benn and others, 2012) are likely
to lubricate the base of the ice and introduce a basal-sliding
component to the flow in the summer season. In areas
where basal sliding dominates, the ice is expected to move
in a block-like motion with relatively high and constant
velocities in the centre and sharp lateral velocity gradients
(Copland and others, 2009). Transverse velocity profiles
over the glacier (Fig. 7) show that there indeed is a
difference between the summer and winter flow in terms of
lateral gradients. Especially near the northeastern ice
boundary, the summer velocity profile is reduced by
3ma–1 over a few tens of metres (profiles A and B). The
lateral winter velocity variation generally shows a more
parabolic pattern, as does the summer velocity at profile C.
This is usually associated with more deformation-domin-
ated flow (Copland and others, 2009). Why the basal
sliding occurs only in the upstream area is not entirely
clear, but it probably results from increased driving stresses
caused by thicker ice, that is due to the regular avalanches
and rockfall from the steep slopes of the Langtang Lirung
Peak to the northwest. This difference in ice thickness may
also play a role in the contrasting velocities found laterally,
i.e. fast flow at the western ice boundary and limited flow
on the other side of the tongue.
Glacier ice flow is a complex process and is governed by

a wide range of processes and forces (Van der Veen, 2013).
Nevertheless, an improved understanding of the ice thick-
ness of Lirung Glacier and the local bedrock configuration
underneath the ice will greatly contribute to a better
understanding of the flow patterns found in this study.
Furthermore, it would provide the ability to estimate mass
turnover rates that are related to the flow velocities found.
Ice thickness measurements of the glacier were performed
�15 years ago using radio-echo sounding techniques
(Gades and others, 2000), but the quality, resolution,
specific locations and time period of the measurements
make them unsuitable in this case. A new survey of Lirung
Glacier using ground-penetrating radar would help to fill
some of the gaps raised by this study.

Value of UAV surveys
As the typical pixel size of spaceborne imagery that is
suitable for glacier velocity monitoring is often consider-
ably larger than the seasonal or even annual displacements
of Himalayan debris-covered glaciers, data that span
multiple years are generally required to extract meaningful
velocity signals (Kääb, 2005; Scherler and others, 2008;
Herman and others, 2011). This renders the quantification
of seasonal variations in surface height change and
velocities very difficult. Of course, this is even more of
an issue when flow velocities are relatively low, such as for
many debris-covered glaciers in the Himalaya (Quincey
and others, 2009b). Although high temporal resolution can
be achieved using in situ methods, they are unfeasible for
high spatial resolution surveys of large glacier surfaces, as
fieldwork on debris-covered glaciers is often difficult and
time-consuming.
The use of UAVs allows high-resolution continuous

values of the surface velocities of a single season to be
obtained. The techniques used here would also allow for
large-scale determination of interannual flow. This will
improve our understanding of the relationship with local
precipitation and temperature perturbations, which will
eventually lead to the ability to provide better predictions of
possible future changes in glacier volume under climate
change scenarios. A deepened knowledge of the smaller-
scale variations in flow, both spatially and temporally, also
helps to unravel the bigger picture of heterogeneous mass
wasting and distribution of surface features found on debris-
covered glaciers (Immerzeel and others, 2014).

CONCLUSIONS
In this study, UAVs are used to acquire images of debris-
covered Lirung Glacier for May and October 2013 and May
2014. The imagery is processed into orthomosaics and
DEMs using a SfM workflow and georeferenced using GCPs
and tie points. Displacements of the glacier surface are
derived for both summer and winter using an automated
frequency cross-correlation algorithm, which is tested for
sensitivity to input datasets and parameters. From the study
we draw the following conclusions.
Summer and winter surface velocities for Lirung Glacier

are �6 and 2.5ma–1, respectively, in the upstream part of
the tongue. In the bend and in the lower areas of the tongue
both seasons show comparable slow flows of �1.5–2ma–1

and stagnancy. The differences in surface velocity and flow
direction between the two seasons lead to the hypothesis
that the fast flow in summer is caused by basal-sliding-
dominated processes, while the lower velocities found in
winter are mainly due to plastic deformation. Transverse
velocity profiles over the glacier seem to confirm this
hypothesis. For an improved understanding of the spatial
surface velocity differences and flow patterns of Lirung
Glacier found in this study it is important learn more about
its ice thickness and bedrock configuration.
Frequency cross-correlation techniques applied to high-

resolution UAV imagery can determine surface velocities of a
debris-covered glacier. Displacements unrelated to ice flow
can largely be filtered out by the correlation method, and any
remaining noise can be removed using post-correlation
noise-reduction techniques. In comparison to a manual
digitization technique, both methods have similar accuracies
taking into account the associated errors. The continuous
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surface output that the correlator yields provides more detail,
however, and the method is less time-consuming.
It is found that using an orthomosaic as input for the

correlation outperforms the use of a hillshade or an edge-
detected DEM, in terms of irregularly distributed output
noise. The use of different settings for the correlation
algorithm does not alter surface velocities and flow
directions significantly. There are, however, subtle differ-
ences present and small window sizes give better perform-
ance in terms of SNR, the retention of detail and the overall
results in comparison with manual digitization. However,
displacements such as the melt of ice cliffs are not filtered
out; this requires the use of larger correlator windows which
can result in loss of fine-scale detail. Optimal settings for the
input resolution are found to be an initial window size of
256 px with a final window size of 64 px.
The use of UAV imagery and feature-tracking algorithms

allows determination of high-resolution seasonal surface
velocities, something not possible with most spaceborne
remote-sensing techniques. Our approach yields insights
into the smaller-scale temporal and spatial variations in
glacier flow, and improves our understanding of hetero-
geneous mass wasting and surface features found on debris-
covered glaciers.
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