000031090 001__ 31090
000031090 041__ $$aEnglish
000031090 100__ $$aAyala, A.
000031090 245__ $$aModeling 2M Air Temperatures over Mountain Glaciers: Exploring the Influence of Katabatic Cooling and External Warming
000031090 260__ $$c2015
000031090 300__ $$a3139-3157
000031090 507__ $$aJoseph Michael Shea, ICIMOD staff, peerreviewed
000031090 520__ $$aAir temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and BÃhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.
000031090 653__ $$aGlaciers
000031090 653__ $$aCryosphere
000031090 653__ $$aSnow And Ice
000031090 653__ $$aBoundary Layer Processes
000031090 700__ $$aPellicciotti, F.
000031090 700__ $$aShea, J. M.
000031090 773__ $$pJournal of Geophysical Research: Atmospheres
000031090 773__ $$v120 (8)
000031090 773__ $$a10.1002/2015JD023137
000031090 8564_ $$uhttp://dx.doi.org/10.1002/2015JD023137$$yExternal link
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.pdf
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.ps.gz
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.png?subformat=icon$$xicon
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.png?subformat=icon-180$$xicon-180
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.png?subformat=icon-210$$xicon-210
000031090 8564_ $$uhttp://lib.icimod.org/record/31090/files/Ayala_et_al-2015-Journal_of_Geophysical_Research-_Atmospheres.png?subformat=icon-600$$xicon-600
000031090 980__ $$aARTICLE