Plastic film technology, sometimes called plastic mulching, is an important breakthrough that can transform traditional agriculture into modern agriculture by helping to circumvent many of the limitations of temperature and moisture. Plastic film is used to cover the surface of the soil in order to increase the temperature, to retain moisture, and to promote the germination of seeds.

Agricultural production by traditional methods is constrained by extremes in temperature and by extremes in the availability of water; freezing temperatures as well as droughts and waterlogging have long daunted farmers. When plastic film is used on the soil, the solar energy absorbed by the soil during the day is retained at night since the plastic film prevents water from evaporating. Higher night time temperatures and higher levels of moisture in the ground promote active micro-organisms, which diminish the need for fertilizer and improve the physical properties of the soil.

Plastic film can be used in one of two ways. In the first method, the plastic film is spread on ridges of soil, the plastic is perforated at regular intervals, and the seedlings are planted through these openings. In the other method, seeds are planted on the ridges as in the traditional method, and when the seedlings have grown to a reasonable size, the ridge is covered by a plastic film and holes are cut at the position of the seedlings to allow them to pass through the film. Depending on the condition of the film after the crops are harvested, the covered ridges can be used to grow another crop.

Experiments at ICIMOD show that the use of plastic film can, on average, double the crop yield as compared to traditional methods. Previous studies by Lu Rongsen (1994) showed that the plastic film method can increase chilli production by 74%, tomato production by 52%, and the production of garden peas by 31%.
Classification

Land use problems
Farmers have traditionally used mulching to retain moisture in the soil and to help plants withstand ground frost. Mulching is useful but has many limitations. Recently, plastic film technology has been successfully introduced to help retain moisture in the soil and to promote seed germination. Since moisture is retained, the temperature of the soil does not drop as low as it would otherwise; this accelerates the growth and the development of both the roots and the whole plant, resulting in good crops and high yields.

<table>
<thead>
<tr>
<th>Land use</th>
<th>Climate</th>
<th>Degradation</th>
<th>Conservation measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual crop</td>
<td>Subhumid/temperate</td>
<td>Water degradation: aridification/soil moisture problems</td>
<td>Management: Conservation of soil moisture and weed control</td>
</tr>
</tbody>
</table>

Stage of intervention
- Prevention
- Mitigation/reduction
- Rehabilitation

Technical function/impact
Main:
- Increases the temperature of the soil
- Retains soil moisture
- Reduces soil erosion
- Promotes seed germination and emergence

Secondary:
- Accelerates the growth and development of roots and plants in areas where the temperature is low during winter
- Hastens maturation of crops
- Increases yield and promotes good quality crops

Environment

Natural environment
- Average annual rainfall (mm)
- Altitude (masl)
- Landform
- Slope (%)
- Soil depth (cm)
- Growing season(s): two
- Soil texture: medium loam
- Soil fertility: medium
- Topsoil organic matter: high (>3%)
- Soil water storage capacity: medium
- Ground water table: <5 m
- Availability of surface water: good
- Water quality: good for drinking and agricultural use
- Tolerant of climatic extremes: plants grown using plastic film technology can tolerate long spells of low temperature in winter, as well as frost and snowfall
- If sensitive, what modifications were made/are possible: none

Human environment
- Crop land per household (ha)
- Land user: for demonstration and experiment
- Population density: >2 persons per km²
- Land ownership: government
- Land/water use rights: community/individual
- Relative level of wealth: neighbouring communities are poor
- Importance of off-farm income: >50% of all households around the demonstration site have off-farm income
- Access to services and infrastructure: labour available; road access used to transport crops
- Market orientation: mixed subsistence and commercial in the vicinity of the demonstration site
- Mechanization: manual and animal traction
- Number of livestock: in the vicinity of the demonstration site poor households may have a few goats whereas wealthier farmers often own several cattle
- Purpose of forest/woodland use: fodder, fuelwood
- Types of other land: scrubland
- Level of technical knowledge required: medium, some training required
The diagram shows a cross-section of a ridge planted using plastic film technology. The plants grow through holes punched in the plastic. The plastic helps to retain moisture in the soil and, in so doing, also helps to increase the soil temperature. Weeds trapped below the plastic are inhibited from interfering with the crop. The ridges (or beds) are typically 20 m long, 1 m wide and spaced 1 m apart (for access); they are usually 10–20 cm high. The distances shown in the diagram are averages for crops such as chilies where the row-to-row distance is 50–70 cm and the plant-to-plant distance is 40–50 cm. These distances vary according to the crop.

(AK Thaku)

Implementation activities, inputs and costs

Establishment activities
The plot of land to be planted is prepared by first fertilizing it with a mixture of soil, compost, and/or farmyard manure. The soil is gathered into parallel ridges, typically 20 m long, 1 m wide, and 10–20 cm high; the distance between two ridges is usually 40–50 cm. For many crops the seedlings are spaced 50–70 cm apart.

Method #1 Plastic film (approx. thickness 0.014–0.003 mm) is used to cover the ridges and anchored into the ground. Round holes are punched in the film at regular intervals. Some soil is excavated through the holes and the seedlings are planted through the holes and thoroughly watered. The holes in the plastic are sealed using soil.

Method #2 Seeds are sown on the ridges and seedlings are allowed to develop. The ridge is covered in plastic film and the film is anchored. Holes are punched into the plastic at the position of the seedlings so that they pass through.

For either method, when the crops are harvested all residue should be removed. Depending on local conditions and on whether the plastic film is still viable, the plastic covered ridges can be reused to grow another crop without replacing the film.

Establishment inputs and costs per ha

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Cost (USD)</th>
<th>% met by land user</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labour (80 person days)</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Spade, seacateurs</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Plastic film (48 kg/ha)</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Agricultural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Seedlings/compost</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>668</td>
<td>0%</td>
</tr>
</tbody>
</table>

Remarks:
- All costs and amounts are rough estimates by the technicians and authors. Exchange rate USD 1 = NPR 72 in June 2011.
- This was a demonstration project conducted by ICIMOD.
Impacts of the technology

Production and socioeconomic benefits
- Increased crop yield in areas with a long winter season
- Reduced soil erosion and nutrient loss
- Greater farm income; less time is spent weeding

Socio-cultural benefits
- Improved understanding of how to maintain soil fertility, how to conserve water, and why soil erodes

Ecological benefits
- Reduced soil erosion
- Increased moisture in the soil
- Increased soil temperature
- Weeds are controlled

Off-site benefit
- Downstream farmers benefit because soil is conserved and runoff is reduced.

Contribution to human wellbeing/livelihood
- Improved crops and higher yields benefit the entire community because more food is available and the harvest brings in cash income.

Production and socioeconomic disadvantages
- None

Socio-cultural disadvantages
- None

Ecological disadvantages
- The discarded plastic is not biodegradable.

Off-site disadvantages
- If farmers do not dispose of old plastic film responsibly it can become a nuisance even far from where it was originally used.

Benefits/costs according to the land user

The above example shows that the establishment and maintenance cost for 1 ha of land is USD 798. Using plastic film technology this 1 ha of land yielded USD 1500 worth of crops.

<table>
<thead>
<tr>
<th>Benefits compared with costs</th>
<th>short-term</th>
<th>long-term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishment</td>
<td>positive</td>
<td>very positive</td>
</tr>
<tr>
<td>Maintenance/recurrent</td>
<td>very positive</td>
<td>very positive</td>
</tr>
</tbody>
</table>

Acceptance/adoptions:

This demonstration of plastic film technology was used mainly to show that it is viable both in the mid-hills and at higher elevations where temperatures can be very low during the winter season. Plastic film technology can be used to cultivate high-value horticultural crops such as vegetables, strawberries, and melons. In China, it has been successfully used to cultivate more than 80 species (Lu Rongsen 1994).

Driver for adoption:

Improved income for farmers and less time is spent weeding. Greater awareness among farmers is being spread through participatory research and development in rural areas.

Constraints

Plastic film is not always available in rural areas

Concluding statements

Strengths and how to sustain/improve

Plastic film technology can increase the yield of some crops by as much as 100% as compared to conventional farming. Since this technology is still relatively new, it will be necessary to continue sharing experiences and to promote awareness.

Plastic film technology can be used to grow crops in hilly areas where the long winter season is usually too cold to support crops. Need to create greater awareness of the benefits of using plastic film technology in mountain areas.

Weaknesses and how to overcome

As farmers begin to use plastic film technology more plastic is being discarded in rural areas. Plastic film needs to be retrieved and recycled. In China it has been shown that this is possible.

Discarded plastic film can pollute agricultural lands. Farmers need to be made aware of hazards and encouraged to form networks for collection and recycling the used plastic.