Integration of Worldview-2 and Airborne Lidar Data for Tree Species Level Carbon Stock Mapping in Kayar Khola Watershed, Nepal (2015)

Please fill the following information to request the publication in hardcopy. We will get in touch with you shortly.

* are required.

Integration of WorldView-2 satellite image with small footprint airborne LiDAR data for estimation of tree carbon at species level has been investigated in tropical forests of Nepal. This research aims to quantify and map carbon stock for dominant tree species in Chitwan district of central Nepal. Object based image analysis and supervised nearest neighbor classification methods were deployed for tree canopy retrieval and species level classification respectively. Initially, six dominant tree species (Shorea robusta, Schima wallichii, Lagerstroemia parviflora, Terminalia tomentosa, Mallotus philippinensis and Semecarpus anacardium) were able to be identified and mapped through image classification. The result showed a 76% accuracy of segmentation and 1970.99 as best average separability. Tree canopy height model (CHM) was extracted based on LiDAR’s first and last return from an entire study area. On average, a significant correlation coefficient (r) between canopy projection area (CPA) and carbon; height and carbon; and CPA and height were obtained as 0.73, 0.76 and 0.63, respectively for correctly detected trees. Carbon stock model validation results showed regression models being able to explain up to 94%, 78%, 76%, 84% and 78% of variations in carbon estimation for the following tree species: S. robusta, L. parviflora, T. tomentosa, S. wallichii and others (combination of rest tree species).
Year: 2015
Language: English
In: International Journal of Applied Earth Observation and Geoinformation 38 (0): 280-291

Related links: