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Comparative analysis of the earthquake disaster risk of
cities in Eastern China based on lethal levels – a case
study of Yancheng City, Suqian City and Guangzhou City

Xia Chaoxua,b, Nie Gaozhonga,b, Li Huayuea,b,c, Fan Xiweia,b, Yang Ruia,b and
Zeng Xuna,b

aKey Laboratory of Seismic and Volcanic Hazards, China Earthquake Administration, Beijing, China;
bInstitute of Geology, China Earthquake Administration, Beijing, China; cChina Earthquake Networks
Center, Beijing, China

ABSTRACT
Earthquake disaster risk analyses provide significant scientific
guidance for reducing earthquake disaster losses etc. The current
commonly used method is based on the vulnerability of different
types of buildings to evaluate, and may ignore the difference
between the seismic resistance of the same type of buildings in
different areas. The lethal level considers a series of reasons such
as different types of buildings, resulting in different capacities for
casualties, the lethal levels of the cities in the same subregion are
considerably different and exhibit obvious distribution characteris-
tics. In Yancheng and Suqian, the lethal levels in urban areas are
lower than those in rural areas, but the lethal levels in
Guangzhou show the opposite trend (the lethal levels are higher
in urban areas than in other towns and rural areas). The average
lethal level in Guangzhou is 0.3856, that in Suqian is 0.5844, and
that in Yancheng is 0.5912. This study based on the lethal levels,
conduct a comparative analysis of the earthquake disaster risk of
cities throughout eastern China, and a map of the earthquake dis-
aster risk in each city is obtained. The overall lethal level and risk
in Guangzhou is much lower than those in Yancheng and Suqian.
The main influencing factors in the different cities also diverge.
One reason for the lower lethal levels and risk in Guangzhou is
that most of the brick-concrete structures are equipped with ring
beams and structural columns; conversely, Yancheng and Suqian
exhibit higher lethal levels and risk because the brick-concrete
structures have ring beams but no structural columns. These
maps provide a technical reference and solid scientific and
technological support for further earthquake disaster risk analyses
and for disaster prevention, mitigation and disaster relief plan-
ning, and this method improves the accuracy of rapid postearth-
quake assessment.

Abbreviation: PSHA: probabilistic seismic hazard assessment;
DSHA: deterministic seismic hazard assessment; ANNs: Artificial
Neural Networks; FL: Fuzzy Logic; ML: Machine Learning; MLP:
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Multi-Layer Perceptron; Type-2 FL: Type-2 fuzzy logic system; RCa
and RCb: Two classifications of Reinforced concrete structure; Ba:
Fortified Brick-concrete structure; Bb: Unfortified Brick-concrete
structure; CLactual: the actual lethal level of a certain type of
building; CLmax and CLmin: the upper and lower limits of the
lethal level interval range; CLall: the lethal level of the region
based on the buildings; CLtown: the overall lethal level of the
town; CLtownship: the lethal level of the township;
CLcountryside-i: the lethal level of the i-th administrative village;
R: the earthquake disaster risk; H: the earthquake hazard (related
to factors such as geological parameters, ground motion parame-
ters and active faults); V: the building vulnerability, and E is the
exposed population (the proportion of the population exposed to
an earthquake disaster, that is, the number of permanent resi-
dents in the study area); LL: the lethal level of the area

Introduction

Being prone to earthquakes throughout the nation, China suffers from potential seis-
mic risks everywhere. Statistics show that approximately 95% of all casualties in
earthquakes were caused by the destruction of buildings (Sun and Zhang 2017).
However, due to differences in the natural conditions, economic development,
resource distribution, and seismic fortification in different regions, buildings are obvi-
ously diverse and have significantly variable levels of seismic resistance. This disparity
is responsible for the difference in disaster losses between the western and eastern
earthquake-prone areas and thus cannot be ignored.

Therefore, it is possible to identify the earthquake resistance of an area based on
the attributes of the buildings, geography, geomorphological landforms, and traffic
environment in that region. In particular, the current earthquake resistances of build-
ings in different regions are particularly important for establishing earthquake preven-
tion and mitigation strategies, understanding the threat of earthquake disasters,
preparing for pre-earthquake emergencies, and carrying out targeted measures.
Acquiring such information also makes it possible to quickly grasp the earthquake
risk situation during an earthquake and therefore take targeted emergency
countermeasures.

The risk is the expected losses of hazard and vulnerability, among them, the haz-
ard is a potential threat to a particular place, the vulnerability is the conditions deter-
mined by various factors that can increase the susceptibility of any community to the
impact of the hazard, and in literature, there are many models and tools have been
widely employed for seismic hazard and risk assessment, such as United States
Geological Survey (USGS) national seismic hazard models, European seismic hazard
model (ESHM13), Earthquake Model of the Middle East (EMME14), the Global
Hazard Models, and Global Earthquake Model (Woessner et al. 2015; Danciu et al.
2018; Giardini et al. 2018; Pradhan et al. 2018). In general, these models can be div-
ided into two major aspects, such as probabilistic and deterministic seismic hazard
assessment (PSHA and DSHA) (RADIUS 2012), which consists of a hazard estima-
tion, a vulnerability evaluation and an exposure analysis (Blaikie et al. 2014; Burton
and Silva 2016; Jayaram et al. 2012; Pagani et al. 2014; Rossetto et al. 2015; Silva
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2016; Frolova et al. 2017; �Sipo�s and Hadzima-Nyarko 2017; Martins and Silva 2018;
Buyuksarac et al. 2021; Crowley et al. 2020; Dolce et al. 2020; Kohrangi et al. 2021;
Papadopoulos and Bazzurro 2021).

Among them, PSHA requires the quantification of the uncertainties in earthquake
magnitude, location, recurrence, and effects in ground shaking in the seismic hazard
estimation, moreover, the accuracy of the probabilistic analysis based on the uncer-
tainties can be characterized, there are some limitations such as data scarcity, invalid
physical model and mathematical (Scawthorn and Chen 2002), poor quantification of
uncertainties, et al., meanwhile, DSHA is an useful for creating an improved model,
it is generally applying the assumed earthquake events in a specific region (Shah et al.
2012), and it have very easy methodology, however, DHSA does not provide any
information on the likelihood of recurrence of the controlling earthquake and have
no strong solid physics roots, it makes the model lack of consideration of uncertain-
ties, and the result may poor. In addition, whether it is PSHA or DSHA method, it
requires large amounts of various input data, which are impossible to collect in many
developing countries.

Therefore, other relatively simple and efficient evaluation methods are needed, due
to the GIS technology provide new ideas for research of the earthquake hazard and
susceptibility analysis, many researchers use GIS-based models for seismic hazard and
risk assessment, the model is to integrate various relevant data with the concepts of
risk assessment by considering three elements, namely, hazard source, damage level
to objects, and threat (Tsai and Chen 2010), the method is one of the most popular
methods in seismic risk assessment (Smith 2001), and it is efficient and quite feasible.

In summary, the focus of this method is the correlation between the vulnerability
parameters and seismic vulnerability assessment, it including Artificial Neural
Networks (ANNs), Fuzzy Logic (FL), Machine Learning (ML), and probabilistic
approaches versus analytical methodologies such as static non-linear analysis
(Pushover analysis) that produce capacity curves and are used along with seismic-
demand spectrum (Harirchian et al. 2021a), such as, Harirchian et al. based on the
Multi-Layer Perceptron (MLP) Neural Network architecture and smartphone app to
obtain an optimal prediction of the damage state of RC buildings, the results show
the practicability and efficacy of the selected ANN approach for classifying actual
damage grade based on structural damage (Harirchian et al. 2021b, 2021c), xin et al.
uses finer urbanity level population and building-related statistics data to develop a
high-resolution residential building stock model for mainland China, and based on
the result of residential building stock for seismic risk assessment (Xin et al. 2021), li
et al. developed building taxonomy for the Eastern Himalayas and estimated the dis-
tribution of building types in each town based on a field survey and local census
data, and built a structure vulnerability model and mortality vulnerability model for
each building type and simulated the loss distribution based on an earthquake scen-
ario and probabilistic seismic hazards (Li et al. 2021), Aydin et al. based on the tec-
tonic setting, seismicity and the probabilistic seismic hazard curves of Van,
determined the risk priorities for buildings in all districts via rapid seismic assessment
for reinforced-concrete and masonry buildings, Zhang et al. based on a three-step
data collection method, and presented upgradeable building typology for the seismic
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fragility assessment of building blocks, and proposed a new economic loss model and
casualty model for urban disaster risk assessment (Zhang et al. 2021), Allali et al.
developed a methodology based on a single-antecedent weighted fuzzy rule integrated
with a general aspects to optimize the rule weights, to derive the global damage level
for postearthquake seismic assessment of buildings (Allali et al. 2018), Ketsap et al.
used three-stage fuzzy rule-based model to calculate total seismic risk by integrating
three major risk factors in a hierarchical structure along with their uncertainties using
a fuzzy rule based model and finally prioritize building retrofit (Ketsap et al. 2019),
Harirchian and Lahmer based on interval Type-2 FL to improved rapid visual earth-
quake hazard safety evaluation of existing buildings, and rapid evaluation of earth-
quake hazard safety of existing buildings (Harirchian and Lahmer 2020a, 2020b).

From this, we can also find that no matter which method it is, conducting research
on and analyzing the seismic capacities and vulnerabilities of different buildings,
studying the natural geographical environments of different regions, and quantifying
the seismic capacities of buildings in different regions (such as the building vulner-
ability and lethal level) are important tasks for seismic risk assessment.

However, different researchers have found that, even under similar earthquake
magnitudes, population densities, geographical and geomorphological environments,
and building vulnerability levels, the number of casualties varies greatly, such as

Figure 1. The flowchart map of seismic disaster risk assessment.
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between the 2014 Ludian and Jinggu earthquakes (He et al. 2015; Hong et al. 2015).
The reason is that while different types of buildings may have the same level of vul-
nerability, after an earthquake, the ability to cause casualties may differ substantially;
that is, different buildings have different lethal level. After an earthquake, the assess-
ment of casualties based only on the vulnerabilities of buildings may introduce errors;
therefore, it is necessary to quantitatively analyze the regional seismic capacity based
on lethal level.

Nevertheless, the existing earthquake disaster risk assessment methods are still
based on vulnerability levels, which may result in erroneous results. This article is
based on the range and calculation model of the lethal level of buildings, by conduct-
ing field investigations, obtain the lethal level results in 3 cities, and build a risk
assessment model based on the lethal level, obtain the evaluation results of different
cities, carry out corresponding comparative analysis, obtain the main influencing fac-
tors of earthquake disaster risk in different cities, at the same time, the methodology
provides novel insights for ongoing earthquake disaster risk assessment research. The
flowchart is shown in Figure 1.

Analysis of the influencing factors of buildings’ lethal levels

Leapfrogging in the construction era

Different administrative areas are affected by various factors, such as administrative
divisions and levels of economic development, resulting in the coexistence of old and
new buildings whose conditions are different; correspondingly, their levels of seismic
vulnerability and lethality also differ. At the same time, buildings also exhibit variable
seismic performance due to different standards and codes used for building structures
constructed in different years. For example, whether a building structure is fortified
against earthquakes will dictate how that structure behaves in an earthquake.
Buildings equipped with some measures of seismic fortification or seismic reinforce-
ment fare significantly better than buildings without such measures under seismic
excitation; likewise, the lethal levels of fortified buildings are lower than those of
unfortified buildings. Therefore, the actual lethal level of an area can also be obtained
more accurately by considering the effects of buildings’ ages on their levels
of lethality.

Regional differences in the lethal level of buildings

Because China spans a vast area, it displays obvious differences in the natural envir-
onment, geographical conditions, cultural traditions, ethnic characteristics and eco-
nomic development levels among various regions; as a consequence, the seismic
resistance of buildings presents obvious regional characteristics. For example, in east-
ern China, which features a developed economy, the proportion of newly constructed
buildings is increasing, the quality of construction is superior, and the proportion of
structures with earthquake-resistant fortification is high. In contrast, in central and
western China, the economy is underdeveloped, the proportion of newly constructed
buildings is small (the proportion of old buildings is high), the construction quality is
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poor, and the proportion of buildings with seismic fortification is low. Furthermore,
even in the same area, the differences between urban and rural structures are obvious,
and the number of engineering structure types in cities and towns continues to
increase. In economically underdeveloped rural areas, there is usually a single struc-
ture type, the anti-seismic structural measures are not perfect, and the construction
quality is difficult to supervise. Comparatively, rural areas in economically developed
areas have more types and greater numbers of structures and stronger anti-seismic
structural measures.

Generally, the characteristics of buildings in the same area have certain similarities,
but even within the same region, there are certain differences between provinces;
therefore, if an analysis of the lethal level of a building is based only on its geograph-
ical location, errors may arise. This article carries out a comparative analysis of the
lethal levels and earthquake disaster risks of different cities in the same subregion
and constructs an earthquake disaster risk assessment method based on the
lethal level.

Distribution of the regional lethal level

Method for investigating the lethal level

This paper selects the results of field surveys in typical cities in different provinces
throughout eastern China and conducts a comparative analysis based on the lethal
level to identify the similarities and differences between those cities. The research
area includes 3 cities in eastern China, namely, Yancheng and Suqian in Jiangsu
Province and Guangzhou in Guangdong Province.

The field survey method adopts the "town to town" method (that is, a field survey
is conducted in each administrative unit at the town level, and the streets in the
urban area are determined according to the town level), and 3–4 administrative vil-
lages in each town are selected as survey points. The survey points include 1 down-
town area (central area) and 2–3 representative administrative villages. The contents
of the survey include the structural characteristics, construction method, building
materials, adhesive types, foundation type and form, roof type, construction age, and
connection methods of the various sampled building structures at the survey points;
the survey also includes the geographical and geomorphological environmental condi-
tions in the area, traffic and road conditions, ancillary building structure condi-
tions, etc.

However, Due to the variability of climatic conditions, geographical environments,
economic conditions, building materials, construction methods, and political factors,
the types of buildings are broadly diverse, resulting in obvious differences among the
building types in different regions. Generally, buildings can be divided into several
types according to their predominant material, such as wood structures, civil struc-
tures, brick-wood structures, brick-concrete structures, reinforced concrete structures,
and steel structures. A large number of field investigations reveal that even for the
same building type in the same area, due to differences in their building materials,
construction methods, use functions, wall types, adhesive types, and foundations,
obvious differences arise under different disaster conditions, the types of buildings
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are uniformly classified according to the structural materials as follows: steel struc-
tures, reinforced concrete structures, brick-concrete structures (including fortified
brick-concrete and unfortified brick-concrete), brick and wood structures, wood
structures, civil structures and traditional structure types unique to each region
(determined according to the actual situation of the survey area).

Method for calculating the regional lethal level

The lethal level ranges of different types of buildings are based mainly on the author’s
previous research results (Xia et al. 2020; Xia 2020), as shown in Table 1. Based on
historical seismic data, we calculated the range of lethal levels for different types of
buildings, it turns out that the interval range of each type of building is a non-equal
inter-zone range, and there are overlapping areas between each other, in other words,
the actual lethal level of a certain type of building may not necessarily be lower than
other types of buildings due to the influence of the construction method, construction
quality, and construction age, for example, the lethal level of an undefended brick-
concrete structure is not necessarily lower than that of a newly constructed brick-
wood structure of good quality. At the same time, the influencing factors of the lethal
level of each type of building are also different, in this way, based on the lethal level

Table 1. Intervals and influencing factors of the lethal levels of buildings.
Building structure type

Lethal level rangeBuilding type Secondary classification Influencing factors

Steel structure Construction measures,
foundation type,
construction age,
use type

0.05–0.15

Reinforced concrete structure RCa Structural measures,
foundation type,
construction age, height

0.1–0.3
RCb

Wood structure Wa Structural measures,
foundation type,
construction age,
structural style

0.2–0.4
Wb

Brick-concrete structure Ba (Fortified) Structural measures,
foundation type,
construction age, use
type, height,

0.25–0.7
Bb (Unfortified)

Brick-wood structure Structural measures,
foundation type,
construction age,
structural style

0.6–0.9

Civil structure Construction measures,
foundation type,
construction age,
building materials

0.7–0.95

Stone-wood structure Wall type, foundation
type, construction age,
building materials

0.55–0.9

Adobe structure Wall type, foundation
type, construction age,
building materials

0.85–1

(Based on the results of previous research, the range of lethality levels of various types of buildings are obtained, It
is a non-equal interval range with overlapping areas between each other. For details, please refer to the relevant
research results of the author of this article.)

3230 X. CHAOXU ET AL.



range of each type of building and different influencing factors, it is able to perform
quantitative calculations of different types of buildings in field surveys. Based on the
interval range of each type of building and the ratio of influence weights of each
influencing factor, a method for calculating the actual lethal level of each type of
building is developed, as shown in equation 1:

CLactual¼ CLmax�
Xn

i¼1

CLmax�CLminð Þ � wi � wij (1)

In Equation 1, CLactual is the actual lethal level of a certain type of building, CLmax

and CLmin are the upper and lower limits, respectively, of the lethal level interval for
a certain type of building, n is the number of factors affecting the lethal level of a cer-
tain type of building selected according to the actual conditions of the types of build-
ings in the survey area, wi is the ratio of the weights of the i-th type of influencing
factor affecting the building selected based on the actual situation of the building,
and wij is the weight ratio for the j-th building structure and the i-th type of influenc-
ing factor affecting the building selected based on the actual situation of the building.

Based on the lethal levels of various types of buildings and the proportion of each
type of building, a calculation model is established for the overall lethal level of the
survey area, as shown in equation 2:

CLall ¼
Xn

i¼1

CLactual�i � Pi (2)

where CLall is the lethal level of the region based on the buildings, CLactual-i is the
actual lethal level of the i-th type of building in the region, and Pi is the proportion
of the i-th type of building.

On the basis of the lethal level at each survey point, a method for calculating the
town-level lethality is proposed based on the relative proportions of the population,
as shown in Equation 3:

CLtown ¼ a � CLtownship þ b �
X

CLcountryside�i � ci (3)

where CLtown is the overall lethal level of the town, CLtownship is the lethal level of the
township, CLcountryside-i is the lethal level of the i-th administrative village in the
administrative township, a is the ratio of the population of the town to the popula-
tion of the whole township, b is the ratio of the population of the administrative vil-
lage to the population of the whole town, aþb¼ 1, and ci is the ratio of the
population of the i-th administrative village to the total population of the administra-
tive village.

Method for calculating the earthquake disaster risk level

To analyze the earthquake risk, the current assessment method is adopted, where the
risk is calculated as earthquake disaster risk¼ earthquake site hazard � building
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vulnerability � crowd exposure (Chen et al. 1997; Nie et al. 2002; Federal Emergency
Management Agency 2009):

R ¼ H � V � E (4)

where R denotes the earthquake disaster risk, H is the earthquake hazard (related to
factors such as geological parameters, ground motion parameters and active faults), V
is the building vulnerability, and E is the exposed population (the proportion of the
population exposed to an earthquake disaster, that is, the number of permanent resi-
dents in the study area).

On the basis of this method, this paper calculates the vulnerability of buildings
using the lethal level and finally determines the earthquake disaster risk level at a par-
ticular site:

R ¼ H � LL� Eactual (5)

where H is the earthquake hazard, LL is the lethal level of the area, and Eactual is the
number of permanent residents.

Results

Distribution of the lethal level in Yancheng City, Jiangsu Province

Survey points and main building types in Yancheng
As shown in Figure 2a, Yancheng city encompasses 9 districts and counties, including
a total of 143 townships. According to the sampling survey method, there are a total
of 392 sample survey points, the distribution of which achieves full coverage at the
township level. The survey point distribution is relatively uniform, and thus, the

Figure 2. Distribution map of the field survey points in 3 cities.
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Table 2. Types and specific characteristics of the buildings in Yancheng.
Building type Field survey photos Specific characteristics

Brick-wood structure a The walls are 24 cm thick,
the bonding material is
cement mortar or lime
mortar, and the gravel
foundation is
approximately 1m

b The walls are 18 cm thick,
the bonding material is
lime mortar or loess
mud, and the gravel
foundation is
approximately 1m

Brick-concrete structures a With ring beams,
structural columns,
cast-in-place roof,
24 cm thick walls, and a
1.5m
concrete foundation

b With ring beams,
structural columns,
prefabricated slab roof,
24 cm thick walls, and a
1.5m concrete
foundation or
brick foundation

(continued)
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lethal level obtained by averaging the survey points of each township can represent
the average situation of each township.

As shown in Table 2, the buildings in Yancheng mainly include 3 categories and 7
subcategories, the results as follow:

1. The brick-wood structures in Yancheng are mainly distributed in rural areas, it
mainly divided into 2 types, the brick-wood structure (a), the walls are 24 cm
thick, the bonding material is cement mortar or lime mortar, and the gravel
foundation is approximately 1m; brick-wood structure (b), the walls are 18 cm

Table 2. Continued.
Building type Field survey photos Specific characteristics

c With ring beams, no
structural columns,
prefabricated slab roof,
24 cm thick walls, and a
1.5m brick foundation
or gravel foundation

d No ring beams, no
structural columns,
prefabricated slab roof,
24 cm thick walls, 1.5m
brick foundation or
gravel foundation

Reinforced concrete structure Standard frame structure,
concrete frame,
complete beam and
column system,
concrete foundation

(Specific characteristics of each building type obtained based on field investigation)
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thick, the bonding material is lime mortar or loess mud, and the gravel founda-
tion is less than 1m, and the construction quality is poor, the height of the build-
ing is generally 1 storey, in contrast, the number of civil structures is small;
generally, no people live in these buildings, which are mostly warehouses.

2. The brick-concrete structures are distributed in both urban and rural areas in
Yancheng, and the distribution (both urban and rural areas) have obvious char-
acteristics. Generally, the brick-concrete structures in the urban areas are pre-
dominantly fortified brick-concrete structures with ring beams and structure
columns. At the same time, there is a certain number of unfortified brick-con-
crete structures. Moreover, although the rural areas also contain a large number
of brick-concrete structures with ring beams, the structures are not equipped
with structural columns, and there is a clear difference in their seismic resistance
level from that of fortified brick-concrete structures;

It mainly divided into 4 types, the brick-concrete structures (a), which is with ring
beams, structural columns, cast-in-place roof, 24 cm thick walls, and a 1.5m concrete
foundation, the construction age is generally after 2010; the brick-concrete structures
(b), which is with ring beams, structural columns, prefabricated slab roof, 24 cm thick
walls, and a 1.5m concrete foundation or brick foundation, the construction age is gen-
erally between 1990 and 2010; the brick-concrete structures (c), which is with ring
beams, no structural columns, prefabricated slab roof, 24 cm thick walls, and a 1.5m or
1.2m brick foundation or gravel foundation, the construction age is generally between
1970 and 2000; the brick-concrete structures (d), which is with no ring beams, no struc-
tural columns, prefabricated slab roof, 24 cm or 18 cm thick walls, 1.5m or 1m brick
foundation or gravel foundation, the construction age is generally before1980; generally
speaking, different types of brick-concrete structures have large differences in their seis-
mic resistance, and the building height of each type of brick-concrete structure is gener-
ally 2 storey.

� The reinforced concrete structure in Yancheng are mainly distributed in urban
areas, it is standard frame structure, the building structure is a concrete frame,
with a complete beam and column system, the beam and column diameter is gen-
erally above 50 cm, the foundation is also a standard concrete foundation, and the
building height is generally above 5 storey.

Lethal level distribution in Yancheng
As shown in Figure 3, the lethal level distribution in Yancheng is obvious. The lethal
level of the entire city is approximately 0.5 with low values in the urban areas and
high values in the rural areas. The areas with low lethal levels in Yancheng city are
distributed in 3 main areas, namely, Tinghu District and Funing County and the east-
ern part of Dafeng District. Taking Tinghu District as the dividing line, the lethal
level in the northern region is higher than that in the southern region. The lethal
level of various districts and counties are not obvious.

The areas with high lethal levels and weak earthquake-resistant fortifications are
mainly distributed in the western area of Yancheng city, including parts of Jianhu
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County and Yandu District. There are some areas with a low lethal level in every dis-
trict and county; these levels are generally concentrated in the county seat of each
district or county or the main area of each town, as well as in newly established
development districts and other administrative areas in some districts and counties.
These areas have relatively good seismic resistance and low lethal levels. In contrast,
the areas with high lethal levels are mainly distributed in rural areas.

Distribution of lethal level in Suqian City, Jiangsu Province

Survey points and main building types in Suqian City
As shown in Figure 2b, Suqian city encompasses 5 districts and counties, including a
total of 149 townships. According to the sampling survey method, the number of sur-
vey points is 368, the distribution of which achieves full coverage at the township
level. The survey point distribution is relatively uniform, and thus, the lethal level
obtained by averaging the survey points of each township can represent the average
situation of each township.

Figure 3. Distribution of the lethal level in Yancheng.
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Table 3. Types and specific characteristics of the buildings in Suqian.
Building type Field survey photos Specific characteristics

Brick-wood structure a The walls are 24 cm thick,
the bonding material is
cement mortar or lime
mortar, and the gravel
foundation is
approximately 1m

b The walls are 18 cm thick,
the bonding material is
lime mortar or loess
mud, and the gravel
foundation is
approximately 1m

Brick-concrete structures a With ring beams,
structural columns,
cast-in-place roof,
24 cm thick walls, 1.5m
concrete foundation

b With ring beams,
structural columns,
prefabricated slab roof,
24 cm thick walls, 1.5m
concrete foundation or
brick foundation

(continued)
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Table 3. Continued.
Building type Field survey photos Specific characteristics

c With ring beams, no
structural columns,
prefabricated slab roof,
24 cm thick walls, 1.5m
brick foundation or
gravel foundation

d No ring beams, no
structural columns,
prefabricated slab roof,
24 cm thick walls, 1.5m
brick foundation or
gravel foundation

Reinforced concrete structure Standard frame structure,
concrete frame,
complete beam and
column system,
concrete foundation

(Specific characteristics of each building type obtained based on field investigation).
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As shown in Table 3, the buildings in Suqian mainly include 3 categories and 7
subcategories, the results as follow:

1. The brick-wood structures in Suqian are mainly distributed in rural areas, it mainly
divided into 2 types, the brick-wood structure (a), the walls are 24 cm thick, the
bonding material is cement mortar or lime mortar, and the gravel foundation is
approximately 1m; brick-wood structure (b), the walls are 18 cm thick, the bonding
material is lime mortar or loess mud, and the gravel foundation is less than 1m, and
the construction quality is poor, the height of the building is generally 1 storey.

2. The brick-concrete structures are distributed in both urban and rural areas in
Suqian, It mainly divided into 4 types, the brick-concrete structures (a), which is
with ring beams, structural columns, cast-in-place roof, 24 cm thick walls, and a
1.5m concrete foundation, the construction age is generally after 2012; the brick-
concrete structures (b), which is with ring beams, structural columns, prefabri-
cated slab roof, 24 cm thick walls, and a 1.5m concrete foundation or brick foun-
dation, the construction age is generally after1990; the brick-concrete structures
(c), which is with ring beams, no structural columns, prefabricated slab roof,
24 cm thick walls, and a 1.5m or 1.2m brick foundation or gravel foundation,
the construction age is generally after 1970; the brick-concrete structures (d),
which is with no ring beams, no structural columns, prefabricated slab roof,
24 cm or 18 cm thick walls, 1.5m or 1m brick foundation or gravel foundation,
the construction age is generally before1980; generally speaking, different types of
brick-concrete structures have large differences in their seismic resistance, and
the building height of each type of brick-concrete structure is generally 2 storey.

3. The reinforced concrete structure in Suqian are mainly distributed in urban
areas, it is standard frame structure, the building structure is a concrete frame,
with a complete beam and column system, the beam and column diameter is
generally above 50 cm, the foundation is also a standard concrete foundation, and
the building height is generally above 5 storey.

Lethal level distribution in Suqian
As shown in Figure 4, the lethal level in Suqian city is approximately 0.6, and the dis-
tribution characteristics are obvious, with low values distributed in 3 main areas:
Suyu District, Sucheng District and Shuyang County.

The lethal levels in the remaining districts and counties are high, and the distribu-
tion of lethal levels in Suqian city presents obvious administrative regional distribu-
tion characteristics. For example, Suyu District and Shuyang County, which are
located in urban areas, have good economies and strong earthquake-resistant fortifi-
cations, whereas the lethal levels in other regions are average, among which there is
no obvious difference.

Distribution of lethal levels in Guangzhou City, Guangdong Province

Survey points and main building types in Guangzhou
As shown in Figure 2c, Guangzhou city involves 11 districts and counties, including a
total of 171 townships. The number of survey points is 431, the distribution of which
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achieves full coverage at the township level. The survey point distribution is relatively
uniform, and thus, the lethal level obtained by averaging the survey points of each
township can represent the average situation of each township.

As shown in Table 4, the buildings in Guangzhou mainly include 4 categories and
9 subcategories, the results as follow:

1. The brick-wood structures in Guangzhou are mainly distributed in rural areas, it
mainly divided into 2 types, the brick-wood structure (a), the walls are 24 cm
thick, the bonding material is cement mortar or lime mortar, and the gravel
foundation is approximately 1m, the height of the building is generally 2 storey;
brick-wood structure (b), the walls are 18 cm thick, the bonding material is lime
mortar or loess mud, and the gravel foundation is less than 1m, and the con-
struction quality is poor, the height of the building is generally 1 storey.

2. The brick-concrete structures are distributed in both urban and rural areas in
Guangzhou, It mainly divided into 5 types, the brick-concrete structures (a),
which is with ring beams, structural columns, cast-in-place roof, 24 cm thick

Figure 4. Distribution of the lethal level in Suqian.
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Table 4. Types and specific characteristics of buildings in Guangzhou.
Building type Field survey photos Specific characteristics

Brick-wood
structure

a The walls are 24 cm
thick, the bonding
material is cement
mortar or lime
mortar, and the
gravel foundation is
approximately 1m

b The walls are 18 cm
thick, the bonding
material is lime
mortar or loess mud,
and the gravel
foundation is
approximately 1m

(continued)
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Table 4. Continued.
Building type Field survey photos Specific characteristics

Brick-concrete structures a With ring beams,
structural columns,
cast-in-place roof,
24 cm thick walls,
1.5m reinforced
concrete foundation

b With ring beams,
structural columns,
prefabricated slab
roof, 24 cm thick
walls, 1.5m
brick foundation

(continued)
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Table 4. Continued.
Building type Field survey photos Specific characteristics

c With ring beams, no
structural columns,
cast-in-place roof,
24 cm thick walls,
1.5m concrete
foundation or
brick foundation

d With ring beams, no
structural columns,
prefabricated slab
roof, 24 cm thick
walls, 1.5m
brick foundation

e No ring beams, no
structural columns,
prefabricated slab
roof, 24 cm thick
walls, 1.5m
brick foundation

(continued)
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Table 4. Continued.
Building type Field survey photos Specific characteristics

Reinforced concrete structure Standard frame
structure, concrete
frame, complete
beam and column
system,
concrete foundation

(continued)
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Table 4. Continued.
Building type Field survey photos Specific characteristics

Civil structure Without wooden pillar
support, sloping
roof, mud brick or
adobe walls, bonded
or unbonded soil

(continued)
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walls, and a 1.5m concrete foundation, the construction age is generally after
2000; the brick-concrete structures (b), which is with ring beams, structural col-
umns, prefabricated slab roof, 24 cm thick walls, and a 1.5m brick foundation,
the construction age is generally after 1990; the brick-concrete structures (c),
which is with ring beams, no structural columns, cast-in-place roof, 24 cm thick
walls, and a 1.5m concrete foundation or brick foundation, the construction age
is generally after 1990; the brick-concrete structures (d), which is with ring
beams, no structural columns, prefabricated slab roof, 24 cm thick walls, 1.5m or
1m brick foundation, the construction age is generally after 1980; the brick-con-
crete structures (e), which is no ring beams, no structural columns, prefabricated
slab roof, 24 cm thick walls, 1.5m or 1m brick foundation, the construction age
is generally after 1970; generally speaking, different types of brick-concrete struc-
tures have large differences in their seismic resistance, and the building height of
each type of brick-concrete structure is generally above 2 storey.

3. The reinforced concrete structure in Guangzhou are mainly distributed in urban
areas, it is standard frame structure, the building structure is a concrete frame,

Table 4. Continued.
Building type Field survey photos Specific characteristics

Road characteristics Small spacing between
buildings, many
external hanging
objects and
ancillary structures

(Specific characteristics of each building type obtained based on field investigation).
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with a complete beam and column system, the beam and column diameter are
generally above 50 cm, the foundation is also a standard concrete foundation, and
the building height is generally above 5 storey. At the same time, there is another
obvious feature of frame structure building in Guangzhou. There are a large
number of self-built buildings built in the form of frame structures, but there are
obvious differences in quality, beam and column diameter, etc.

The field investigation results reveal another obvious feature of the buildings in
Guangzhou: the architectural form and quality of the buildings are greatly affected by
the level of economic development. Many self-built brick-concrete structures are not
equipped with structural columns; the first-floor roof is mainly a prefabricated slab, but
with an improvement in the economic level, the second floor (added at a later stage)
commonly has a cast-in-place roof, which is another reason for the high lethal level.

There are numerous urban villages in the urban area of Guangzhou. The buildings
in this urban area were generally built in the 1970s and 1990s, and the structural

Figure 5. Distribution of the lethal level in Guangzhou City.
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measures of the buildings are poor; these buildings are not equipped with ring beams
or structural columns, and the building height is generally more than 2 stories.
Furthermore, the spacing between buildings is small (generally within 2m), especially
in the central area where there are many buildings exceeding 5 floors and the layout
of the buildings is messy. Notably, many hanging objects can be observed on the
exterior walls of buildings, and there are a large number of nonstructural and acces-
sory facilities such as air-conditioning units and billboards.

In contrast, the buildings in the rural areas of Guangzhou show different charac-
teristics. These buildings are mainly brick-concrete structures, and there are also civil
and brick-wood structures. The walls are mostly 18 cm thick, and the wall bonding
material is generally lime mortar or loess mud. The foundation is shallow, generally a
gravel foundation approximately 80–100 cm deep.

Lethal level distribution in Guangzhou
As shown in Figure 5, the earthquake resistance of the buildings throughout
Guangzhou is good, with values generally below 0.5. The lethal level distribution in
Guangzhou has obvious geographic characteristics, showing an increasing trend from
the central area outward to the surrounding areas. The 3 urban expansion areas of
Baiyun District, Tianhe District and Huangpu District have the best earthquake-
resistant fortifications and thus the lowest lethal levels.

In the 5 satellite urban areas of Panyu District, Huadu District, Nansha District,
Zengcheng District, and Conghua District, the regional earthquake resistance is
adequate, and the lethal level is low, generally below 0.35. In contrast, in the 3 older
urban areas of Liwan District, Yuexiu District, and Haizhu District, the lethal level is
high, generally 0.5 or more, and the earthquake resistance of the buildings therein
is weak.

The areas with good earthquake resistance are concentrated in Baiyun District,
Huangpu District and Tianhe District, while the earthquake resistance of buildings in
the central areas of cities such as Yuexiu District, Liwan District and Haizhu District
is poor. The main reason for this discrepancy is that although there is a large number
of buildings with good construction quality (such as reinforced concrete structures)
in the central areas of cities, there are also large numbers of old brick-wood and
brick-concrete structures, most of which were built from the 1970s to the 1990s. The
building height is generally approximately 1–3 floors, the walls are mainly empty
bucket walls, the thickness of which is generally 18 cm, and the roofs are mostly cast-
in-place roofs, but the roof thickness is generally approximately 10 cm.

Comparative analysis of the lethal levels in the 3 cities

As shown in Figure 6, the lethal level distribution characteristics of the towns among
the 3 cities are obvious. The average lethal level in Guangzhou is 0.3856, and the
standard deviation is 0.1146; the average lethal level in Suqian is 0.5844, and the
standard deviation is 0.1472; and the average lethal level in Yancheng is 0.5912, and
the standard deviation is 0.1133.
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The lethal levels of Yancheng and Suqian (which are in the same province) are
close, suggesting that the lethal levels of different cities in the same province may
be within the same range (for example, Yancheng city and Suqian city have similar
levels). Although the average lethal level of Yancheng and Suqian are relatively
similar, there are still certain differences. In the range where the lethal level is
below 0.61, the lethal level of each township in Suqian is higher than that of each
township in Yancheng, however, within the range where the lethal level is above
0.61, the lethal level of each township in Suqian is lower than that of each town-
ship in Yancheng.

At the same time, there are significant differences in the lethal level between differ-
ent cities in the same region; the lethal level of the towns in Guangzhou are concen-
trated in the range below 0.61, which proportion is about 90%, however, the lethal
levels of the towns in Yancheng and Suqian are concentrated in the range below 0.61.
which proportion is about 60%, there is a more obvious difference between the two,
the lethal level in Guangzhou is much lower than those in Yancheng and Suqian, and
the distributions characteristics of the lethal level and economic level is very obvious
and positively correlated. For example, Guangzhou and Yancheng are both located in
the eastern area, and the types of building structures are similar; however, due to dif-
ferences in the construction materials, construction age, construction quality, and
construction methods, there are variations in the regional lethal level.

Distribution of the lethal level at the township level
As shown in Figure 7, according to the distribution of the lethal level at the town
level, the 3 cities exhibit unique characteristics. First, in Yancheng city, the areas with
low lethal levels are mainly concentrated in urban areas, such as the streets and towns

Figure 6. The lethal level distribution characteristics of the towns among the 3 cities.
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in Tinghu District, while the lethal levels in most nonurban towns and villages are
generally high (exceeding 0.5). In addition, Suqian city presents distribution charac-
teristics similar to those of Yancheng city: the lethal level is generally above 0.5, the
towns with low lethal levels are concentrated in urban areas, and the economic devel-
opment of towns has occurred in recent years. However, the lethal level distribution
at the township level in Guangzhou presents completely different characteristics. The
lethal level in the urban area of Guangzhou is high, generally exceeding 0.45, while
the towns and villages with low lethal levels are concentrated in 3 new urban areas,
namely, Huangpu District, Tianhe District and Baiyun District, in which the lethal

Figure 7. Town-unit distributions of the lethal level in the 3 cities.
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level is generally below 0.4, while the lethal levels in the towns far from the urban
area are similar to those in Yancheng and Suqian.

According to the lethal level of each town in the 3 cities, the lethal levels of town
areas and rural areas have obvious distribution characteristics, the lethal level of town
areas in each town in Guangzhou city is relatively average, and the level of town areas
in some towns is higher than the average level of the whole town, correspondingly,
there are more rural areas where the lethal level is lower than the average level; the
level of the town areas in each town in Yancheng city showed similar characteristics
to that of Guangzhou, however, the lethal level of the rural areas of Yancheng city
shows obvious differences, basically, the lethal level of most rural areas is much
higher than the average level of the town, the distribution characteristics of the lethal
level in the town areas and rural areas of each town in Suqian city are highly similar
to those in Yancheng city. Through a fitting analysis of the lethal levels in the town
areas and rural areas of 3 cities and the average value of each town, it is found that
the fitting results are relatively good, the R2 results are all above 0.6, the fitting result
of the town area of Guangzhou is better than that of the rural area, the fitting results
of Yancheng city and Suqian city show that the rural area is better than the town
area, it reflects the basic characteristics of the distribution of lethal level in each town
of each city, as shown in Figure 8.

Distributions of the peak ground acceleration in the 3 cities
The seismic peak ground acceleration of each township in study area is determined
according to the fifth-generation seismic ground motion parameters zonation map of
China (SAMR, 2015), (The basis ground motion corresponding to the probability of
exceedance 10% in 50 years). The PSHA method was used in the compilation of the
seismic ground motion parameters zonation map, at the same time, a probabilistic
seismic hazard analysis method (PSHA) was constructed based on a hierarchical
model of the potential source area and a seismic activity model that satisfies the
expression of spatial distribution inhomogeneity. In this paper, the seismic hazard is
expressed by the seismic peak ground acceleration (the basis for determining seismic
intensity) which is the acceleration index of ground motion during earthquakes.

As shown in Figure 9(a–c), based on the basic peak ground acceleration (PGA) of
the Class II sites in cities and towns across the country, the PGA distribution in each
city is obtained. The PGA distribution in Yancheng decreases from east to west. The
PGA distribution in Suqian also displays an obvious geographical trend that increases
trend from east to west, that in Guangzhou shows a north-south distribution with an
increasing trend from north to south. The geographical PGA distributions in the 3
cities are obviously unique.

As shown in Figure 10a, the comparative analysis of the lethal levels and PGA dis-
tribution among the towns in Yancheng city reveals that the lethal level varies consid-
erably among the towns (from 0.2 to 0.7). In contrast, the PGA does not change
much in each town; it is generally divided into four levels: 0.05 g, 0.1 g, 0.15 g, and
0.2 g. The proportion of buildings at each level is quite different, with most occurring
at levels of 0.1 g and 0.15 g, but different towns and villages at the same PGA level
have different levels of lethality. That is, even at the same PGA level, due to
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differences in the lethal level, the damage the buildings may actually suffer differs.
For example, the PGA of two towns is 0.1 g, but the lethal level of one town is close
to 0.7, while that of the other is close to 0.2 g. Hence, there are tremendous differen-
ces in the lethal level.

As shown in Figure 10b, the comparative analysis of the lethal levels and PGA dis-
tribution among the towns in Suqian city suggests that the PGA distributions of dif-
ferent towns may be the same, but the lethal level differs throughout the region. The
PGA is generally divided into 4 numerical levels of 0.1 g, 0.15 g, 0.2 g, and 0.3 g.
There is little difference in the proportion of buildings among these levels. However,
different towns at the same PGA level have different levels of lethality; that is, even

Figure 8. Distribution characteristics of lethal level in different regions of each town in the 3 cities.
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under the same PGA level, due to the differences in their lethal levels, the level of
damage those buildings may suffer is actually different.

As shown in Figure 10c, the comparative analysis of the lethal levels and PGA dis-
tribution among the towns in Guangzhou reveals that the lethal level varies consider-
ably in each town (from 0.1 to 0.7), whereas there is little variation in the PGA,
generally divided into 2 levels (0.05 g and 0.1 g). The PGA distribution at each level
indicates little difference in the proportion of buildings. However, different towns at
the same PGA level display varying levels of lethality; that is, even under the same
PGA level, the lethal levels are different.

Earthquake disaster risk results

Based on the lethal levels, the numbers of permanent residents, and the PGA values
at the different sites, the earthquake disaster risk results were obtained, revealing the
obvious characteristics of the earthquake risk distributions in the 3 cities. Among
these cities, the areas with high earthquake risk in Yancheng are mainly distributed

Figure 9. Distributions of the PGA in the 3 cities.
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in Tinghu District, Sheyang County, northwestern Dafeng District, and the south-
western area of Dongtai city. In addition, although there are other areas with high
levels of earthquake risk, their overall risk level is lower than that of other districts
and counties. Specifically, the areas with high earthquake disaster risk levels in
Yancheng mainly include the following, as shown in Figure 11: Dayang street and
Wuxing street in Tinghu District; Xindu street and Longgang street in Yandu
District; Shanggang town in Jianhu County; Xingou town and Batan town in Funing
County; Dongkan town in Binhai County; Yunhe town in Xiangshui County; Linhai
town, Huangshagang town and Xintan town in Sheyang County; Xinfeng town in
Dafeng District; and Qionggang town in Dongtai city and the surrounding areas.

The earthquake disaster risk levels of Suqian city are lower than those of Yancheng
city. Generally, the areas with relatively high earthquake disaster risk levels in Suqian
city are mainly concentrated in Sucheng District and Suyu District. Specifically, the
areas with high earthquake disaster risk levels mainly include the following, as shown
in Figure 12: Wanpi town, Machang town, and Zhouji town in Shuyang County;
Zhongxing town and Aiyuan town in Siyang County; Qingyang town, Shuanggou
town and Longji town in Sihong County; Xiaodian town and Shunhe town in Suyu
District; and Shuangzhuang town, Sankeshu town, Tuyuan town, Cangji town and
Zhenglou town in Sucheng District.

Compared with those of Yancheng city and Suqian city, the earthquake disaster risk
levels of Guangzhou city are significantly different. The risk level of nonurban areas in
Guangzhou city is significantly lower than that of urban areas, and the high earthquake
disaster risk levels are concentrated primarily in the urban areas of Liwan District,
Yuexiu District, Haizhu District and Panyu District. In addition, the risk levels of some

Figure 10. Comparison between the lethal level and PGA of townships in 3 cities.
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rural areas in Baiyun District and Huangpu District are high, including those in
Conghua District, Wenquan town, and Paitan town in Zengcheng District; the junction
area of Zhengguo town, Xiaolou town, Licheng Street and Zengjiang Street in Tanbu
town and Xinhua Street in Huadu District; Jinsha Street and Junhe Street in Baiyun
District; Shijing Street and Tangjing Street and Hailong Street and Zhongnan Street in
Liwan District; Tangxia Street and Qianjin Street in Tianhe District; Ruibao Street and

Figure 11. Earthquake disaster risk distribution map of Yancheng city.
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Chigang Street in Haizhu District; Lilian Street and Huangpu Street in Huangpu
District; Panyu District; Nancun Town and Shilou Town in Nansha District; Dongyong
Town and Lanhe Town in Nansha District, as shown in Figure 13.

Discussion

Field surveys in different cities throughout eastern China reveal that the building
types in each city are basically similar, mainly including reinforced concrete struc-
tures, brick-concrete structures, brick-wood structures and civil structures, but they
are affected by varying factors such as the level of economic development; moreover,
there are obvious differences in the construction methods and construction quality

Figure 12. Earthquake disaster risk distribution map of Suqian city.
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among buildings of the same types, such as brick-concrete structures and brick-wood
structures. There are also obvious differences in the quality and form of two types of
buildings among the different cities. Brick-concrete structures may include fortified
brick-concrete (with structural measures such as structural columns and ring beams)
and unfortified brick-concrete (with ring beams and no structural columns or no ring
beams and no structural columns); for example, in Yancheng city and Suqian city,
the brick-concrete structures are generally equipped with ring beams but no structural
columns, and the roofs are mainly prefabricated. At the same time, there is a certain
proportion of brick-concrete structures with ring beams and structural columns, and
the roofs are cast in place. However, among the brick-concrete structures, the propor-
tion of unfortified brick-concrete structures is large. The field survey results are more
consistent with the results of related literature, most of the buildings in Suqian City
have not been fortified against earthquakes or the fortification intensity does not
meet the requirements of the current regulations. At the same time, there are a large
area of privately built houses in the urban-rural junction. Due to the lack of seismic
measures, their seismic capacity is poor and their vulnerability is high (Yang
et al. 2017).

While the buildings in Guangzhou show obvious differences, the brick-concrete
structures generally have ring beams and structural columns with cast-in-place roofs.
At the same time, there are many unfortified brick-concrete structures in the urban
villages and rural areas in Guangzhou; these structures have no ring beams or struc-
tural columns, but the roofs are cast in place, and the thickness is generally between
8 and 10 cm, which is obviously different from the same type of buildings in
Yancheng and Suqian.

On the other hand, the brick-wood structures are clearly different among the 3 cit-
ies. The brick-wood structures in Yancheng and Suqian include 2 main types: the
wall thickness is typically either 24 cm or 18 cm, and the bonding material of the wall
is mainly lime mortar. In contrast, the thickness of the walls in the brick-wood struc-
tures in Guangzhou is generally 24 cm, but these buildings are old, and the bonding
material is generally loess mud. In other words, even for the same building types in
different cities, there are obvious differences in the wall properties and building mate-
rials, resulting in significant differences among the lethal levels of the same building
type in different cities. Therefore, if an earthquake disaster risk analysis is carried out
based only on the vulnerability analysis results of the building type, the difference
between the same building type will be ignored, as a result, the assessment results of
casualties and economic losses based on vulnerability may be more restrictive
(Hassaballa et al. 2017; Mulargia et al. 2017; Dabbeek and Silva 2020).

According to the results of the field surveys in the three cities, the lethal level in
each city varies substantially, the range of lethal levels in Yancheng is 0.15–0.83, that
in Suqian is 0.07–0.82, and that in Guangzhou is 0.1–0.74. Moreover, the lower limit
of the lethal level is the smallest in Suqian city, followed by Guangzhou, and
Yancheng has the highest lower limit; however, Guangzhou has the smallest upper
limit of the lethal level, followed by Suqian city, and Yancheng city has the highest.
Although Guangzhou’s level of economic development is higher than that of both
Yancheng city and Suqian city, the lethal levels at some survey points in Suqian are
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lower than those at some survey points in Guangzhou. Hence, the distribution of the
lethal level of a city is generally positively correlated with the level of economic devel-
opment, but this correlation is not absolute; in other words, the lower limit of the
lethal level of a city with a high economic level may be smaller than that in a city
with a poor economic level. The average lethal level in Guangzhou is 0.3856, the

Figure 13. Earthquake disaster risk distribution map of Guangzhou city.
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average lethal level in Suqian is 0.5844, and the average lethal level in Yancheng is
0.5912. The total difference is 0.1133, and the lethal level of Guangzhou city is much
lower than that of both Yancheng city and Suqian city, which (although they are
located in the same province) have high average lethal levels. At the same time, the
distribution characteristics of the lethal level of each town in the 3 cities are also
obvious. The lethal level of each district and county in the urban area of Yancheng is
generally lower than that in the nonurban regions which showing a clear correlation
with the level of economic development.

For Yancheng city, the lethal level of the urban areas of Tinghu District and Yandu
District is lower. The areas with a low lethal level in Dafeng District are mainly located
in the seat of the government and economic development zones. The overall lethal level
in Dongtai city is average, and the areas with a low lethal level are mainly located in the
western development zone. In addition, some towns and villages in Sheyang County,
Funing County, Jianhu County and Binhai County and other regions have obviously
low lethal levels; these regions are concentrated in districts, counties and towns, while
Xiangshui County has a weak level of economic development, and the areas with lower
lethal levels are mainly located in economically developed towns.

For Suqian city, the distribution of lethal levels has notable characteristics, the
overall lethal level of Sucheng District and Suyu District (especially in the urban
areas) is relatively low, much lower than the levels of the other towns. Among the
other districts and counties, such as Sihong County, Siyang County, and Shuyang
County, the lethal levels in town areas are high. In contrast, the lethal levels in rural
areas are low. This distribution is quite different from that in Yancheng.

For Guangzhou city, the town-unit lethal level distribution displays obvious charac-
teristics that are different from those of Yancheng and Suqian. First, the average lethal
level of Guangzhou is much lower than that in the other two cities. The township-scale
distribution of the lethal level also exhibits unique features. The lethal levels of each
township in Huadu District, Conghua District, Zengcheng District, Panyu District and
other districts and counties are moderate and do not vary much. Compared with other
districts and counties, Huangpu District, Tianhe District and Baiyun District have gen-
erally lower lethal levels. The main reason is that these 3 districts are new urban areas;
due to economic development and growth policies, most of the buildings in these areas
are newly constructed or refurbished. These reconstruction efforts have lowered the
lethal level, whose overall seismic capacity is higher than that of other townships.
Another major feature of Guangzhou pertains to the 3 districts located in the urban
area: Yuexiu District, Liwan District, and Haizhu District, the lethal levels are generally
high, the mainly reason is there are many urban villages, and the main buildings in
these villages are brick-wood structures and brick-concrete structures, most of them
have no ring beams or structural columns, there are generally more than 2 stories, the
construction quality is poor, the buildings are densely distributed, the planning scheme
is unreasonable, and the roads are narrow, as shown in Table 4 of the road characteris-
tics. As a consequence, the lethal levels in the urban areas of Guangzhou are higher
than those in nonurban towns and villages.

The field surveys of the 3 cities in eastern China indicate that the distributions of both
the regional lethal level and the earthquake disaster risk level have remarkable features.
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For Yancheng and Suqian in the same province, there is a clear correlation between the
distributions of the earthquake disaster risk and lethal levels. The higher the lethal level is,
the higher the earthquake disaster risk. However, there are particularly obvious discrepan-
cies with the distribution of the earthquake disaster risk in Guangzhou city, which shows
obvious regional characteristics. The earthquake disaster risk for these 3 cities in eastern
China show that under normal circumstances, the earthquake disaster risk in urban areas
is lower than that in nonurban areas, but this relationship is not absolute.

Based on these results, the differences in the earthquake disaster risk level among
the three cities are apparent. There are two reasons for the high earthquake disaster
risk in Yancheng. First, the buildings in the urban areas (such as Tinghu District) are
mainly brick-concrete structures, but due to the limited level of economic develop-
ment, the buildings are generally old, and as a result, many of the brick-concrete
structures in the urban areas are unfortified buildings or are old-fashioned structures
of poor construction quality (Wang et al. 2008a, 2008b). Furthermore, there are obvi-
ous disparities among some townships in the urban areas. Although the buildings in
the towns are mainly brick-concrete structures, these buildings are generally fortified
brick-concrete structures with ring beams and structural columns. Another main rea-
son is the resident population, especially the permanent population, as the population
density is higher than that of other towns.

The lethal level of Suqian city is similar to that of Yancheng city. Nevertheless, the
earthquake disaster risk levels are quite different; the reason for this is the disparity
in the PGA distributions of the 2 cities. Under the same lethal level, the PGA of
Suqian is smaller than that of Yancheng. As a result, the earthquake disaster risk of
Suqian city is lower than that of Yancheng city. Another main feature of the earth-
quake disaster risk in Suqian is that there are few high-risk areas, but it shows obvi-
ous regionality, with the risk level in rural areas being lower than that in the towns.
On the other hand, the types of brick-concrete structures in the town areas are quite
different in terms of their construction quality and fortification conditions, and the
age of the structure still has a considerable influence.

Guangzhou city exhibits obvious differences. In general, earthquakes are mainly con-
centrated on the edge of the delta, which is strong in the west and weak in the east, and
strong in the north and weak in the south (Guo et al. 2008; Zhang 2014), the reason for
the high risk levels in Baiyun District and Huangpu District is mainly due to the existence
of many unfortified brick-concrete structures and old brick-wood structures in rural
areas. In Liwan District, Yuexiu District, Haizhu District and Panyu District, the first rea-
son for the high levels of risk is the large number of urban villages in the area with dense,
messy layouts of buildings, narrow roads, and a much higher population density than
other areas; second main reason is the poor construction quality of buildings, there is a
large number of unfortified structures; in particular, the brick-concrete structures are
mainly brick-concrete structures without structural columns and more than two stories,
the third main reason is the high population density, which is much higher than that of
other regions or other cities, and is showing an aging trend (Xie and Ning 2006; Lan and
Huang 2012; Lin et al. 2020).

In fact, the lethal level of an area is mainly affected by the type and number of
buildings, the geographical environment, and traffic and road conditions, and also
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affected by the number of permanent residents. That is, even if two cities or towns
have the same building types and similar building proportions, their corresponding
earthquake disaster risk is not necessarily the same.

Conclusion

Analyses of the lethal levels and earthquake disaster risk distributions in 3 cities in
eastern China demonstrate that the types of buildings in different provinces are basic-
ally the same, but the lethal levels of the same buildings in different provinces still
diverge. As a result, the lethal level varies considerably even in different cities within
the same area. Therefore, the lethal levels of different areas can better reflect specific
regions. The earthquake disaster risk results obtained based on the regional lethal lev-
els reflect the ability of an earthquake in the area to cause casualties and considers
the number of permanent residents in the area; hence, the resulting risk distribution
can reflect the weak links in the area. Moreover, emergency preparedness and rescue
plans can be targeted based on these results.

On the other hand, since the lethal level actually represents the probability of
death after an earthquake in an area, in this article, the earthquake disaster risk
level obtained based on the lethal level is actually a measure of the relative magni-
tude of the earthquake disaster risk. As earthquake casualties are mainly affected
by the earthquake intensity and subsequent mortality, variations in the lethal level
and different intensities indicate that the corresponding probability of death may
diverge among areas with different levels of lethality. The proposed method takes
the lethal level as a limiting condition and constructs a functional relationship to
assess casualties based on the earthquake intensity and mortality rate. Therefore,
if it is possible to obtain the lethal level of a region through field investigations
during an aseismic period, based on the survey results, it is possible to carry out
high-precision quantitative research on the risk of earthquake casualties and then
obtain the earthquake disaster risk distribution with high precision based on the
lethal level.
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