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Abstract: Forests are a vital part of the ecological system. Forest fires are a serious issue that may
cause significant loss of life and infrastructure. Forest fires may occur due to human or man-made
climate effects. Numerous artificial intelligence-based strategies such as machine learning (ML) and
deep learning (DL) have helped researchers to predict forest fires. However, ML and DL strategies
pose some challenges such as large multidimensional data, communication lags, transmission latency,
lack of processing power, and privacy concerns. Federated Learning (FL) is a recent development
in ML that enables the collection and process of multidimensional, large volumes of data efficiently,
which has the potential to solve the aforementioned challenges. FL can also help in identifying the
trends based on the geographical locations that can help the authorities to respond faster to forest
fires. However, FL algorithms send and receive large amounts of weights of the client-side trained
models, and also it induces significant communication overhead. To overcome this issue, in this
paper, we propose a unified framework based on FL with a particle swarm-optimization algorithm
(PSO) that enables the authorities to respond faster to forest fires. The proposed PSO-enabled FL
framework is evaluated by using multidimensional forest fire image data from Kaggle. In comparison
to the state-of-the-art federated average model, the proposed model performed better in situations of
data imbalance, incurred lower communication costs, and thus proved to be more network efficient.
The results of the proposed framework have been validated and 94.47% prediction accuracy has been
recorded. These results obtained by the proposed framework can serve as a useful component in the
development of early warning systems for forest fires.

Keywords: Federated Learning; Federated Averaging; Particle Swarm Optimization; forest fires;
disaster management

1. Introduction

Over the last few years, more than 3 billion people have been affected by many natural
disasters such as landslides, tsunamis, earthquakes, forest fires, heat waves, cyclones,
floods, and landslides, as well as various pandemics. The world is now challenged by
many disasters, of which forest fires are more hazardous and cause great ecological and
economic damage. Forests are a significant component of the ecological system. They play
a crucial role by handing over a variety of resources such as minerals and materials that
are required in the manufacturing sector. The abundant trees in forests help in absorbing
carbon dioxide and releasing oxygen, which is a basic need for the survival of human
beings. Furthermore, forests are a natural habitat for several animals. Forests play a key
role in maintaining the ecological balance. The rich heritage of forests is majorly being
destroyed by forest fires. Forest fires, also referred to as bushfires or vegetation fires, occur
due to climatic changes which are caused by high emissions of greenhouse gases and global
warming. Figure 1 gives a clear picture of the death rate due to natural disasters in the
world, including forest fires.
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Figure 1. World death rate from natural disasters, 1990 to 2019 [1].

A number of forest fires occurred in recent times and one of the deadliest was the
Australian bushfire (2019–2020) which incurred damage to the extent of 18 million hectares
and 400 deaths [2]. A forest fire in the Indian state of Uttarakhand (2016) which lasted
for many days, resulted in a heavy loss for the forest department [2]. The problem of
heatwaves (1990 to present) [3] are on the rise in China and causing a negative impact
on social, environmental [4,5], ecosystem, and health factors. The early detection and
mitigation of forest fires have recently become a research hot spot for forest fire prevention
authorities across the globe. Authorities all around the world are trying to protect forests
from forest fires. They need to follow the steps of a forest fire management cycle in order to
be informed about an unanticipated threat as discussed below:

1.1. Stages of Forest Fire Management

In a fire crisis, relief activities must be well-planned and executed in order to minimize
the damage as much as possible. It is crucial to give timely, pertinent information to the
concerned authorities when dealing with forest fires. A framework that enables meaningful
and accurate communication is desperately needed to mitigate the problems that occur due
to a forest fire [6].

Designing, implementing, and calculating strategies, policies, and measures to pro-
mote and improve preparedness for a disaster, response, and recovery procedures are
known as disaster management. The disaster management cycle is a process that is fol-
lowed by governmental institutions, society, and NGOs to be prepared and alert when
a disaster occurs. As mentioned below, the fire executive plan involves the following
steps [7]:

• Disaster mitigation
• Disaster preparedness
• Disaster response
• Disaster recovery

Disaster mitigation is generally referred to as the measures that are taken to prevent
further adverse conditions that can happen after identifying the forest fire. This helps the
authorities to react promptly when a forest fire recurs. Disaster preparedness includes the
creation of emergency plans and early warning systems [8]. It serves as a link between
disaster management and disaster risk reduction. It aids authorities in averting some of
the forest fire’s negative effects and recognizes the potential for ongoing, unmitigated
risk. Disaster response is a group of actions taken in the wake of a disaster to determine
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needs, ease suffering, stop the fire’s spread and effects, and pave the way for recovery [9].
Disaster recovery frequently starts while emergency response efforts are still in full swing.
Communities affected by a forest fire are restored, developed, and revitalized as part of the
disaster recovery process [10]. Figure 2 gives the process of the Disaster management cycle.

DISASTER
MANAGEMENT

CYCLE
Preparedness

M
itigation

Response
Re
co
ve
ry

Efforts to decrease the
negative effects or risks
associated with hazards

Measures taken before a
crisis to accelerate

response and promote
readiness

Emergency measures
implemented to safeguard
people, property, and the

environment

After-action measures
done to restore and

resume regular
operations

Figure 2. Disaster Management Cycle.

Around the world, different government authorities, and NGOs have been leveraging
different methodologies to protect forests from fire. Currently, many kinds of sensors are
used to monitor forest fires. A ZigBee-based wireless sensor is one such example [11]. A
Deep Learning (DL) framework called FireNet uses separable and residual convolutional
blocks used to detect active fires [12]. An asynchronous FL model is proposed in [13],
which assists the edge nodes in smart remote sensing with a forest fire detection use case.
The majority of current forest fire prediction systems employ a modeling technique and
manually created features to make forecasts.

Recently several researchers proposed interesting solutions for the early prediction
of forest fires. Energy-efficient Internet of Things (IoT) and fog-cloud computing have
been used for forest fire prediction in [14]. In other interesting work a smart forest fire
forecasting strategy namely a learning-based forest fire prediction system (LBFFPS) has
been designed with the help of technologies such as DL, the IoT, and smart sensors to help
manage the environment efficiently [15]. The authors in [16] have used a Machine Learning
approach called Random Forest (RF) that maps the regional distribution of fire risk and
determines how climatic and human-caused factors affect the likelihood of a fire occurring.
Yolov5 and EfficientDet are used by the authors in [17] to extract the forest fire features and
prove to be more efficient than regular manual feature extraction.

Recently, there has been an increased interest in applying artificial intelligence (AI)
to aid disaster management [18]. ML is one such technology that has supplemented and
improved existing disaster response strategies [19]. ML can handle large and complex
datasets that are generated continuously when a forest fire occurs and they also assist in
response and recovery activities after a forest fire occurs.

However, there are a few challenges and open issues when ML-based algorithms are
used to deal with forest fires, such as:

• Cost of data collection: Network communication and storage costs for collecting and
managing large amounts of original data on the server are high.
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• Network Latency: The time taken for communication between the client and server in
ML is more, the response time is increased and which causes delays in response to
the disaster.

• Low computation capability: The processors in mobile devices do not have sufficient
computing capabilities for ML.

• Security threat: Collecting or storing private data increases the likelihood of data breaches.

These challenges lead to a great loss of human life, the economy, and nature even
before the authorities respond. FL is a recent technique that has the potential to solve the
aforementioned issues. However, FL takes more time in communication than computation.
Therefore, it is necessary to cut down on network communication time and increase
the speed of network transmission to increase the effectiveness of FL. Particle Swarm
Optimization (PSO) works effectively in contexts that are dynamic and heterogeneous, such
as Federated Learning (FL). As a result, we suggest a new Convolutional neural network
(CNN) model that incorporates FL and PSO. A PSO algorithm can set the basic parameters
of the models that are trained on the local data of the clients. In short, to optimize the FL
performance and make it feasible for reducing the latency in disaster response, we propose
a PSO-enabled FL approach to create an effective communication strategy. The proposed
PSO-enabled FL framework can help in coordinating responses to forest fires among the
numerous participants.

1.2. Key Contributions

The main contributions of this paper are summarized below:

• We propose a methodology that addresses the latency in communication. Our method
introduces a new paradigm of effective holistic integration of FL and PSO, bring-
ing the widely recognized advantages of swarm intelligence to distributed learning
applications.

• The experimental evaluations show that the proposed methodology outperforms
the conventional FL approaches. The proposed PSO-enabled FL has an accuracy
improvement.

• The findings from the extensive experimental analysis demonstrate that the proposed
PSO-enabled FL outperforms better than the benchmark techniques in terms of achiev-
ing higher testing accuracy.

1.3. Paper Organization

The rest of the paper is organized in the following way. Recent works in FL and PSO
are discussed in Section 2. The proposed methodology is briefed in Section 3. This is
followed by Section 4, which gives a complete understanding of the results. The paper is
finally concluded in Section 5.

2. Background and Related Work

In the following section, the literature survey on traditional ML approaches, FL, PSO,
and natural disaster analysis are discussed.

2.1. Traditional Machine Learning Approaches

AI is the branch of science that has been used to develop intelligent machines. AI has
emerged with many distinct approaches including ML, DL, neural networks (NN), and
other techniques that have been applied to forest fire prediction. ML algorithms can be
embedded with Wireless Sensor Networks (WSN) to prevent a false alarm [20]. The authors
in [12] use a decision tree approach to detect fire events. Furthermore, WSN was used
to detect forest fires in the initial stage, and furthermore to obtain accurate fire detection,
regression is used. The authors in [21] used a DL-based framework to detect active forest
fires using a methodology called Fire-Net. The combination of color-motion-shape features
and ML is proposed for the faster detection of disaster. In another work, the authors in [22]
proposed the CNN model to detect fire, which outperforms other existing methods such as
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smoke sensors that are installed in buildings. Unmanned Aerial Vehicles (UAV) are used
to constantly patrol over potentially threatened fire areas. AI benefits UAV to use vision
methods for the recognition and detection of smoke or fire based on the images. The authors
in [23] provide an innovative, low-cost, machine-learning approach for forest fire prediction
in Indonesia using remote sensing data. The study in [24] proposed a light-weighted CNN
model which uses the three-channel color images. The study in [25] predicts quality of soil
in greater depths and heterogeneous environments is evaluated using Cation exchange
capacity and Closer transect spacing is needed to improve areal prediction. The study
in [26] aims to predict topsoil and subsoil clay at the district scale.

2.2. Federated Learning

FL is considered the new dawn of AI. The notion of FL was initially introduced by
Google in 2016 [27]. It was first applied in the Google keyboard to understand the combined
data from different Android devices. FL has gained a lot of interest recently and has led
to successful attempts to develop learning-based applications across distributed devices.
FL permits distributed learning without the exchange of raw data thereby improving the
privacy [28] of the data by keeping them on the client side [29]. In addition to this, FL also
ensures the reduction of the communication cost that is incurred between the server and
the client [30]. Since the data at the client are not sent to the server for training purposes,
the latency in communication between the client and server is reduced. FL can also use vast
amounts of data on remote devices [31]. FL is implemented in scenarios where security [32]
and privacy are very important [33]. Figure 3 explains the framework of FL.

SERVER
Aggregation model

Local
Update

Local
Update

Local
Update

Local
Update

Server
Model

Server
Model

Server
Model

Server
Model

User 1 User 2 User 3 User 4

Figure 3. Federated Learning Architecture.

The following steps brief the working of FL:

1. The server creates a model based on the data available.
2. Sends a copy of the model to all the clients and the model is trained on each client

based on the local data.
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3. The models that are trained at clients are sent back to the server.
4. The models sent from each client are aggregated on the server side using aggregation

algorithms.
5. The server sends the new updates to the client and this process repeats till the optimal

model is created.

There are several FL services that perform step 4, such as FedSGD [30], Fedavg,
FedPer [34], FedMA [35] etc.

However, the conventional FL methods encounter numerous difficulties, including
limited capacity and resources in the IoT networks [36], high communication overhead
when transferring the local updates to the server in more extensive networks [37], and
occasionally being vulnerable to certain attacks such as Byzantine attacks [38,39].

2.3. Particle Swarm Optimization

The PSO algorithm is a bio-inspired algorithm that was first proposed by Kennedy
and Eberhart in 1995 [40]. The behavior of a school of fish or a flock of birds mainly inspires
this algorithm. It starts with a population of candidate solutions. Each particle moving
with a certain velocity is considered a solution for the specified problem. Each particle
in the group will update its velocity based on its and other colleagues’ flying experience.
Every particle in the group keeps track of its personal best (pb) and the global best (gb).
Amongst the chosen pb values, the gb is selected such that it is the optimal value among the
best (gb = maxi(pb)). The particle’s position is modified based on its present position, the
distance between pb and the present position, the present velocity, and the distance between
the gb and the present position. It is much different from other optimization algorithms
that it needs only one objective function and not anything else. The PSO algorithm has
many advantages when compared to other optimization techniques. It is easy and fast
in implementation, highly robust, more scalable, has early convergence, and uses simple
mathematical calculations [41]. The PSO method aims at optimizing a problem iteratively.
Every particle computes the speed to move on to the next step using Equation (1).

Sa
i = α · Sa−1

i + d1 · rd1 · (pb− Sia−1) + d2 · rd2 · (gb− Sa−1
i ) (1)

In Equation (1), inertia weight is represented by the constant α, the acceleration
constant for pb is represented by d1, and the acceleration constant for gb is represented by
d2. The values of rd1 and rd2 are any random value between 0 and 1.

2.4. Natural Disaster Analysis

Disasters impact many people and countries in so many ways economically, and
socially. The researchers, professionals, and policymakers should assess the potential
impacts and how to manage the situations when disasters arise [42]. Social media has
a growing importance in collecting and analyzing multimedia data related to natural
disasters. The analysis of multimedia content has gained attention these days [43]. Satellite
imagery also has been supporting the collection of image data related to natural disasters.
Over the years many solutions have been found after analyzing natural disasters. The
authors in [44] presented a detailed survey on the analysis and detection of disasters from
the data collected from social media. The authors in [45] majorly summarize the seven
aspects of how to identify and mitigate disasters. Moreover, the scientific challenges in
handling disasters are discussed. Among all the natural disasters forest fires are very
dangerous and when not detected very early can spread across a large area and cause major
damage to wildlife and the country’s economic status.

2.5. Related Work

Various studies are prevalent on improving the performance of FL. FL has numerous
issues due to the unstable network, crashing and shifting of nodes, and increased latency
when nodes increase. Sometimes the volume of data also matters as the network trans-
mission between client and server is more. Recently, the studies in [46–48] have proposed
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techniques to handle the limited bandwidth bottleneck which is accomplished by joint
device selection and beamforming design.

PSO has been used to address challenging optimization issues without relying on the
convexity and differentiable assumptions, leveraging the swarm biological intelligence
of animal flocks [49,50]. There have been a few recent attempts to apply PSO concepts to
enhance ML performance. CNNs are optimized using PSO in the centralized setup for
improved recognition accuracy and image classification [51–53]. Many works have been
found on the integration of FL and PSO to increase the performance of FL [54,55]. FL is
used in [54] for learning, whereas PSO is only used to look for the optimal hyperparameters.
For the idealized distributed settings with i.i.d. data and no attacks, which cannot be
guaranteed for edge IoT systems [56], PSO and FL are integrated [55] in a simplistic
manner. The majority of earlier works emphasized client communication and broad
optimization to boost the performance of FL. However, PSO has never been used to
improve the performance of global models via network communication. Table 1 gives a
complete summary of the research works on the existing systems.

Table 1. Research Works on the Existing Systems.

Ref. No Methods Advantages Research Challenges

[35] Federated matched
averaging (FedMA)
algorithm

FedMA builds the shared global
model layer by layer based on
the feature extraction signatures
of hidden elements

No Privacy protection
measures, data bias

[31] Federated Opti-
mization

Mobile Devices are built as
nodes for computation

Lack of dataset, no theo-
retical justification

[41] FL and Red Fox Op-
timization

The worker and the server oper-
ation is combined as a small op-
eration

Parameters are chosen
randomly and the execu-
tion time is extended

[57] Aqua-Fel PSO Detects the pollution in water
and also estimates the quality of
the water

Multiple water quality pa-
rameter models are not es-
timated

[58] PSO + FL = PAASO The function that is needed to be
optimized by agents can be un-
derstood

Does not show good
performance in heteroge-
neous environment

[59] PSO and FL PSO optimizes the eight of the
clients that are sent to the aggre-
gation

FL models are not stable
and thus can be impro-
vised further

[60] FPSO-FS algorithm PSO can search for optimal pri-
vate subset and FL solves the pri-
vacy issues in multi-participants
involvement

Execution time is very
high

This Paper PSO and FL This unified framework will help
in early detection of forest fires.

Does not analyze other
nature-inspired algo-
rithms

PSO is generally used to select an appropriate client model in every round of the global
model update. PSO optimizes the weight coefficients of the clients that are involved in the
aggregation [59]. The combination of PSO and FL helps us to understand the function to be
optimized by a set of agents [58]. A water-monitoring system is proposed by the authors
in [57], which has two phases, namely exploration and exploitation, using autonomous
surface vehicles which are equipped with water quality sensors which are based on PSO
and FL techniques. In other work, the authors in [60] fulfilled feature selection and privacy
requirements with the combination of PSO and FL.

From the above literature survey, it is found out that PSO can solve the challenges
of the FL. To this effect, we have used PSO-enabled FL to predict forest fires by training
local data models based on ML on-site and then transferring those models to the central
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server where a global data model is developed by aggregating them. To predict forest fires,
a CNN classifier has been trained on a server data model. The PSO-enabled FL framework
for early forest fire prediction is presented in this research effort for the first time, to the
best of our knowledge.

3. Research Methodology and Research Questions

There are three stages to this research. Phase one begins with a thorough assessment
of the prior literature on the areas of ML, FL, PSO, and fire disaster management. Journal
publications, conference proceedings, and news stories all contribute to the prior research.
Phase two provides a detailed experimental investigation of the proposed methodology for
predicting forest fires. In the last phase, the findings that were gathered from the in-depth
experimental analysis in the second phase are discussed. The research’s final conclusions
are based on the data gathered and the discussion of various issues and potential solutions
for enhancing the fire management system. To reach the research aim, the following
research questions are selected.

How can PSO-enabled FL help in detecting forest fires?
Why only PSO is used to optimize FL and why not other bio-inspired algorithms?
How better is the proposed framework performing than other traditional approaches?

4. Proposed Methodology

The main objective of our work is to create a model that detects forest fires as early as
possible and stops the loss that occurs due to them.

The accuracy of the CNN model is boosted because of more layers in the model. The
number of variables that need training rises as the layers go deeper. When a model that has
been trained on a client is transferred to the server in a normal FL system, network latency
increases. So, using the characteristics of PSO to send the trained model regardless of size,
we propose the PSO-enabled FL technique, which sends the best score (either accuracy
or loss) to the server. We will analyze the standard FedAvg algorithm first, before the
proposed methodology. FL makes use of the flow as in Algorithm 1. In line 4, the client
which is taking part in the round is chosen. Through lines 5 and 6, it is possible to learn
how to receive weights from different clients. Line 7 is used for weight average calculation.
The global weights are then determined. After aggregation, the global model is sent to the
client from the server and continues the procedure till a proper model is achieved. Figure 4
discusses the process of FedAvg.

Algorithm 1 Federated Average algorithm

1: function SERVERAGGREGATION(ηN)
2: initialise w0
3: for every iteration a = 1, 2, . . . do
4: Sa ← (clients are chosen randomly from set of max(CK, 1))
5: for every client tESa in parallel do
6: wk

a+1 ← UPDATECLIENT(k, wa)

7: wa+1 ← average of the weights that are collected wk
a+1 of Sa clients

8: function UPDATECLIENT(k, w)
9: Carry out the process of learning on the client t that has weight w till the client

arrives E epoch
10: w← (revised weight following learning)
11: return w to the server
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Figure 4. Federated Averaging Process.

The proposed model will receive the model weights only from the client that has
provided the best weight and restricts other clients from sending their model weights to
the server. The process is shown in Figure 5. The best score is chosen based on the lowest
loss value that is derived after client training. Two variables, namely pb and gb, are needed
to identify the best model in the PSO-enabled FL. Variable V is used to update the model in
the proposed framework.

The weights in CNN were updated using Equation (1), the weight update for PSO-
enabled FL can be represented as follows:

Sa
i = α · Sa−1

i + d1 · rd1 · (pb− Sa−1
i ) + d2 · rd2 · (gb− Sa−1

i )

wa
i = wa−1

i + Sa
(2)

According to Equation (2), for each layer of weight w, S in CNN has a value. S is
added to the previous step weight wa−1 to obtain the current step weight wa. As already
discussed in Equation (1), inertia weight is represented by the constant α, the acceleration
constant for pb is represented by d1, and the acceleration constant for gb is represented by
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d2. The values of rd1 and rd2 are any random value between 0 and 1. Table 2 refers the
symbols used in the paper.

Client 1 Client 2 Client k.....
Client gid

request

gb←min(pb1,pb2,…..,pbk) 
gbid←index of the client 

with gb 
wt+1←wt

gbid

wt+1

pbt
1 pbt

2

wt+1

pbtk

wt+1
wt

gbid

Figure 5. PSO-enabled Federated Learning.

The conceptual algorithm of PSO-enabled FL is presented in Algorithm 2. Algorithm 2
is the extension of Algorithm 1 by applying PSO. The function, ServerAggregation will
receive only the pb values but not the weight w value from the client on Line 5. Lines
6–8 implement the search for the client with the lowest pb value among the data gathered.
CNN then uses the UpdateClient function to apply the PSO. Variable S, which was used in
the previous phase, the user’s ideal wpb value, and the wgb value sent to the server are all
calculated in lines 13–14. The process is repeated for each layer weight. In Line 15, variable
V is summed up with w fetched from the previous round that is used to calculate the w
that is to be used in the present round. As many times as the client epoch E, lines 16-18 are
repeated. Function GetAptModel (Lines 20–23) requests the client model that has the ideal
score on the server. Figure 6 gives the block diagram of PSO-enabled FL.

Table 2. Symbols used in the paper.

Symbols Description

N number of customers

δ Learning rate

w0 weights of model
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Algorithm 2 PSO-enabled FL algorithm

1: function SERVERAGGREGATION(ηN)
2: initialize w0, gbid, pb, gb,
3: for every iteration a = 1, 2, . . . do
4: for every parallel client t do
5: pb← UPDATECLIENT(t, wgbid

t )
6: if gb > pb then
7: gb← pb
8: gbid← t
9: wa+1 ← GETAPTMODEL(gbid)

10: function UPDATECLIENT(t, wgbid
a )

11: initialize S, w,wpb, α, d1, d2
12: β← (divide pt into batches each of size B)
13: for every layer with weight r = 1, 2, . . . do
14: Sr ← α.Sr + dr.rd.(wpb − Sr) + d2.rd.(wgb

a − Sr)

15: w← w + S
16: for every epoch of client i from 1 to G do
17: for batch b ∈ B do
18: w← w− η(w; b)
19: return pb to the server
20: function GETAPTMODEL(gid)
21: send a request to the client (gbid)
22: receive w from Client
23: return w to the server

Input Images

Convolutional
Neural

Networks 
(CNN)

Inspired by behavior of flock
of birds  and school of fish

PSO-enabled Federated
Learning

Figure 6. Block Diagram of PSO-enabled Federated Learning.

5. Experiments and Results

This section discusses the experimental analysis and discussions and future directions.
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5.1. Experimental Setup

The experiments were carried out on a laptop with an Intel(R) Core(TM) i5-6200U
CPU, 250 GB memory, and two NVIDIA GeForce RTX 2070 Super GPUs with 4 GB DRAM
each. We used Keras version 2.4.3 and TensorFlow version 2.3.0 for simulating the FL. The
proposed work enhances the communication performance of FL. A PSO algorithm is used
to update the weights that are sent back from the client to the server.

5.2. Dataset Collection and Preparation

This work uses an image dataset from Kaggle https://www.kaggle.com/datasets/
alik05/forest-fire-dataset (accessed on 20 November 2022). This dataset contains a variety
of images from wildfires and bushfires. In total, the dataset has 1900 images related to the
forest fire. Figure 7 depicts the sample images from the forest fire dataset.

Figure 7. Sample images from forest fire dataset. The images are of two classes namely fire and
no-fire.

5.2.1. Dataset Pre-Processing

The dataset contains images from a variety of view angles. This kind of dataset can
tune a model in distinguishing the fire and no-fire images. The dataset gives the model, the
ability to identify a forest fire in two separate ways:

(1) by identifying fire flames or
(2) by detecting smoke from fire flames.

At this point, we have only taken into account these criteria and have evenly divided
the number of fire (1) and no-fire (0) images in the dataset. The following categories apply
to the data:

• Fire (1): Pictures of forest and mountain fires with flames and/or smoke.

https://www.kaggle.com/datasets/alik05/forest-fire-dataset
https://www.kaggle.com/datasets/alik05/forest-fire-dataset
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• No-Fire (0): Images of the forest and mountains are taken from various angles but
without any fire or smoke.

The dataset has to be cleaned up for better training and better results. As a result, we
applied the required pre-processing, including trimming the images that were relevant to
the specified issue, such as an image showing fire in a forest or a mountain. Following
cropping, we scaled each image to a constant resolution of 150 × 150 pixels. The model was
able to easily learn about forest fires because of these pre-processing procedures.

5.2.2. Dataset Partitioning

The dataset is distributed equally, with 950 photos belonging to the Fire version and
the remaining 950 to the No-Fire version. We used 80% of the data for training and 20% for
testing. Table 3 shows the data partitioning details.

Table 3. Dataset Division.

Dataset Training Testing Total

Fire 760 190 950

No-fire 760 190 950

Total 1520 380 1900

5.3. CNN

CNN is a method for automatically learning different classification models using
neural network backpropagation. Currently, deep neural networks are the predominant
form. CNNs have the ability to successfully reduce network complexity, minimize the
number of training parameters, and produce models that are somewhat invariant to trans-
lation, distortion, and scaling thanks to their local connection, weight sharing, and pooling
operations. It is straightforward and fault-tolerant. In our experiment we used a three-layer
CNN model to conduct the experiments (the first layer with 32 channels, the second layer
with 64, and the third layer with 128 channels, each followed by 2 × 2 max pooling). Table 4
shows the layers of the CNN model.

Table 4. Parameters settings for CNN.

Layer Shape

Layer 1 Conv2D(32, 3, 3) ReLU, MaxPool2D(2, 2)

Layer 2 Conv2D(64, 3, 3) ReLU, MaxPool2D(2, 2)

Layer 3 Conv2D(128, 3, 3) ReLU, MaxPool2D(2, 2)

Layer 4 Dense(512) ReLU

Layer 5 Dense(2) Sigmoid

5.3.1. Pooling

In order to further reduce the dimension of the feature image obtained from the
convolution layer, the pooling layer, also known as the downsampling layer, replaces a
piece of the image with a value. Popular strategies include maximum pooling and average
pooling. In our proposed work, we used maximum pooling.

5.3.2. Activation Functions

Activation functions increase the nonlinearity of a neural network and are crucial
for the optimization process. We employed ReLU and sigmoid activation functions in
our suggested methodology. The ReLU does not saturate and is simple to compute. The
ReLU discovers the intricate details of the data and returns the input and the element-wise
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maximum 0. The sigmoid function, often known as the logistic function, provides the
output prediction probability with a value ranging from 0 to 1.

5.3.3. Optimizer

We used an adaptive moment estimation (Adam) optimizer and the model was trained
using a binary cross-entropy loss function. used empirical testing to identify the ideal
values for each hyper-parameter. Four different values between 0.1 and 1 were selected
for the testing with learning rate. In a similar manner to this, we assessed the model using
batch size 32.

5.4. Experimental Results

In this section, an overview of the experiments conducted to assess and evaluate the
PSO-enabled FL architecture is presented. The performance of PSO-enabled FL on the forest
fire dataset is examined in the next section, along with a comparison with the conventional
FL algorithm.

5.4.1. Performance of the Proposed Approach

The model’s training and performance evaluation is assessed in this subsection. The
server model is trained first using the forest fire dataset samples. Then, clients are allocated
the server model. In general, we use 10 clients to test the performance of the model. We
selected the learning rate value as 0.0025. For each client device in the dataset, observations
are chosen at random. The successful performance of the model against each round is
depicted in Figure 8.

PSO-enabled FL showed a higher accuracy (94.47%) than FedAvg in all cases for 10
epochs. The number of clients that are to be used for training in FedAvg is restricted
using a constant C. C is a constant between 0 and 1. In every round of communication, the
experiment was conducted by choosing a client as high as C from the remaining clients. The
accuracy is higher when the value of C is higher, but the data transmitted between the server
and client increases accordingly. However, in the case of PSO-enabled FL, convergence
occurs in fewer epochs.
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Figure 8. Accuracy results of PSO-enabled FL and FedAvg.
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5.4.2. Performance Comparison with Other Models

This section compares the performance of the suggested method on our dataset of
forest fires to that of other models, including FedAvg and Genetic Clustered Federated
Learning (Genetic CFL) [61]. The Genetic CFL showed the lowest accuracy of the three
models. The accuracy results for the three models are presented in Figure 9. The graphs are
designed based on the test accuracy.

Figure 9. Comparision between the other three models.

This work also compares the performance of the proposed framework with the forest
fire dataset with the outcomes of previous works which use their local datasets. We used
our earlier research and classification works from 2020 and 2021 as a point of reference.
The comparative analysis of the methodologies is shown in Table 5. In comparison to the
earlier methods, our method correctly detected 94.47% of the forest fires in our dataset. The
proposed approach to the forest fire dataset shows superiority over the other methods.

Table 5. Performance comparison of the proposed framework with previous fire detection methods.

Work Accuracy Dataset Method

Proposed work 94.47% Forest-Fire Dataset FL and PSO

Sousa et al. [62] 93.6% open-source
dataset Transfer Learning

Govil et al. [63] 91% Cal Fire Dataset Deep Learning

Sun et al. [64] 94.1% Random Dataset Multi-convolution kernels

Tang et al. [65] 92% Random Dataset Deep Learning

Lin, Chen, Li, Yu, Jia,
Zhang and Liang [66] 54% FengYun-2G S-

VISSR data Contextual based

5.5. Analysis and Discussion

With the findings depicted in the earlier subsections, the suggested model shows the
potential and higher performance of the method when we have tried it with the forest fire
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image dataset. To evaluate the performance of the proposed PSO enabled FL, we have
compared the results obtained with recent state-of-the-art. The authors in [62] proposed
a wildfire prediction model that uses transfer learning. the author used an Inceptionv3
model to classify the fire and not fire data. Wildfire detection using terrestrial cameras was
suggested by Govil et al. in [63]. For the purpose of detecting wildfires, their suggested
technique utilized the Inceptionv3 model-based classification of the smoke and non-smoke
images. The authors in [64] used a CNN model for the classification of smoke in forest
fires. In [65], the authors used deep learning models such as the ForestResNet method and
the ResNet50 model for fire classification. The authors in [66] used sensor data from the
Visible Infrared Imaging Radiometer Suite (VIIRS) to study the detection of active fires.
The aforementioned methods for classifying forest fires have proven effective in resolving
the categorization issue. The biggest limitation, and a major barrier to addressing the
detection of forest fires, continues to be the forest fire dataset constraint and decrease in the
frequency of false alerts while also increasing the accuracy of prediction. Moreover, the
above mentioned works use ML and DL algorithms where there is a need to send the data
from base locations to the central server which incurs a lot of time delay in responding to
the forest fires. To address the aforementioned problems, we provide a PSO-enabled forest
fire detection approach for early warning to prevent significant disasters.

PSO uses a computational method that will optimize the problem iteratively by
improving the candidate solution related to the weights of the FL model. PSO enables
the optimization of FL by sending the best weights to the server for aggregation. Our
proposed methodology, PSO-enabled FL performance is much better than the traditional
FL approaches. For the forest fire dataset, our methodology is more efficient. Furthermore,
it proves that it is flexible in optimizing the hyper-parameters in FL, thereby ensuring
faster response to the disaster. The other techniques need a lot of effort to optimize the
hyper-parameters. Our mechanism ensures that the FL performance can be increased by
optimizing the weights of the client model sent to the server.

6. Conclusions and Future Directions

In this article, the PSO-enabled FL technique has been applied for forest fire prediction
that allowed the clients at different locations to collectively learn a shared prediction model
without transferring the training data from their origin. Forest fires create disturbances to
the natural resources and environment and ecological system. Additionally, accurate and
effective classification of forest fire imagery against no-fire is necessary for a reliable forest
fire detection system. We used a forest fire dataset for the forest fire binary challenge. There
are around 1900 multiple-colored images of which 950 belong to fire and the other 950
belong to no-fire. We have also explored the CNN algorithm for classifying forest fires. We
assessed the efficiency of the FedAvg and our proposed PSO-enabled FL algorithms. The
simulation results showed that the suggested approach outperformed other algorithms,
obtaining a prediction accuracy of 94.47%. Overall, the performance of the suggested
method on the Forest fire dataset indicated good results for classifying forest fires. As
part of future work, we intend to test the proposed approach with other state-of-the-art
nature-inspired algorithms such as the Firefly algorithm, Whale optimization, and Artificial
Bee colony optimization to improve the FL algorithm’s effectiveness in spotting disasters.

Author Contributions: Conceptualization, Y.S.; Data curation, Y.S. and T.R.G.; Formal analysis,
Y.S.; Methodology, Y.S.; Resources, T.R.G.; Software, Y.S.; Supervision, T.R.G.; Validation, T.R.G.;
Visualization, T.R.G.; Writing—original draft, Y.S. and T.R.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sustainability 2023, 15, 964 17 of 19

Data Availability Statement: The Training data samples of the images are collected from https://www.
kaggle.com/datasets/alik05/forest-fire-dataset (accessed on 20 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FL Federated Learning
ML Machine Learning
IoT Internet of Things
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