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Abstract: Landslides are critical natural disasters characterized by a downward movement of land
masses. As one of the deadliest types of disasters worldwide, they have a high death toll every year
and cause a large amount of economic damage. The transition between urban and rural areas is
characterized by highways, which, in rugged Himalayan terrain, have to be constructed by cutting
into the mountains, thereby destabilizing them and making them prone to landslides. This study
was conducted landslide-prone regions of the entire Himalayan belt, i.e., National Highway NH-
44 (the Jammu–Srinagar stretch). The main objectives of this study are to understand the causes
behind the regular recurrence of the landslides in this region and propose a landslide early warning
system (LEWS) based on the most suitable machine learning algorithms among the four selected,
i.e., multiple linear regression, adaptive neuro-fuzzy inference system (ANFIS), random forest, and
decision tree. It was found that ANFIS and random forest outperformed the other proposed methods
with a substantial increase in overall accuracy. The LEWS model was developed using the land
system parameters that govern landslide occurrence, such as rainfall, soil moisture, distance to the
road and river, slope, land surface temperature (LST), and the built-up area (BUA) near the landslide
site. The developed LEWS was validated using various statistical error assessment tools such as the
root mean square error (RMSE), mean square error (MSE), confusion matrix, out-of-bag (OOB) error
estimation, and area under the receiver operating characteristic (ROC) curve (AUC). The outcomes of
this study can help to manage landslide hazards in the Himalayan urban–rural transition zones and
serve as a sample study for similar mountainous regions of the world.

Keywords: hazards; early warning system; LST; urban–rural fringes; machine learning; ANFIS;
random forest; decision tree

1. Introduction

Landslides are a type of mass movement on the steep slopes of rugged landscapes
and can take several forms, such as rockfalls, mudslides, and debris falls. Landslides
are triggered by both natural and anthropogenic activities [1,2]. Extended heavy rainfall
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events, earthquakes, soil properties, and changes in groundwater level are some of the
natural causes behind landslides. In contrast, heavy traffic near the landslide susceptible
site, tunnel construction, excessive mining and quarrying, and cutting of steep hills for
road construction or widening are some significant anthropogenic factors that have made
slopes extremely vulnerable to failures [3]. All these factors can be responsible for single or
multiple slope failures on the hill slopes [4].

Globally, landslides cause a large amount of destruction to the lives and property of
millions of people living in regions vulnerable to landslides. About 55,997 deaths have been
reported worldwide due to 4862 landslide events between January 2004 and December 2016,
and most of them occurred in Asia alone [5]. Moreover, due to the destruction of roads and
industrial establishments, landslides are responsible for considerable losses to the economy
of the regions. The Reventador landslides in Ecuador (Napo) killed one thousand people
and caused a colossal economic loss of about 1 billion dollars [6]. Alaska’s landslide in 1964
caused a financial loss of 280 million dollars [7]. The Haiyuan landslides in China (Ningxia)
killed 100,000 people, destroyed many villages, and caused a substantial economic loss
in 1920 [8]. Landslides are also responsible for causing landslide lake outburst floods, a
widespread phenomenon in the Himalayas (LLOF) [9,10]. LLOF is caused when a landslide
blocks a stream or a river and forms a temporary pool-like situation. The accumulated
water increases the pressure on the obstruction, which eventually is breached and gives
way to the accumulated water [11]. According to recent studies, the outburst can release
millions of cubic meters of water in short limited time intervals, creating a situation similar
to a Glacier Lake Outburst Flood (GLOF) [12]. An LLOF struck Chamoli, Uttarakhand,
India, on 7 February 2021, claiming 72 lives, and causing extensive damage to a power
construction project.

The Himalayan regions are mainly characterized by sparsely separated urban and
rural settlement zones [13]. The transition between these zones often involves the large
mountainous belts that have to be cut in order to pave the way for the movement of people
and supplies [14]. The highways constructed along these transition zones, because they
destabilize the mountain slopes, are one of the factors causing this region to be vulnerable
to landslides [15]. Understanding the processes initiating landslides is extremely important
in the Himalayas as people’s lives are dependent on their occurrence. One major scientific
stride in the assessment of landslides is predicting their occurrence. In this context, machine
learning algorithms have been at the forefront of scientific development [16–19]. ML uses
algorithms to learn from past data patterns to produce insights into future extreme disaster
events [20], such as decision tree, artificial neural networks (ANN), and statistical regression
analysis. These techniques can learn patterns and associations between the responsible fac-
tors and disaster occurrences without an anticipated structural model [21]. In disaster and
hazard management, machine learning models are now used to augment the traditional
field-based methods, as they provide the inputs for greater accuracy and prediction capabil-
ities [22]. ML has shown remarkable results in hazard prediction, with the ability to collate
more variables as causal factors for better analysis and precise predictions [23]. Moreover,
they have proved to be a convenient option for handling big-data spatial analytics, when
the theoretical approaches to a problem are insufficient [24], and statistical pre-assumptions
are inconsistent or unknown [25]. With these characteristics and its resilience as one of the
best methods for dealing with nonlinear geo-environmental challenges, ML techniques are
increasingly being applied to determine different hazard predictions [26]. Many machine
learning algorithms have been used for landslide susceptibility mapping utilizing internal
(geological, topographical, and environmental) parameters in the Himalayas [27–30]. Not
much work has been performed in landslide prediction modelling using ML in this region,
and prediction is one of the main components of disaster mitigation.

In the present study, we explore the use of Machine Learning (ML) algorithms for
predicting the landslides of one of the hard-hit landslide-prone areas of the Himalayas, the
NH-44 national highway, Jammu–Srinagar stretch, India, specifically, the northernmost
segment of NH-44 that extends over 65 km from the Jawahar Tunnel to Chandarkote. It
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connects the Kashmir valley with the rest of India, passing through the highly steep and
unconsolidated slopes of the northern Himalayan Mountains. The highway’s significance
lies in the fact that it is considered the bloodline of the Kashmir valley since all the daily
supplies to the valley have to pass through it [31]. Climatologically, this area receives a
monthly average rainfall of 75–150 mm, which is responsible for heavily saturating the
soil on the slopes and causing slope failures [32,33]. Most of the landslide events in this
area take place during or immediately after a heavy spell of precipitation. Every year, the
whole Kashmir valley and the UT of Leh and Ladakh are adversely impacted in terms of
the loss of human lives and damage to the economy due to landslides on this segment
of the NH-44 Highway [34]. Nearly 8000 accidents and 2000 deaths were recorded on
this highway between 2000 and 2010 [35]. Further, according to the Kashmir Traders and
Manufacturers Fund (KTMF), the economic losses to the Kashmir valley approximate
about 50 million rupees due to the continuous blockage of the National Highway. In this
context, it is essential to holistically understand the causes of the landslides and use that
knowledge to develop and design an advanced landslide early warning system (LEWS) for
this region that can predict landslides before they hit the area to save life and property. The
main objective of this paper is to propose an efficient landslide prediction model for better
and more precise landslide prediction. Using field and satellite-based data, we compare
four highly efficient machine learning prediction modelling algorithms (multiple linear
regression, adaptive neuro-fuzzy inference system-ANFIS, random forest, and decision tree)
to determine which is the best among these for a LEWS at the Jammu–Srinagar National
Highway, NH-44.

2. Study Area

The study area is shown in Figure 1 and is located between the Ramban and Banihal
district of Jammu and Kashmir, belonging to the northern Himalayas with an altitude of
495–4510 m above sea level. The area covers an area of 401 Km2 and extends over a distance
of 65 km from the Jawahar Tunnel to Chandarkote. Such regions in India are known to be
highly vulnerable to landslides [36], since many landslides have occurred in the past, and
more than ten highly significant and devastating events occurred between December 2020
and January 2021. The area has hilly topography with an average altitude of 2044 m above
mean sea level, making it an area highly prone to landslides.

The study area is located between two different climatic regions. The Jammu region
has a subtropical climate, while Kashmir has a moderate climate. The Ramban region in the
study area belongs to the Jammu division, while Banihal belongs to the Kashmir division of
the state of Jammu and Kashmir. The temperature of the study area ranges from −5 ◦C to
30 ◦C over the Banihal region. In contrast, the Ramban region has a minimum temperature
of approximately 5–10 ◦C and the maximum may reach 38 ◦C in summer [37]. The study
area has a lowest altitude of 495 m and a maximum of 4510 m above mean sea level. The
road corridor has a minimum of 1150 m and a maximum of 2200 m elevation above the
mean sea level, making the slopes along the National Highway highly vulnerable to land
failures and rock slides [38]. One of the landslide sites is shown in Figure 2. Because of the
high elevation, the area receives high-intensity rainfall in January, April, June, August, and
December, with an average of 330 mm per month. The daily mean precipitation (TRMM
data) of the study area from 2000 to 2020 is shown in Figure 3. It clearly shows extreme
precipitation events throughout the year and for each year during the observation period.
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Figure 1. Location map of the National Highway NH-44 stretch studied in this paper. The upper 
right inset is its location with reference to the UT of Jammu and Kashmir, India. The red outlines 
are the districts of the UT of J and K. The green dots on the National Highway are the prominent 
landmarks as well as the sampling points. The map coordinates are in the UTM 43 (North) World 
Geodetic System (WGS-1984) reference system. 
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Figure 1. Location map of the National Highway NH-44 stretch studied in this paper. The upper
right inset is its location with reference to the UT of Jammu and Kashmir, India. The red outlines
are the districts of the UT of J and K. The green dots on the National Highway are the prominent
landmarks as well as the sampling points. The map coordinates are in the UTM 43 (North) World
Geodetic System (WGS-1984) reference system.
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Figure 2. Prominent landslide site at Ramban along the NH 44.
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Figure 3. Daily mean precipitation of the study area from 2000 to 2020 based on the Tropical Rainfall
Monitoring Mission (TRMM) data.

3. Materials and Methods
3.1. Field Observation and Data

Field observation is an effective procedure for landslide hazard assessment to collect
the primary field data (distance to road, distance to river, and general evaluation of the
location) for the study [39]. The mapping and landslide susceptibility analysis of landslide-
prone areas is the first stage in the field observation [40]. As part of the research, a field
investigation was conducted in October 2020. The objective was to physically examine and
analyse landslide hotspots to collect the data required for spatial landslide prediction. Dur-
ing the field observation, around 258 spots were identified. Based on the slope, proximity
to habitation and roads, vegetation cover, and soil parameters, we classified them into three
classes. Out of the 258 spots, 49 were highly active, 59 were medium prone, and 150 had a
low potential for a slide in the near future.

The distance to the road and the distance to the river, which can influence slope
stability, were obtained using the base map services from ArcGIS 10.4.1. Some sites were
measured manually with measuring tape, as shown in Figure 4. The landslide inventory of
the study area was obtained from (Global landslide catalog) svs.gsfc.nasa.gov (accessed
on 1 December 2021) and from local sources (newspapers, social media, and online news
reports). Some soil characteristics and threshold values were derived from Fayaz and
Khader (2020) [41]. The same threshold values were used to predict landslides using
machine learning methods (algorithm). Slope angle data were obtained using a mechanical
tool inclinometer and a Digital Elevation Model (DEM) generated from stereo SRTM
DEM. The rainfall data were divided into four categories for better model predictions and
accuracy: (i) 0–20 mm as ‘1’, (ii) 21–40 mm as ‘2’, (iii) 41–100 mm as ‘3’, and (iv) a 3-day
antecedent rainfall above 50 mm as ‘4’. The area-average of the root zone soil moisture in
kgm2 was obtained from NASA (giovanni.gsfc.nasa.gov (accessed on 01 December 2021))
using [GLDAS Model GLDAS_CLSM025_D V2.0]. The built-up area near the landslide
spots was measured and calculated using ArcMap 10.4.1. The structures (construction)
surrounding each landslide-prone site were mapped with ArcGIS Basemap services and
measured in square meters. Table 1 shows the sources of the data used in the present study.

svs.gsfc.nasa.gov
giovanni.gsfc.nasa.gov
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Figure 4. Field photographs while collecting data for model parameterization.

Table 1. Data used in this study along with their sources.

Data Source

Rainfall (RF) TRMM giovanni.gsfc.nasa.gov (accessed on 21 June 2021)
Land Surface Temperature (LST) giovanni.gsfc.nasa.gov (accessed on 21 June 2021)
Slope Moisture (SM) giovanni.gsfc.nasa.gov (accessed on 21 June 2021)
Slope Angle (SLP) Slope Map and Manually using Inclinometer
Distance to Road (DTRD) GIS and Manually using Measuring tape
Distance to River (DTR) GIS and Manually using Measuring tape
Built-up Area (BUA) Visual Image Interpretation using ArcGIS Basemap services

giovanni.gsfc.nasa.gov
giovanni.gsfc.nasa.gov
giovanni.gsfc.nasa.gov
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3.2. Methods

In this paper, a landslide prediction model was designed using various machine
learning algorithms. The algorithms used were Multiple Linear Regression, Adaptive
Neuro-Fuzzy Inference System (ANFIS), Random Forest, and Decision Tree; the model
accuracies were compared to determine the optimal prediction system for landslides. The
application of these models in landslide engineering has been discussed in detail by Fayaz
and Khader (2020) [41]. The overall methodology used in the present study is shown in
Figure 5.
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3.2.1. Multiple Linear Regression (MLR)

Multiple linear regression (MLR) was used to predict the chances of landslide in the
range of (1–3), where 1 is low, 2 is medium, and 3 is high.

The population regression line for the explanatory variables X1, X2, X3, . . . , Xn is
defined as

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + ε,

where
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Y = dependent variable (predicted value).
b0 = ‘constant’ (Y intercept), which is the value of Y when all the independent variables
are zero.
X1 through X7 = predictor or p distinct independent variables.
ε is the aspect of the random error that reflects the difference between the predicted and
fitted linear relationship; b1 through b7 are the estimated regression coefficients, which are
estimates of the unknown population parameters explaining the correlation between the
output response and dependent variable [40].

The MLR model statistics were used to determine the contribution of the variables
to the overall model. It is important to determine the percentage of importance of each
independent variable and specify whether the variable in the model is really contributing
significantly or not. The independent p-values of the variables were reviewed to determine
whether or not all the variables were statistically significant [42]. All the independent
variables used in the model were found to be significant, while the newly added variables
of LST and BUA (Built-up Area near the prone site) were both found to be highly significant.
The p-values of the model coefficients for the variables were evaluated; the p-value of the
LST was 8.40 × 10−5, which is nearly 99.99%, and the BUA was <2 × 10−16, which is very
close to 100%. Therefore, the results indicate that both the variables were highly significant
for the Landslide Prediction System.

The model was initially tested without the newly incorporated (LST and BUA) vari-
ables using the ‘l’ function in R-Programming. It showed a 95.79% significance (Accuracy),
with a Multiple R-squared of 0.9579 and an Adjusted R-squared of 0.9565. The accuracy
was improved further from 95.79% to 98.27% by including the new independent variables,
which implies that the variables are important and significant for landslide prediction and
the Early Warning System.

The overall significance statistics of the final improved model were calculated as
follows: the variance, also known as the Mean Square Error (MSE), was estimated using
Equation (1) [43].

s2 =
∑ei 2

n− p− 1
(1)

The residual standard error was 0.1275 on 151 degrees of freedom; the Multiple R-
squared was 0.9827, the Adjusted R-squared was 0.9819; the F-statistic was 1223 on 7 and
151 DF, and the p-value was <2.2 × 10−16.

The variables in the model contributed 98% to the overall model with an F-statistic
of 1223 on 7 and 151 DF and a ‘p-value’ of 2.2 × 10−16, which is equal to 1–2.2 × 10−17

and approximately equivalent to 100%. The F-statistic is a value used to determine if the
means between two populations are significantly different [44]. The F-statistic from an
F-Test is similar to the T statistic from a T-Test [45]. The T-Test is used to find whether a
single variable is statistically significant, while an F statistic is used to see if the group of
variables are jointly substantial [46]. The F statistic must be used in combination with the
p-value to determine if the overall results are significant. The p-value must be less than the
alpha level, which is 0.05 for the standard test; otherwise, the null hypothesis cannot be
rejected [47].

3.2.2. Decision Tree (Classification Tree)

A Decision Tree (DT) is a type of supervised machine learning algorithm where
a system generates output based on the training data (input and output) given to the
model [48]. The data are classified based on the various parameters and their importance
in the overall model [49]. The top node of the model represents a highly significant and
highly contributing variable, then a second one, and so on [50]. The two entities, leaves
and decision nodes, explain the tree, where the leaves denote results or the outcome, and
the decision nodes represent the nodes where the decisions are made [51]. It helps to make
excellent decisions/interpretations at every leaf based on the previous experience (data). It
clearly mimics human-level thinking and decision making [52]. The classification type of a
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decision tree with five terminal nodes is shown in Figure 6, and it was used to classify and
interpret the chances of landslides based on the training data.
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Figure 6. Classification and interpretation of the chances of a landslide based on the training data
using the decision tree algorithm.

The data were divided at the first node (SLP), which, according to the DT, is a highly
significant and highly contributing attribute to the overall model. The data at the first node
were split into two groups, data with an SLP value less than or equal to twenty-six and data
with an SLP value greater than twenty-six. Data with an SLP value greater than twenty-six
were then distributed into two on the basis of the DTRD (Distance to Road), whether the
data point was less than or equal to 5.1 or greater than 5.1. If it was less or equal to 5.1, then
the chances of a landslide were relatively high. If the value was greater than 5.1, then there
would be an 80% chance of a landslide, which was considered as a medium level warning.
Likewise, if the SLP was less than or equal to twenty-six, then the data were checked for
Rainfall (RF) at another level, which was also a highly contributing variable. If the value of
the RF was less than one, which is 0–10 mm, then the chance of a landslide was ‘1’, which
was low, while if the value was greater than one, the data were checked for DTRD. If the
DTRD value was less than or equal to 18.32, then the chance of a landslide was ‘2’, which
was a mid-level warning. If the value of DTRD was greater than 18.32, then there was a
nearly 30% chance of a level 1 (Low) warning and a 70% chance of a level 2 (Mid) warning.
The model was composed of five terminal nodes (response nodes), seven input variables,
and a single response variable (LC) for the prediction of landslides. The overall accuracy of
the model was calculated using a confusion matrix, which provided a holistic view of the
model. The model showed an overall accuracy of 95.7% for the testing data and 98.3% for
the training data. So we can say that this model is suitable for the classification of landslide
chance occurrences based on various essential and highly significant factors (variables).

3.2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is the hybrid of two intelligent
technologies, Fuzzy logic and Neural Networks [53]. Fuzzy logic is a Boolean logic exten-
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sion based on Lotfi Zadeh’s mathematical theory of fuzzy sets, which is a generalization of
classical set theory [54]. Fuzzy logic provides an advantageous flexibility of reasoning by
allowing inaccuracies and inconsistencies to be taken into account by introducing the notion
of degree in the verification of a condition, thus allowing a requirement to be in a state
other than true or false. The best thing about fuzzy logic is that it can provide a range of
outputs that we can use to determine the likelihood of landslides. A fuzzy inference system
consists of three parts, input (converts the crisp data into fuzzy data), engine (containing
rules and membership function), and output (generating a de-fuzzified output).

The Neural Network is used to forecast future values on the basis of the historical
data but does not have the ability of knowledge representation; so, the combination of both
fuzzy and neural networks provides ‘learning’ as well as ‘knowledge representation ability’.
ANFIS is based on the ‘Sugeno fuzzy mode’, where a rule ‘R’ can be represented as:

Rn: IF µAi (x) AND µBi (y) THEN f = pn x + qny +rn,

where “n” = the total number of rules
Ai and Bi are the ‘number of membership functions represented by’ in the antecedent

part of the rule ‘R’, and pn, qn, and rn are the linear variables of the subsequent part of the
‘nt’ rule.

ANFIS has five layers: one input layer, three hidden layers, and a single output layer,
excluding an input layer (layer 0) [54]. The inputs are fuzzified at the first layer, where
each node uses a ‘trimf” function to evaluate a membership value for a linguistic term.
The ‘trimf’ membership function was used for the input variables, since it showed a lower
training and testing error than the other membership functions. The second layer multiplies
the output from the first layer with a single factor, which performs min. (AND) operation.
The firing strength of the rule is perceived by multiplying the membership values, which
are denoted as µA_i (v_0) and µB_i (v_1), where a variable v_0 has a linguistic value of
A_i and v_1 with B_i as a linguistic value in the antecedent part of Rule i, estimated using
(Equation (2)). The third layer with’p’ nodes normalizes the output of the second layer and
generates the output as normalized firing strengths, which are calculated by dividing the
strength of each node’s node rule firing strength by the total strength of all firing rules,
shown as Equation (3). The fourth layer obtains the normalized firing strength as the input
and generates the first-order polynomial as the output. In this layer, every node calculates
a linear function where the multilayer feed-forward mechanism of the neural network is
used to adjust the function coefficients, shown as Equation (4). The fifth layer of the ANFIS
adds every incoming signal and provides the final output evaluated using (Equation (5)).

pi = µAi(v0)× µBi(v1), (2)

where µAi(v0) and µBi(v1) are the membership values, Ai is the linguistic value of v0, and
Bi is the linguistic value of v1.

pi =
pi

∑R
J=1 pj

, (3)

where pi is the firing strength of the ith rule computed in second layer.

pfi = pi(m0v0 + m1v1 + m2), (4)

where m′is are the parameters, i = n + 1, while “n” is the number of inputs at layer 0.

∑
i

pfi =
∑i pi fi

∑i pi
, (5)

where pfi is the output of node ‘i’, while the summation of the rule consequents is the final
output of the system.
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The ANFIS simulations were carried out using ANFIS and the Fuzzy Logic toolbox of
MATLAB 7.0. The data were divided using the 70% training and 30% testing split method.
The FIS (Fuzzy Inference System) generated using the grid partitioning technique was
used to tune the system parameters using the input and output training data. The training
algorithm used the combination of both the backpropagation gradient descent as well as
the least square method to model the training data. The ‘Trimf’ membership function with
three membership functions for each variable was used to train the model, while the epoch
number was kept constant at 50.

The model performance was evaluated using the root mean square error (RMSE) and
the mean absolute error (MAE). The RMSE is the standard deviation of the prediction errors
(residuals) [55]. The term “residuals” refers to the distance between the data points and
the regression line. The RMSE is a measure of how the residuals are distributed. In other
words, it indicates how closely the data are clustered along the line of best fit. The RMSE
measures the average squared difference between the predicted and actual value [55]. The
lower the RMSE value, the better the results. The RMSE is evaluated using Equation (6).
The model performance was also analysed using the MAE shown in Equation (7), where xk
and zk denote the network output and measure value from the kth element, respectively.

RMSE =

√√√√ 1
N
×

N

∑
K=1

(tk− yk)2 (6)

MAE =
1
N
×

N

∑
K=1
|xk − zk| (7)

The performance evaluation of the ANFIS model showed a very low training error
RMSE = 0.000299 and MAE = 0.00076. The model can be considered as a best fit prediction
model with a high coefficient of determination.

3.2.4. Random Forest (RF)

A supervised learning technique based on a principle of ensemble learning contains
‘n’ number of decision trees on different subsets of the given dataset, which increases
the predictive accuracy of the dataset [56]. Based on the output of each tree and the
majority prediction votes, it predicts the final output. The decision tree can also be used
for various machine learning applications, but the biggest drawback of the decision tree is
the overfitting of training data [57]. Overfitting occurs when the trees are grown deeply
to learn highly irregular patterns in the data. Random forest overcomes this limitation
through the creation of multiple trees on various subspace areas at the cost of significantly
reduced bias [58]. There are many other benefits to using RF approaches, for example,
outliers or missing data can be ignored, data transformation and rescaling are not essential,
and RF can handle both categorical and numerical data [59]. The RF model was developed
using the ‘random forest package’ in the RStudio environment.

The random forest can be considered one of the best machine learning algorithms for
its deep learning, classification, and prediction capabilities. The different number of trees
and variables tried at each split are used to find the best combination for the superlative
category and precise prediction outputs. The out-of-bag (OOB) error is used as a decision-
making factor for the best combination of trees and variables at each split. Table 2 denotes in
the first column the number of trees used in the random forest. The second column shows
the number of variables tried at each split, and the third column denotes the out-of-bag
(OOB) error.

As observed in Table 2, the rate of error decreased with the increase in the number
of trees in the forest. The best combination showing a low OOB was observed to be with
fifty-five trees trying two variables at each split. The confusion matrix of the model is
shown in Table 3.
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Table 2. The number of trees used in the random forest algorithm and the corresponding
out-of-bag errors.

Number of Trees (ntree) Number of Variables Tried at Each Split
(mtry) Out-of-Bag (OOB) Error

20 2 0.0276
28 4 0.0259
35 2 0.0198
44 4 0.0192
48 2 0.0138
50 3 0.0127
55 2 0

Table 3. Confusion matrix for the random forest algorithm for the LEWS.

Classes 1 2 3 Class Error

1 72 0 0 0
2 0 53 0 0
3 0 0 36 0

The confusion matrix evaluated for the model showed 100% accuracy, which we can
consider as the best model for predicting landslide type problems. The experiments were
carried out using two approaches known as hold out and cross-validation. In holdout, the
data were portioned into two partitions (independent data sets). Here, 75% of the data was
used to train the model, and the remaining 25% was used to test the model for accuracy. The
cross-validation approach was used to find the best model and the best accuracy among
the various models and methods utilized for future prediction. The default RF model
was tuned using the “tuneRF” function in R-Programming to decrease the model’s error
rate, which was initially around 0.276 at ntree = 20 and mtry = 2 and dropped to zero at
ntree = 55 and mtry = 2. The OOB error visualization is shown in Figure 7.
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The above figure shows how the OOB error decreased with the increase in the number
of trees in the model. The model offered a high error rate between zero and twenty-five trees,
which decreased from twenty-five to thirty-three and increased again from thirty-three to
thirty-seven. After thirty-seven, the error dropped to zero and became constant.

Accuracy assessment is a crucial aspect of defining the quality of LULC maps. We
collected several sample reference points from high-resolution Google Earth historical
imagery and compared that with the mapped LULC each year. We performed stratified
random sampling to collect the reference points. Based on the derived confusion matrices,
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the overall accuracy of the LULC classification of 2020, 2011, and 2000 was 96.32%, 94.12%,
and 92.65%, respectively. The various other accuracy indices are shown in Table 4.

Table 4. Comparative accuracy assessment of the four different ML algorithms used in this study.

S No. Model ROC-AUC RMSE MAE Sensitivity
(TPR)

Specificity
(TNR) Accuracy

1. MLR 0.973 0.0757 0.0377 - - 98.27%
2. ANFIS 0.997 0.000299 0.000076 - - 99.80%
3. DT 0.95 0.0949 0.0552 0.94 0.96 95.70%
4. RF 1 0.0684 0.0186 1 1 99.50%

4. Results and Discussion

In this study, four machine learning models were used to predict landslides using
both internal (geological and morphological) and external responsible (triggering) factors.
The use of the two new significant responsible triggering factors (LST and BUA) resulted
in improved model efficiency compared to when either one or both of these factors were
not considered.

4.1. Establishing the Best Model for a Landslide Early Warning System (LEWS)
4.1.1. Multiple Linear Regression (MLR)

In the Multiple Linear Regression (MLR) model, the newly incorporated parameters
were found to be highly significant and contributed to the overall model, as shown in
Table 4 above. The models were evaluated using various tests, e.g., AUC, RMSE, confusion
matrix, sensitivity, specificity, and mean absolute error. These showed the overall testing
statistics and accuracy of the various machine learning models used to predict landslides.
Figure 8 shows the algorithm flowchart used to perform the landslide chance estimation
using the MLR model. At the end of the model run (stop), the results were generated.
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The prediction precision of the model was calculated by finding the difference between
the predicted and observed data values. Using the function ‘head (pred), head (testing)’ in
RStudio, the difference between the two values was evaluated by generating head (top)
values of both the predicted and observed values. Both were found to be highly identical
with very little difference. Further, the accuracy of the MLR model was improved from
95.79% to 98.27% by including the new variables in the model (Table 5).
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Table 5. Significance of the variables used in the MLR algorithm.

Estimate Std. Error t Value Pr(>|t|)

(Intercept) −4.483 × 100 1.301 × 100 −3.445 7.39 × 10−4 ***
RF 1.424 × 10−1 2.509 × 10−2 5.675 6.89 × 10−8 ***
LST 1.660 × 10−2 4.107 × 10−3 4.042 8.40 × 10−5 ***
SM 2.848 × 10−3 9.985 × 10−4 2.852 4.95 × 10−3 **
SLP 9.355 × 10−3 1.539 × 10−3 6.080 9.43 × 10−9 ***
DTRD −8.189 × 10−3 1.565 × 10−3 −5.232 5.51 × 10−8 ***
DTR −9.605 × 10−4 2.592 × 10−4 −3.706 2.95 × 10−4 ***
BUA 3.458 × 10−6 1.034 × 10−6 3.343 1.04 × 10−3 **

*** p < 0.001, ** 0.001 < p < 0.01.

The predicted vs. observed data values are shown in Tables 6 and 7, respectively, while
the graph in Figure 9a shows the predicted and observed data values graphically, which
were highly identical and similar. Figure 9b, shows the high R2 between the modelled and
predicted landslide chances using the MLR model.

Table 6. Modelled values for landslide chances using MLR.

Predicted Values for Landslide Chances

5 14 16 26 28 29
3.201248 1.029772 2.706106 1.064384 1.334708 1.910363

Table 7. Testing data values used as observational datasets for Landslide chances.

Observed (Testing) Data Values

RF LST SM SLP DTRD DTR BUA LC

5 3 302.9989 312.9988 48 3.4 32.9 57884.84 3
14 1 296.7417 297.4413 14 27.0 289.4 28.40 1
16 4 301.0857 325.2137 28 3.6 87.5 54787.99 3
26 1 293.8275 299.4258 14 37.9 216.8 37.98 1
28 1 295.4806 296.5028 15 4.7 289.0 722.50 1
29 2 299.2426 299.1834 17 15.4 132.5 23676.47 2

RF, Rainfall LST, Land surface temperature SM, Soil moisture DTRD, Distance to road DTR, Distance to river BUA,
Built-up area LC, Landslide chances.

As the method of experimentation, the model was tested by making some example
predictions based on the different input data values provided to the model. The model
predicted landslide chances as the upper limit, lower limit, and fit as shown in Table 8.
Thus, the predictions generated by the MLR model were reliable.

Table 8. The modelled landslide chances as the upper limit, lower limit, and fit.

Prediction Results

(1) predict(model, data.frame(RF = 3, LST = 300, SM = 340, SLP = 55, DTRD = 5, DTR = 20, BUA = 60776.22), interval = ‘confidence’)
fit lwr upr

3.237494 3.170889 3.304098
(2) predict(model, data.frame(RF = 4, LST = 300, SM = 340, SLP = 55, DTRD = 5, DTR = 20, BUA = 60776.22), interval = ‘confidence’)

fit lwr upr
3.379866 3.312526 3.447207

(3) predict(model, data.frame(RF = 2, LST= 296, SM = 300, SLP = 30, DTRD = 20, DTR = 140, BUA = 30005.22), interval = ‘confidence’)
fit lwr upr

1.991868 1.943492 2.040245
(4) predict(model, data.frame(RF = 1, LST = 280, SM = 279, SLP = 6, DTRD = 45, DTR = 298, BUA = 100), interval = ‘confidence’)

fit lwr upr
0.5047875 0.3681545 0.6414206

(5) predict(model, data.frame(RF = 2, LST = 298, SM = 280, SLP = 14, DTRD = 45, DTR = 298, BUA = 500), interval = ‘confidence’)
fit lwr upr

1.029537 0.9467069 1.112368
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Figure 9. (a) Graph showing the predicted vs observed landslide chances (LC) using the MLR model
against the model index values. (b) Predicted vs observed values for LC (1 Low, 2 Medium, and
3 High).

4.1.2. Decision Tree

The Decision Tree Model classified the testing data into various classification branches,
which help to predict the result easily and precisely [60]. The model comprised five
response nodes, seven input variables, and a single response variable (LC). A confusion
matrix that provided a holistic view of the model was generated to calculate the model’s
overall accuracy. The model showed an accuracy of 95.7% for the testing data and 98.3%
for the training data. The confusion matrix for both the training and testing data is shown
in Tables 9 and 10, respectively. Figure 10 shows the conceptual algorithm flowchart of
this model.

Table 9. Confusion matrix for the decision tree algorithm used in assessing the best algorithm for the
LEWS (Training data).

Actual

Predicted 1 2 3
1 71 0 0
2 2 59 0
3 0 1 40
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Table 10. Confusion matrix for decision tree algorithm used in assessing the best algorithm for the
LEWS (Testing data).

Actual

Predicted 1 2 3
1 19 0 0
2 0 17 0
3 0 2 9
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The accuracy of the training data was calculated using Equation (8)

Accuracy =
TN + TP

TP + FP + TN + FN (Total elements)
(8)

Accuracy =
171
174

= 0.9828

Likewise, the accuracy of the testing data was evaluated as:

Accuracy =
45
47

= 0.957

Therefore, the training data showed 98.3% accuracy, while the testing data showed
95.5% accuracy. The sensitivity and specificity were also calculated, as shown in Table 4, to
find the significance and accuracy of the model.

The sensitivity or true positive rate (TPR) was calculated using Equation (9).

TPR =
TP

(TP + FN)
, (9)

where
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TP = Number of True Positives;
FN = Number of False Negatives.

The specificity or the true negative rate (TNR) was calculated using Equation (10).

TNR =
TN

TN + FP
, (10)

where

TN = Number of True Negatives;
FP = Number of False Positives.

4.1.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS), a novel hybrid prediction
algorithm blended with the learning abilities of neural network and transparent linguistic
representation of the Fuzzy system, was used to generate a range of prediction responses to
determine the degree of warnings for landslides that resolved the issue of the binary type of
prediction classification used in various earlier studies. ANFIS is a hybrid intelligent system
where both a neural network and a Fuzzy Inference System (FIS) are combined for better
outcomes. The model followed a holdout data partitioning approach with 75% training
and 25% test data for better predictions. The cross-validation technique was used to find
the best model based on the prediction accuracy, execution time, and membership function.
The best membership function was determined by using all membership functions. Table 11
shows the results from the ANFIS model. Figure 11 shows the algorithm flowchart used
to perform the landslide chances estimation using the ANFIS. As can be seen from the
flowchart, the testing was performed on the optimum variables once the training was
finished during the early stages of the model run.

Table 11. Results from the ANFIS model.

Model Epochs Membership
Function

Optimization
Technique

Training
Error

(RMSE)

Avg. Testing
Error

1 50 trapmf Hybrid 0.084455 0.000450

2 50 gbellmf Back
Propagation 0.077573 0.000340

3 50 trimf Hybrid 0.048609 0.000299
4 50 gaussmf Hybrid 0.062222 0.000330

5 50 gauss2mf Back
Propagation 0.83243 0.000547

6 50 primf Hybrid 0.59912 0.000646
7 50 dsigmf Hybrid 0.16322 0.000402

8 50 psigmf Back
Propagation 0.16322 0.000402

All the ANFIS simulations were conducted using the ANFIS, Fuzzy Logic toolbox
of MATLAB v. 7.0. The ANFIS model was tested by running the model in the MATLAB
environment. An example prediction was generated using the model. The prediction
generated was found to be highly significant and accurate. The model showed a minimal
training error RMSE = 0.000299 and an average testing error of 0.048609, which is very
low; so, the model can be considered a best-fit model for landslide predictions. The
MATLAB code used for the ANFIS model execution in Fuzzy Logic toolbox environment
was as follows:

Details of the ANFIS model.
Number of nodes: 4426
Number of linear parameters = 2187
Membership function type = Trimf
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Number of membership functions = 3
Total number of parameters = 2250
Number of nonlinear parameters = 63
Number of fuzzy rules = 2187
Number of training data pairs = 158
Model Execution.
g= readfis (‘T335.fis’);
r = input (‘RF (Rainfall in mm (1-4)) =’);
a = input (‘LST (Land Surface Temperature (284-306)) =‘);
b = input (‘SM (Soil Moisture (283-305)) =‘);
c = input (‘SLP (Slope (6-66)) =‘);
d = input (‘DTRD (Distance to Road (1-45)) =‘);
e = input (‘DTR (Distance to River (10-298)) =‘);
f = input (‘BUA (Built-up area near Prone Site (1-29965)) =‘);
g = evalfis ([r a b c d e f], g);
disp ([‘Chances of Landslide:’, num2str(h)]);
%h = output (‘Chances of Landslide is:’);
%xlswrite (‘RPredict’,h);
Response and output result of the model.
Input Variables and Input Values
RF (Rainfall in mm (1-4)) = 2
LST (Land Surface Temperature (284-306)) =290
SM (Soil Moisture (283-305)) =292
SLP (Slope (6-66)) = 14
DTRD (Distance to Road (1-45)) = 41
DTR (Distance to River (10-298)) = 290
BUA (Built-up area near Prone Site (1-29965)) = 500
Result: Chances of Landslide: 0.99562
The model generated an output ‘Result’ as Chances of Landslides = 0.99562, nearly

equal to ‘1’. Therefore, it meant that the model generated a ‘Low’ level warning for the
input data provided. The warning output generated by the model was found to be highly
accurate with a low RMSE and misclassification.
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4.1.4. Random Forest (RF)

Random Forest, a machine learning algorithm known for its deep learning, classifica-
tion, and prediction capabilities, was used to classify and predict the chances of landslides.
Training data were provided as an input to the model, which classified it into various classes
based on the variable importance and its significance to the overall model. The model
tried different numbers of trees and variables at each split to find the best combination for
superlative classification and precise predictions. Figure 12 shows the algorithm flowchart
used to perform the landslide chances estimation using the random forest model; it can be
seen that this model uses extensive processes and loops for calculating the training dataset.
This is the reason for its very high precision and accuracy in any machine learning-based
land system process modelling.
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Model Details
Number of trees = 55
OOB estimate of error rate = 0%
ROC Area = 1 (100%)
Mean absolute error = 0.0186
Relative absolute error = 4.2596%
No. of variables tried at each split = 2
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Correctly Classified Instances = 66 (100%)
Root mean squared error = 0.0684
Incorrectly Classified Instances = 0 (0%)
Root relative squared error = 14.5608%
The model showed nearly about 99–100% accuracy, with 100% correctly classified

instances. The model’s error rate was initially around 0.276 at ntree = 20 and mtry =2,
which dropped to zero at ntree = 55 and mtry = 2 as shown in (Figure 6). The prediction
accuracy of the model was analysed by comparing and calculating the difference between
the predicted and observed data (testing data) values, which was as follows:

1 2 3 1 1 3 (Head values of predicted data set: (head (p1))

1 2 3 1 1 3 (Head values of testing data set.: head(test$LC))

The model showed approx. 100% accuracy when matched with the data that the
particular tree had not seen (testing data). So, the model can be considered as a best-fit
model for the classification and prediction of landslides.

4.2. Landslide Early Warning System (LEWS) and Land System Processes in the Rugged
Himalayan Mountains

We performed multiple experiments that showed that ANFIS and RF outperformed
the other proposed methods for establishing a landslide early warning system for the
stretch of national highway between Chanderkote and Jawahar tunnel in J and K, India. All
the independent variables used in both models were found to be significant. At the same
time, the newly added variables LST and BUA (Built-up Area near the prone site) were also
highly influential in increasing the accuracy of the model results, which until now have
not been used to predict the chances of landslides. The evaluated P-values (significance
of variables) showed that both variables were highly significant and contributed to the
models. The overall prediction accuracy improved from 95% to 99% in ANFIS and the
Random Forest algorithm. From these results, it is proposed that along the studied stretch
of the national highway, at all vulnerable sites, sensors that provide information about the
real-time ambient soil moisture and rainfall measurements should be installed. This can be
used in the proposed LEWS system to provide real-time information about the chances of
occurrences of landslide events using other satellite-derived variables.

The main factor contributing to the high landslides in the study area is the slope. In
other words, surface topography is one such landscape characteristic that helps understand
why some places are comparatively more vulnerable to landslides than others [61–64]. The
topography has a significant effect on landslide kinematics [65]. The region’s topography
includes incised engraved valleys and rugged mountains with narrow gorges and very
steep slopes having no or very little vegetation over the slopes [66]. To understand the
higher vulnerability of the area to landslides, we created a buffer of 5 km around the
studied stretch of the national highway (Figure 13). It can be observed that within this area,
the elevation ranges from 605 m to 3666 m, which ascribes the study area with a higher
relief and slope (Figure 13a). The other manifestation of the elevation is slope and contours,
helping to visualize surface topography more intuitively. The slope angle formed one of
the essential inputs to all the models. As shown in Figure 13b, the percent slope rise in the
study area within the 5 km radius is exceptionally high, ranging from 0.00 to 160.28. Such
areas with extremely high slope rises are typical of Himalayan landscapes. It provides the
landslides with the required gravitational force to occur [67]. According to many studies, it
is a key factor causing slope instabilities [68,69]. The slope angle governs the retention of
moisture and vegetation on the slopes, affecting its stability and soil strength. Slope angle
affects the amount of rainfall falling on the slope due to the impact of wind on the slope,
diverse slope aspects, and curvature [70].
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Various studies in the Himalayan regions have carried out landslide assessments.
Studies have evaluated the impact of landslides by assessing their velocity, damaged area,
and the distance of their runouts. Guo et al., (2022) carried out an in-depth analysis of the
causes of the landslides and determined the deposit patterns using finite difference and
numerical methods. Similar to the present study, this study evaluated the accuracy of the
model using three new variables, friction coefficient, critical velocity, and steady friction
coefficient. Studies have concluded that landslides are governed by regional geomorphic,
geological, and climatic conditions, and thus any assessment requires an evaluation of
all the contributing factors [71]. In addition, erratic rainfall is also one of the important
triggering factors.

The slopes along NH 44 national highway have suffered huge deformations due
to heavy vehicular traffic, road widening, construction along the highway, and tectonic
movements [68–70]. The area from ‘Nachlana’ to ‘Seri’ is highly prone to landslides, with
many active landslides present in the area. Most of the landslides on the National Highway
were reported and identified in the same region. Therefore, this area can be considered
a highly prone and vulnerable area to landslides. The landslide occurrences resulting
from various other parameters in this area are strongly increased due to heavy traffic on
this highway. Studies have shown how traffic intensity affects the frequency of landslide
occurrence on this highway [66,68,69]. The vibrations due to heavy transport, which
includes the most significant proportion of heavy motor vehicles, is possibly the force
influencing the mass movements in this area. Road construction along the mountainous
region is often simultaneously accompanied by mining, and the slopes become unstable and
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result in landslides after a spell of rainfall. Moreover, the consequences become disastrous
when the conditions are as on the NH 44 highway. Studies have been carried out that have
evaluated the impact of rainfall on rock deformations. While assessing such a relationship,
Li et al., (2022) concluded that the water content of the land mass movement has a direct
relationship, and it is the result of rainfall variability that induces the failure of the soil
interlayers and results in landslides. Such studies aimed to provide landslide prediction
using real-time information about rainfall and soil moisture condition, similar to what has
been achieved in the present study [72].

We have also shown the 300 m contours of the study area (Figure 13b). The contours of
the study area range from 495 m to 4510 m, with very steep slopes that can highly influence
the landslides and rockfalls over the area. Contour lines are important for landslide
investigation and analysis because they allow us to investigate the overall topography
of the landmass. In recent years, many studies have been carried out on the effect of
topography on landslides. Different terrain mechanisms were explored with the help of
various indoor model experiments [73–75], and the landslide masses’ mechanical properties
were explored with varying levels of moisture and terrain structures. All the parameters
used in this study contributed to the landslides’ occurrence. According to various studies,
moisture (precipitation) and topographical properties play a significant role in triggering
landslides [76–79]. The excessive moisture in the soil increases the pore pressure, which
decreases the shear strength of the soil and leads to slope failure [78].

Based on the previous research [68], and the current analysis, the key factors respon-
sible for landslides on the Jammu Srinagar National Highway assessed were intensive
rainfall events, anthropogenic activities, slope morphology, heavy traffic, vegetation den-
sity, changes in ground and surface water, land surface temperature (LST), and ongoing
climate change, which has exacerbated their frequency of occurrences [80–86]. Rainfall is
a common factor triggering landslides. Intense or prolonged rainfall events decrease the
shear strength and internal friction between the soil particles and cause the soil to slide
downward, causing often fatal landslides [87,88]. There are also increases in the extreme
precipitation events over the study area (Jammu and Kashmir), which have the potential
to increase the frequency of natural hazards such as floods, landslides, snow avalanches,
floods, GLOF, and LLOF [89,90]. Further, the soil profile on the slopes of this area is loose
naturally; hence, a low intensive rainfall event is enough to trigger a landslide [68]. This is
mainly because the mountain characteristics near the study area, which is dominated by
weak metamorphic rocks such as lithosole, sedimentary rocks, and semi-consolidated to
consolidated sandstones and siltstones, show active weathering processes and liquefaction
properties during prolonged precipitation events (Siwalik Himalayan Belt) [91–95]. The
weathering and liquefaction properties of the stones deposit a layer of clay and silt material
on the slopes [96–99]. At the same time, the sandstones are transformed into small and
fine-grained rock pieces and granules, which make slopes highly unstable and prone to
failure [100]. Most of the land failures in the study area are covered with thick colluvium
material, claystone, mudstone, and siltstone [68]. In contrast, others are covered with
sedimentary rocks and sandstone granules, making these sites highly prone to rainfall-
induced land failure [68]. All these factors make the region highly susceptible and prone to
landslides [68,89,100–102].

5. Conclusions

This paper used field data, satellite remote sensing, and different machine learning
methods to create a landslide early warning system for the selected stretch of the national
highway NH 44 in Jammu and Kashmir. Four machine learning approaches were explored
(Multiple Linear Regression, Decision Tree, Random Forest, and Adaptive Neuro-Fuzzy
Inference System) to deduce the most accurate model for a LEWS for accurate landslide
predictions. The proposed methods were validated and tested using various statistical
and machine learning tests. Two new parameters were included (BUA and LST), which,
so far, have not been used in any study; they were found to be highly significant and
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contributed to all the models’ accuracy and prediction. The ANFIS and Random Forest
models outperformed the others and showed a higher accuracy, a lower misclassification,
and a lower mean square error. We are further including more field sites in the analysis to
experiment with the critical values of the variable at many other vulnerable landslide sites
on the national highway stretch. Including more locations in the evaluation will help the
hazard managers use appropriate sensors at vulnerable locations to provide better early
warnings. This study will help the region’s decision makers and policy makers to manage
the landslides with informed knowledge and insights to cope with the damage they cause
every year.
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