2015
  • Non-ICIMOD publication

Share

859 Views
Generated with Avocode. icon 1 Mask color swatch
2 Downloads

Communicating the Uncertainty in Estimated Greenhouse Gas Emissions from Agriculture

  • Milne, A. E.
  • Glendining, M. J.
  • Lark, R. M.
  • Perryman, S. a. M.
  • Gordon, T.
  • Whitmore, A. P.
  • Summary

In an effort to mitigate anthropogenic effects on the global climate system, industrialised countries are required to quantify and report, for various economic sectors, the annual emissions of greenhouse gases from their several sources and the absorption of the same in different sinks. These estimates are uncertain, and this uncertainty must be communicated effectively, if government bodies, research scientists or members of the public are to draw sound conclusions. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from the inventory. We tested six methods of communication. These were: a verbal scale using the IPCC calibrated phrases such as ‘likely’ and ‘very unlikely’; probabilities that emissions are within a defined range of values; confidence intervals for the expected value; histograms; box plots; and shaded arrays that depict the probability density of the uncertain quantity. In a formal trial we used these methods to communicate uncertainty about four specific inferences about greenhouse gas emissions in the UK. Sixty four individuals who use results from the greenhouse gas inventory professionally participated in the trial, and we tested how effectively the uncertainty about these inferences was communicated by means of a questionnaire. Our results showed differences in the efficacy of the methods of communication, and interactions with the nature of the target audience. We found that, although the verbal scale was thought to be a good method of communication it did not convey enough information and was open to misinterpretation. Shaded arrays were similarly criticised for being open to misinterpretation, but proved to give the best impression of uncertainty when participants were asked to interpret results from the greenhouse gas inventory. Box plots were most favoured by our participants largely because they were particularly favoured by those who worked in research or had a stronger mathematical background. We propose a combination of methods should be used to convey uncertainty in emissions and that this combination should be tailored to the professional group.