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Insight, part of a Special Feature on Catastrophic Thresholds, Perspectives, Definitions, and
Applications
Natural Length Scales of Ecological Systems: Applications at Community
and Ecosystem Levels

Craig R. Johnson

ABSTRACT. The characteristic, or natural, length scales of a spatially dynamic ecological landscape are
the spatial scales at which the deterministic trends in the dynamic are most sharply in focus. Given recent
development of techniques to determine the characteristic length scales (CLSs) of real ecological systems,
I explore the potential for using CLSs to address three important and vexing issues in applied ecology, viz.
(i) determining the optimum scales to monitor ecological systems, (ii) interpreting change in ecological
communities, and (iii) ascertaining connectivity between species in complex ecologies. In summarizing
the concept of characteristic length scales as system-level scaling thresholds, I emphasize that the primary
CLS is, by definition, the optimum scale at which to monitor a system if the objective is to observe its
deterministic dynamics at a system level. Using several different spatially explicit individual-based models,
I then explore predictions of the underlying theory of CLSs in the context of interpreting change and
ascertaining connectivity among species in ecological systems. Analysis of these models support predictions
that systems with strongly fluctuating community structure, but an otherwise stable long-term dynamic
defined by a stationary attractor, indicate an invariant length scale irrespective of community structure at
the time of analysis, and irrespective of the species analyzed. In contrast, if changes in the underlying
dynamic are forcibly induced, the shift in dynamics is reflected by a change in the primary length scale.
Thus, consideration of the magnitude of the CLS through time enables distinguishing between circumstances
where there are temporal changes in community structure but not in the long-term dynamic, from that
where changes in community structure reflect some kind of fundamental shift in dynamics. In this context,
CLSs emerge as a diagnostic tool to identify phase shifts to alternative stable states associated with loss of
resilience in ecological systems and thus provide a means to interpret change in community composition.
By extension, comparison of the CLSs of ostensibly similar communities at different points in space can
reveal whether they experience similar underlying dynamics. Analysis of these models also reveals that
species in the same community whose dynamics are largely independent indicate different length scales.
These examples demonstrate the potential to apply CLSs in a decision-support role in determining scales
for monitoring, interpreting whether change in community structure reflects a shift in underlying dynamics
and therefore may warrant management intervention, and determining connectivities among species in
complex ecological systems.
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INTRODUCTION

Important Issues in Applied Ecology

Three important challenges in applied ecology are
(1) determining the appropriate spatial scales for
monitoring communities and ecosystems, (2)
interpreting temporal change in community and

ecosystem structure, and (3) ascertaining the
strength of interaction (here referred to as
connectivity) between species that do not interact
directly. Because ecological dynamics are
influenced by myriad processes operating at a range
of scales in time and space, and because complex
interactions between different processes may arise,
sampling the same system at different scales is likely
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to yield different patterns and behaviors (Wiens
1989, Levin 1992). Even if the scales at which
particular processes manifest are known, it is
frequently the goal of ecosystem monitoring to
detect trends in behavior at a system level. If
identifying system trends is desirable, then it is
important to sample at the scale that most clearly
reflects the underlying deterministic dynamics
(Rand and Wilson 1995, Keeling et al. 1997, Pascual
and Levin 1999, Wilson and Keeling 2000). If the
sampling scale is too small the deterministic or
“trend” signal will be swamped by noise, whereas
if it is too large then trends in different areas of a
landscape that are essentially independent are
averaged and trivial. However, ecologists typically
make decisions about scales for monitoring based
on a mix of expedience (what is practicable) and
experience (what seems to work). More objective
means to identify appropriate scales for monitoring
have been elusive.

A related challenge is the interpretation of temporal
change in community or ecosystem structure. It is
vital that ecologists (and managers) are able to
distinguish between shifts in community composition
attributable to the inherent or “natural” fluctuations
of a system with otherwise stable long-term
dynamics, and those reflecting some kind of
fundamental change in the underlying dynamics
(Rand and Wilson 1995). Developing this capacity
will help minimize the conflicts and confusion that
arise from disagreement about the existence and
meaning of particular ecological change (e.g., see
Fabricius and De’ath 2004), especially in the
context of environmental impact, which has far-
reaching implications for managers and other
stakeholders in the natural environment.

Survey protocols developed for analysis by
particular statistical models, such as the “beyond
BACI” designs (Underwood 1994), can be helpful
to determine whether community structure and
temporal variation at a particular site of interest
might differ from that of putative control sites (but
see Stewart-Oaten and Bence 2001). However,
ignoring deeper philosophical issues with this kind
of hypothesis-testing approach (e.g., Berger et al.
1997, Johnson 1999, Eberhardt 2003, Hobbs and
Hilborn 2006), even these relatively elaborate
designs shed only limited light on a more
fundamental interpretation of change. Even when
the dynamics at several sites are described by the
same attractor, community structure and patterns of
community change at one site may differ

substantially from that at others simply because the
dynamics in different areas of space are out of phase.
In other words, the pattern of temporal change in
community structure might be asynchronous but
otherwise similar at all sites. Although ecologists
have long recognized that communities at different
sites might be at different stages of a particular
dynamic (e.g., Watt 1947), the challenge to interpret
an observed temporal change is perennial.
Particularly where changes in community structure
are potentially linked to management responses, it
is not sufficient to know that change has occurred,
but it is important to identify whether the change is
the result of a fundamental shift in underlying
dynamics (Rand and Wilson 1995) and, ultimately,
its underlying cause (e.g., Underwood 1996,
Fabricius and De’ath 2004).

The concept of connectivity (i.e., interaction
strength) among species is a central theme in both
theoretical and empirical community ecology (e.g.,
see Laska and Wootton 1998) to the extent that it is
covered in many ecological texts (e.g., Ricklefs
1990, Pimm 1992, May 2001). In applied work,
knowledge of connectivity is important because it
provides insight into the “downstream” or “ripple”
effects of changes in abundance of particular
species. Patterns of connectivity are, of course,
fundamental to work concerned with trophic
cascades and issues of “top-down” vs. “bottom-up”
control of community dynamics (e.g., Schmitz et al.
2000, Bascompte et al. 2005, Borer et al. 2005).
However, most empirical work to date has usually
managed to identify connectivities as a result of
direct interactions between pairs of species, and in
short interaction “chains” or simple food webs (e.
g., Frank et al. 2005). In more complex systems, the
connectivity between species resulting from
indirect interactions can be difficult to detect
because effects of fluctuations in one species on
others in the system can be complex (Bruno and
O’Connor 2005). Proxies of direct and indirect
interactions such as stable isotopes (e.g., Connolly
et al. 2005) and fatty acids (e.g., Phillips et al. 2003)
have been helpful to identify more diffuse
connectivities, but only for trophic interactions
among species. For non-trophic interactions, such
as competition, identifying connectivities in the
dynamics of species that interact indirectly can be
difficult.

Insight and progress into the challenges of
determining optimum scales for monitoring,
interpreting change in ecological systems, and
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identifying connectivity among species is possible
through consideration of the characteristic length
scales (CLSs) of ecological systems. In this paper,
I briefly review the concept of CLSs and, by way
of example, analyze the dynamics of spatially
explicit stochastic individual-based-models to show
that CLSs may be useful to address these issues in
applied ecology.

A Brief Introduction to the Concept of CLSs

Scaling thresholds in the description of spatial
pattern and heterogeneity in species’ abundances in
ecological systems have been recognized for over
five decades (e.g., Greig-Smith 1952, Kershaw
1957). This early work showed the importance of
using an optimum sampling scale, identified using
a type of variance spectrum, to identify and describe
spatial pattern. It was the genesis of a suite of
techniques, all based on variance spectra of various
kinds, to identify “natural scales” of ecological
systems (Tyre et al. 1997 present a useful summary
of much of this work). However, all of these
approaches were based on assumptions that the
mean abundances of species were invariant in time
and, usually, in space, and so although these
methods could provide insight into ecological
models with these properties (e.g., De Roos et al.
1991, Tyre et al. 1997), their application to real
ecological systems was limited. Indeed, in
attempting to apply several techniques to data from
real systems, Tyre et al. (1997) concluded that the
search for CLSs in real systems “seems to be futile.”

Two other research groups tackled the problem from
a different perspective, acknowledging at the outset
that real systems were anything but steady state, and
much more likely to be characterized by complex
oscillatory non-linear dynamics. Keeling et al.
(1997) and Pascual and Levin (1999) applied
techniques from non-linear time series, using
space–time data describing the dynamics of a single
species to reconstruct the attractor of its system in
a phase space of minimum dimensions topologically
equivalent to the attractor of the full system (Takens
1981). The approach developed from the earlier
work of De Roos et al. (1991) and Rand and Wilson
(1995), who examined how variance changed with
the size of “windows of observation” in two-
dimensional spatial systems with stationary means.
This approach assumes that the system has an
underlying deterministic dynamic and that the
species in the system are dynamically linked, either

directly or indirectly. Providing these assumptions
are met, the technique enables building the attractor
in phase space from time delay coordinates of a
single species, i.e., the dynamics of the whole
system are predicted from observations through
time of a single variable in the system.

The attractor reconstruction is then used to make
predictions of the time series, and the predicted and
actual trajectories are compared to quantify the
magnitude of the error in the prediction. The
approaches of Keeling et al. (1997) and Pascual and
Levin (1999) differ largely in how they define this
“prediction error.” Keeling et al. (1997) define a
quantity termed “error-X” whereas Pascual and
Levin (1999) use a metric they call “prediction-r2,”
and they are both measures of variance of some
form. Error-X is a scaled error variance, whereas
prediction-r2 is analogous to R2 in standard linear
regression.

The crucial point is that the magnitude of the
prediction error changes with the scale of
observation of the system, and so a variance
spectrum can be produced showing changes in the
prediction error with the scale of observation. As
the size of a window of observation on a landscape
increases, so does the magnitude of the prediction
error to a point where the curve begins to level out.
The point at which the slope of the variance
spectrum changes most rapidly, i.e., where it first
begins to flatten out, identifies a scaling threshold
that is defined as the CLS. Typically, this scale is
slightly larger using error-X than is the estimate
obtained using prediction-r2 (Pascual and Levin
1999, Habeeb et al. 2005). This is not surprising as
the CLS obtained from prediction-r2 defines the
scale at which trends in the deterministic dynamic
of a system will be most clearly in focus, whereas
error-X defines the minimum scale at which the
complete spatial dynamics of the system can be
observed. For either measure, observations at scales
less than the CLS will be increasingly influenced
by noise, whereas observations at scales larger than
the CLS will be averaging across parts of the
landscape whose dynamics are essentially
independent, and so any trend identified will be
largely meaningless as a descriptor of the
deterministic dynamics.
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Recent Developments and Application to Real
Ecological Systems

The single largest problem with the techniques of
Keeling et al. (1997) and Pascual and Levin (1999)
is that they require long time series of highly
spatially resolved data to reconstruct the system
attractor. Time series of at least ~1000 “maps” of a
landscape, but preferably several thousands of
maps, are required. For this reason, these
approaches can only be applied to models of
ecological systems because this kind of data is not
available for natural systems. Habeeb et al. (2005)
addressed this problem and showed that by
substituting space for time, the attractor
reconstruction can be undertaken from very short
time series of as few as three consecutive maps, or
even by using a single map. They examined several
spatially explicit models and showed that estimates
of the CLS obtained from their technique based on
short time series were identical to those based on
the original work using long time series.

Subsequently, it has been shown that the short time
series approach yields consistent and unambiguous
estimates of the CLS for real ecological systems.
Moreover, as predicted by the underlying theory,
the estimate of the CLS is similar irrespective of the
species used for the attractor reconstruction, even
though different species in the ecological
community they examined have vastly different
taxonomic affiliations, life history characteristics,
abundances, and population dynamics (Habeeb
2005; R. Habeeb, C. Johnson, S. Wotherspoon,
unpub. ms.). This result emphasizes that the CLS is
truly a system-level measure.

It is worth noting that in systems with more complex
dynamics, the prediction-r2 spectrum reveals
secondary length scales of greater magnitude than
the “primary length scale” indicated by the point
where the spectrum first begins to flatten. These
secondary scales are thought to reflect the scale of
emergent dynamics that arise through some form of
self-organization in the system (Habeeb et al. 2005).

These developments are exciting because they show
that real ecological communities demonstrate
unambiguous CLSs, and that they can be estimated
reliably. Importantly, because (by definition) the
CLS indicated by the prediction-r2 spectrum defines
the optimal scale at which to observe a system to
identify the underlying deterministic trend, the
technique provides an objective means to assist

decisions about optimal scales for monitoring real
ecological systems. The technique can also be
applied at the habitat level, examining changes in
the spatial arrangement of interacting habitats, to
identify the scale at which trends in habitat
dynamics are most readily identified (Habeeb et al.
2007). This information, whether at the level of
species or habitat types, is useful to both managers
and applied ecologists. However, it needs to be
reiterated that the CLS is not necessarily the scale
at which to observe a particular ecological process
of interest, because different processes with large
effects on ecological dynamics operate across a
large range of scales. Rather, the CLS is a system
level property that defines the scale at which to
observe the system given the myriad processes that
influence its dynamic.

Applying CLSs to Interpret Change and Assess
Connectivity in Ecological Systems

Given developments of the technique that enable
application to real ecological systems (Habeeb
2005, Habeeb et al. 2005, 2007; R. Habeeb, C.
Johnson, S. Wotherspoon, unpub. ms.), it becomes
useful to examine whether consideration of CLSs
can assist with identifying connectivities in
ecological systems and with the vexed issue of
interpreting ecological change. Based on the
underlying theory (Keeling et al. 1997, Pascual and
Levin 1999, Habeeb et al. 2005) it can be predicted
that:

 
1. Whereas the community structure of an

ecological system might show large
fluctuations, if the underlying dynamic of the
community is invariant then analysis of the
system should yield identical values of the
CLS irrespective of community structure at
the time of analysis or the nature of the species
examined;
 

2. Changes in the CLS of a community reflect
a fundamental shift in the underlying
dynamics; and
 

3. If two species in the same community indicate
dissimilar length scales, then their dynamics
are largely independent.
 

 Here, I examine these predictions using spatially
explicit individual-based model ecological systems
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and show that, with some caveats, these predictions
hold. These examples demonstrate the potential to
apply this approach to real ecosystems, and thus
define a need to obtain robust spatial ecological data.

METHODS

General Formalism of Spatially Explicit
Models

The models examined in this study are all produced
using the Compete© software (available at http://w
ww.zoo.utas.edu.au/CJPblist/cj_sftwre.htm, inclu-
ding user manual and outline of architecture). The
basic structure is a stochastic individual-based
system that simulates spatial competition between
sessile colonial organisms. The “landscape” is a
coupled lattice on which species can recruit, grow,
produce propagules, and die. Each cell on the
landscape is either empty or occupied by a single
species. The community develops depending on the
rates of recruitment, growth, and mortality of each
species (defined by the probabilities of each event),
and the nature of the outcome of pairwise
interactions, which are specified by the probability
of a win, loss, or standoff in any given encounter.
Recruitment can only occur to bare space, whereas
mortality is described by both the likelihood of a
mortality event and the size of the mortality (i.e.,
number of contiguous cells that die). Random
disturbances are possible, defined by the frequency,
shape, and size of events that clear occupied cells.
Updating of the landscape is synchronous.

Growth and interaction outcomes are developed as
cellular automata. For an unoccupied cell, a random
neighbor in its von Neumann neighborhood (i.e.,
cells to its north, south, east, and west) is chosen,
and if the selected neighboring cell is occupied by
species Si, then Si grows into the empty cell with a
probability specified by its growth rate (gi). By this
mechanism, “bays” fill in more quickly than
“headlands” advance, and so colonies in bare space
develop an approximately circular morphology.
Updating the state of an occupied cell is slightly
more involved. The cell of interest Ci chooses a
random neighbor Cj (also in its von Neumann
neighborhood), and Cj overgrows Ci with the
probability Pr[Cj > Ci] · gj, where Pr[Cj > Ci] defines
the probability of Sj winning in an encounter with
Si, and gj is the growth rate of Sj.

These kinds of spatially explicit models can closely
represent the dynamics of real ecological systems

(Wootton 2001, Dunstan and Johnson 2005), and
often demonstrate complex behaviors including
non-linear dynamics and spatial self-organization
(e.g., Johnson 1997, Johnson and Seinen 2002,
Habeeb et al. 2005). An important consequence of
spatialization of models in this way is the emergence
of stability not evident in their mean-field
counterparts (e.g., Hassel et al. 1991, Nowak and
May 1992, Johnson 1997).

In all models in this paper, landscapes are toroidal
(zero boundary conditions) to minimize edge
effects, and are 300 x 300 cells in dimension. Initial
recruitment to a bare landscape covers a total of 10%
of the landscape and there is an equal number of
recruits of each species. For simplicity (unless stated
otherwise), there is no disturbance, no ongoing
recruitment, no endogenous mortality of colonies
on the landscape, and each species i grows at the
maximum possible rate gj = 1.0. The qualitative
results of the analyses are not dependent on these
simplifications. In those models where ongoing
recruitment is allowed (see below), recruitment is
from an open system, i.e., propagules of all species
are equally available independent of the cover of
species on the landscape.

Specific Structure of Models to Address
Predictions

The predictions are examined by studying the length
scales and behaviors of several model systems, and
the specific structure of the models is outlined under
each prediction below. In describing the network
topologies, Si > Sj indicates that species i overgrows
and displaces species j, and that this outcome occurs
in 100% of encounters between Si > Sj unless stated
otherwise.

 Prediction 1. The CLS of a community showing
changes in structure through time will not change if
the underlying dynamic is constant.

This prediction is examined using a simple three-
species model in which abundances fluctuate
considerably so that either of two species may
dominate the landscape at any time, but where the
large-scale, long-term dynamic is stable, i.e., the
attractor is stationary (Fig. 1). If the tenet holds, then
the estimate of the CLS should be identical
irrespective of which species is examined and
irrespective of whether the analysis is undertaken
when one or other species dominates the landscape.
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Fig. 1. Dynamics of a three-species system (A) demonstrating a stationary attractor but characterized by
strong oscillations of the two dominant species (Sred and Sblue). Even though the landscape at different
times might be dominated by either Sred (B = landscape at 5880 generations) or Sblue (C = landscape at
19 350 generations), prediction-r2 spectra derived from analysis of landscapes at these two times,
whether based on Sblue (D and E) or Sred (F and G), show similar estimates of the CLS at about 35 length
units (areas identifying the CLS are shown as black horizontal bars). These analyses were based on
abundances (densities) in sequences of five maps commencing at either generation 5870 or 19 340, with
10 time steps between consecutive maps.
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Three-species model: The network topology of the
model is S3 > S2 > S1, which can be viewed as
representing a trophic hierarchy with S1 as a primary
producer, S2 as a herbivore, and S1 as a carnivore
(there is a standoff between S1 and S3 wherever they
meet on the landscape). S3 has a likelihood of
mortality of 0.0005 per cell, and if a mortality event
is initiated the extent of mortality is only a single
cell. Cells cleared through mortality can attract
recruits. Each species has an equal chance of being
selected as a potential recruit and, once selected,
recruitment rates are determined by the probabilities
S1 = 1.0, S2 = 0.005, and S3 = 0.

 Prediction 2. A shift in underlying dynamics will
be reflected as a change in the CLS.

Here, four models are considered to examine several
different ways in which the dynamics of a
community might change. The first two are based
on the same five-species system in which a shift in
the “physical environment” changes the characteristics
of some species in relatively minor ways that,
however, have a large effect on the community
dynamics. In one case, the growth of one species is
reduced by 25% (Figs. 2A, 3), and in the other, the
nature of the interaction between two of the species
(S1 and S2) changes so that instead of S1 overgrowing
S2 in 100% of encounters, S1 displaces S2 in 60% of
cases, otherwise S2 overgrows S1 (Figs. 2B, 4).

The third is a 20-species model in which all species
co-exist indefinitely because propagules of all
species arrive at a constant rate to colonize small
patches cleared by disturbance, i.e., the landscape
exists in an “open recruitment” system. The
dynamics are changed when the “open” recruitment,
i.e., constant supply of propagules, ceases (Fig. 5).
The fourth model is the same 20-species model
(with open recruitment), but where a highly invasive
21st species is introduced (Fig. 6).

Five-species model: The basic network topology is
S1 > S2, S3; S2 > S3, S4; ... ; S5 > S1, S5. Initially the
growth rate of all species is the maximum (gi = 1.0),
but in one version of this system a significant shift
in the dynamics is introduced after 500 time steps
by reducing the growth rate of S5 to g5 = 0.75. In the
second version in which the dynamics are perturbed,
the growth rates are not affected (they all remain at
gi = 1.0) but the interaction between S1 and S2 is
changed after 500 time steps such that Pr[S1 >S2] =
0.6 whereas Pr[S2 >S1] = 0.4.

20-species model: In this model, the probability of
win, loss, or a standoff in the interactions between
any two species is determined randomly such that
Pr[win] + Pr[loss] + Pr[standoff] = 1. The same set
of random outcomes was used in all simulations
using the 20-species model (several other different
randomly determined network topologies gave
qualitatively similar results to those reported here).

In this model, a low rate of disturbance creates small
bare patches on the landscape to which all 20 species
can recruit with equal likelihood. The probability of
disturbance is 0.0001 per cell, and the size of each
disturbance event is 25 contiguous cells in a random
shape. For each empty cell on each time step, one
of the 20 species is chosen at random, and the
probability of any selected species recruiting to that
cell is 0.1. Thus, recruitment is “open” and
independent of the cover of each species on the
landscape. By this mechanism, no species goes
permanently extinct on the landscape.

Two versions of this model were used to examine
Prediction 2. In the first, the open recruitment ceases
after 2000 time steps, and there is no further
recruitment to the system. As the low level of
disturbance has no discernable effect on the
dynamics of the system after recruitment is stopped,
for simplicity, disturbance also ceases after 2000
generations. In the second, an invasive 21st species
is introduced to the landscape at 2001 time steps.
The invader overgrows three of the original 20
species with probability 0.8, whereas each of these
three species overgrows the invader in 20% of
encounters. Interactions between the invasive
species and all 17 other species are standoffs in all
cases.

 Prediction 3. Two species will indicate dissimilar
CLSs if their dynamics are largely independent.

This premise is examined using six-species (Fig.
7A) and eight-species (Fig. 7B) models designed so
that in each system, the dynamics of some species
are essentially decoupled to the dynamics of others.
If the tenet is true, then we would expect that the
CLS indicated by one species in a system would
differ to that indicated by another species whose
dynamics was largely independent.

Six-species model: In this system, five of the species
interact in exactly the same way as occurs in the
five-species system outlined above under Prediction
1 (i.e., S1 > S2, S3; S2 > S3, S4; ... ; S5 > S1, S5). The
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Fig. 2. Dynamics of a five-species community described by a symmetrical interaction network such that
S1 > S2, S3; S2 > S3, S4; … ; S5 > S1, S2 where “>” indicates overgrowth. Initially all species have
identical growth rates, and the likelihood of a species Si overgrowing Sj (as defined by the interaction
matrix) is unity. However, at 500 generations a shift in the “environment” is introduced. In (A) the
growth rate of S5 drops to 75% of that of S1-S4, whereas in (B) growth rates are unaffected but the
interaction between S1 and S2 becomes reversible such that S1 wins in 60% of cases whereas S2 wins in
40% of cases. S1 = light blue; S2 = yellow; S3 = red; S4 = dark blue; S5 = green. Bold lines (green in A,
light blue in B) indicate species analyzed to estimate CLSs (see Figs. 3, 4).
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Fig. 3. The effect of changing community dynamics on the CLS of the five-species system shown in Fig.
2A. Prediction-r2 spectra (based on analysis of densities of S5) were produced from series of five maps
of the landscape commencing at generation 400 (before environmental change inducing a reduction in
the growth rate of S5 at generation = 500) and, after the reduction in growth rate, commencing at
generations 1000, 2000, and 3000. Consecutive maps in each series were separated by 10 time steps.
The change in dynamics is reflected by a reduction in the CLS from about 75 to 50 length units. Areas
identifying the CLS are shown as black horizontal bars.
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Fig. 4. The effect of changing community dynamics on the CLS of the five-species system shown in Fig.
2B. Prediction-r2 spectra (based on analysis of densities of S1) produced from series of five maps of the
landscape commencing at generation 400 (before a change in the nature of the interaction between S1 
and S2 at generation = 500) and, after the shift in the outcome of the interaction, commencing at
generations 1000, 2000, and 3000. Consecutive maps in each series were separated by 10 time steps.
The change in dynamics is reflected by an increase in the CLS from about 75 to about 120 length units.
Areas identifying the CLS are shown as black horizontal bars.
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sixth species, S6, does not interact directly with the
other five. This is achieved by setting all interactions
between S6 and other species as standoffs where
neither species overgrows the other. Thus,
boundaries where colonies of S6 are juxtaposed with
any other species are stationary, and so S6 is to S1 –
S5 (and vice versa) the equivalent of a patch of
unsuitable habitat. In this sense, the dynamics of S6 
are largely independent of the dynamics of S1 – S5.

In the six-species model, all species are able to
recruit to and grow in cleared areas made by small
random disturbances that occur occasionally on the
landscape. Disturbance events occur with
probability 0.0001 per cell, and each event clears
25 contiguous cells in a random shape. Thus, on the
300 x 300 landscape, on average there are nine
disturbance events each time step, each clearing
0.028% of the landscape. Each species has an equal
chance of being selected to potentially recruit to
empty cells, but the actual recruitment probabilities
are 0.1 for S1 – S5 and 1.0 for S6. To prevent S6 from
continuously increasing in cover simply by
accumulation at disturbed sites, this species is
assigned an endogenous mortality rate of 0.0005 per
cell, with each mortality event clearing up to 10
adjacent cells. The other five species do not suffer
endogenous mortality.

Eight-species model: This network topology is
described by two groups of species (a group of five
and another of three species), where there are strong
and tightly coupled interactions within the groups,
but where all interactions among pairs of species
between the groups are standoffs (Fig. 7).
Interactions among the group of five species are
governed by the topology S1 > S2, S3; S2 > S3, S4; ... ;
S5 > S1, S5, whereas the remaining three species
interact as S6 > S7; S7 > S8; S8 > S6.

Estimating CLSs

Habeeb et al. (2005) examined the behaviors of both
error-X and prediction-r2 and showed that although
both metrics perform equally well with simple
ecological models, error-X is often not robust for
more complex models. For this reason, all analyses
presented in this paper use prediction-r2. To enable
estimation of the CLS at different times in the
dynamic of a community, the “short time series”
method of Habeeb et al. (2005) is used. A package
to execute this analysis and an associated tutorial

are available at http://www.zoo.utas.edu.au/CJPblist/
cj_sftwre.htm.

Unless noted otherwise, analyses in this paper were
conducted on sequences of five landscapes, each 10
time steps apart and thus covering a temporal
sequence of 40 time steps. Prediction-r2 spectra
were produced after sampling these landscapes with
square “windows” in which the length of each side
ranged from 5–150 cells (in steps of five), so that
the largest window (150 x 150 cells) occupied 25%
of the landscape. Note that for most models, I also
estimated CLSs using sequences with fewer time
steps (two and five) between consecutive maps.
Because this usually had no effect on the estimate
of the CLS—and in the few cases where there was
a slight change in the estimate of the CLS, there was
no effect on the trends in CLSs—results of analyses
using other than 10 steps between consecutive
landscapes are not presented.

RESULTS

Prediction 1: The CLS of a Community
Showing Changes in Structure through Time
Will Not Change If the Underlying Dynamic Is
Constant

This prediction is supported by the properties of this
system. Although the abundances of the two
dominant species fluctuate between about 20%–
60% cover (blue species = S1) and about 40%–75%
cover (red species = S3), the overall long-term
dynamic is constant. Irrespective of whether
analyses to estimate the CLS are made when the
landscape is dominated by the blue or red species,
or which species is analyzed, the CLS is consistently
estimated at about 35 length units (Fig. 1).

Prediction 2: A Shift in Underlying Dynamics
Will Be Reflected as a Change in the CLS

This prediction was examined using two variations
of the five-species model and two of the 20-species
system. Because of strong interactions and
interdependencies among species in the simple five-
species system, subtle changes to the parameters
result in pronounced changes in dynamics. Large
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Fig. 5. Effects of a shifting attractor on the CLS of a 20-species system. (A) Temporal dynamics of six
of the 20 species. Up to generation 2000, all 20 species coexist and community structure is
approximately constant because “open” recruitment enables recruits of all species to establish (with
equal likelihood) on small patches on the landscape cleared by a low level of disturbance (see Methods).
At generation 2001, the “open”recruitment is “turned off” and species begin to go locally extinct
(extinction points are indicated by triangles on the x-axis), which leads to different landscape dynamics.
Prediction-r2 spectra are shown for analyses based on series of five maps finishing at generation 2000,
4000, and 12 000 (B–D, respectively), where consecutive maps in each series were separated by 10 time
steps. Spectra are based on analysis of densities of two species (Sred and Sblue, shown as bold lines in A).
Both species indicate a reduction in the CLS from about 55 length units to about 20 length units. Areas
identifying the CLS are shown as black horizontal bars.
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Fig. 6. Effects of an invading species (S21 = orange) on the CLS of the 20-species system. (A) Temporal
dynamics of three of the 20 species (S9, S14, S20) and the invader (S21). Up to generation 2000, all 20
species coexist and community structure is approximately constant because “open” recruitment enables
recruits of all species to establish (with equal likelihood) on small patches on the landscape cleared by a
low level of disturbance (see Methods). At generation 2001, the invader is introduced, which is able to
overgrow three of the more abundant species, but interactions with all other species are standoffs. The
invader attains an equilibrium of ca. 45% cover. (B) and (C) are examples of the landscape at
approximately constant community compositions at 2000 and 7000 generations, respectively.
Prediction-r2 spectra are shown for analyses based on series of five maps, each 10 time steps apart,
finishing at generation 2000 and 7000 (termed the “2000 series”and “7000 series,” respectively).
Analyses based on densities of S9 indicate a reduction in the CLS from about 50 to about 30 length units
after the invasion (D and E, respectively), but the CLS indicated from analysis of densities of species S14 
(F and G), and S20 (H and I) show little change. The CLS indicated from analysis of densities of the
invader at around 7000 generations is much larger at about 115 length units (I). Areas identifying the
CLS are shown as black horizontal bars.
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Fig. 7. The effect of connectivity among species on the CLS, showing that poorly connected species can
indicate dissimilar length scales. In one example (A,C,D) there are six species, comprising five species
that interact strongly, but where encounters with a 6th species are all standoffs. All species are able to
recruit to bare patches (= white) on the landscape (see Methods). In the other example (B,E,F), there are
eight species, where S1–S5 interact strongly, and S6–S8 interact strongly, but all interactions between S1–
S5 and S6–S8 are standoffs (see Methods). (A) shows a magnified portion of the landscape whereas (B)
shows the full 300 x 300 landscape (both at 5000 generations). Species colors for S1–S5 are as in Fig 2.
In A and D, S6 = olive; in B and F, S6 = deep blue, S7 = dark red, and S8 = gray. Prediction-r2 spectra are
shown for analyses based on series of six maps, each 10 time steps apart, finishing at generation 5000.
In the six-species example, the CLS indicated by S1–S5 (about 65 length units) is less than that indicated
by S6 (about 115 length units). In the eight-species example, the CLS indicated by S1–S5 is similar to
that indicated by S6–S8 (about 35 length units).
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shifts in dynamics are evident soon after reducing
the growth rate of one species slightly (Fig. 2A) and
in shifting the balance of the outcome of interactions
between two of the species (Fig. 2B).

The shift in growth rate triggered a change in
community structure from approximately equal
cover of all species to reduced cover of two species
and elevated cover of the other three, including the
species (S5) that experienced reduced growth (Fig.
2A). When the outcome of interactions between S1 
and S2 shifted from S1 “winning” 100% of
encounters to only 60% of encounters, S2 and S4 
declined to extinction whereas cover of the
remaining three species increased (Fig. 2B). In both
cases, a clear shift in the CLS was evident. In the
former, the CLS decreased from about 75 to 50
length units (Fig. 3), whereas for the latter model
system, the CLS increased from about 75 to nearly
120 length units (Fig. 4).

In the 20-species system, the long-term stable
dynamic of 20 coexisting species was disrupted
when the steady exogenous supply of propagules to
the landscape ceased (Fig. 5A). Immediately after
the collapse of open recruitment, several species
declined to local extinction. This changed the spatial
dynamics between remaining species, ultimately
leading to another spate of extinctions. At 10 000
time steps after the cessation of open recruitment,
analysis of highly abundant (ca. 40% cover) and
relatively rare (<5% cover) species showed that the
CLS had reduced from about 55 to about 20 length
units (cf. Fig. 5B,C).

Shifts in the length scale of the stable 20-species
system following establishment of an invasive
species were more subtle and complex (Fig. 6).
Before arrival of the invader, several species
demonstrated the same length scale of about 55
length units (e.g., Fig. 6D,F), although at least one
species indicated a slightly smaller length scale of
about 40 length units (Fig. 6H). The invader
established and expanded rapidly to dominate ca.
45% of the landscape (Fig. 6A,C), and in this sense,
had a major impact on the dynamics of this system.
However, although analysis of some species
indicated a small (but unambiguous) decrease in the
length scale (cf. Fig. 6D,E), within the limits of
interpretation of the spectra, analyses based on other
species did not indicate a change in the CLS (cf. Fig.
6F,G and 6H,I). Notably, analysis of dynamics of
the invasive species indicated a length scale much
larger (about 115 length units) than that evident
from analysis of the original species (Fig. 6I).

Prediction 3: Two Species Will Indicate
Dissimilar CLSs If Their Dynamics Are
Largely Independent

In the six-species system (Fig. 7A), encounters
between one species (S6) and the other five were
always a standoff, and although all species could
arise anywhere on the landscape by colonizing bare
space created by random disturbance, S6 recruited
to these cleared areas at a rate 10 times that of the
other five species (see Methods). In these
circumstances, the CLS indicated by S6 (about 115
length units) was clearly greater than that indicated
by the other five species (about 65 length units) (cf.
Fig. 7C,D).

In contrast, in the eight-species system (Fig. 7B),
even though a group of five strongly interacting
species always realized a standoff in any interaction
with the three remaining species (and vice versa),
the CLS indicated from analysis of any of the species
in the system was similar (Fig. 7E,F).

DISCUSSION

The unifying theme of this collection of papers is
scaling thresholds in ecology, and in particular, the
application of these quantities to better understand
the natural environment and better address the real-
world challenges facing ecologists. The primary
CLS is defined by a particular scaling threshold
(Keeling et al. 1997, Pascual and Levin 1999,
Habeeb et al. 2005) that, through recent
developments, can now be estimated for real
ecological systems (Habeeb et al. 2007, R. Habeeb,
C. Johnson, S. Wotherspoon, unpublished
manuscript). This scale is a system-level property,
and does not necessarily have any relationship with
the scales at which any of the many processes that
influence a system’s dynamic are manifest. It is a
useful quantity because, by definition, it provides
an objective means to determine the optimal scale
at which to observe the deterministic trend of a
system’s dynamic. The results presented here
suggest that the utility of the measure might be
extended to other important challenges in ecology,
namely interpreting temporal change in the structure
of ecological communities, and identifying
connectivity in the dynamics of different species in
complex ecological systems with complex space–
time dynamics.

Before considering these aspects, it is worthwhile
to consider the interpretation of prediction-r2 
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spectra. To date, no attempt has been made to
provide a more objective means of identifying the
“first point of flattening” of the curve, although there
are several possible techniques that might be
applied. There are several good reasons for this.
First, these curves often show a level of
“bumpiness” that has the potential to yield spurious
results in applying mathematical analyses of curve
structure. Second, there is no logical primacy to
select any one of the potential techniques over
another, and they will identify different points on
the curve. Most importantly, however, small
changes in the CLS and a single point-value estimate
of the CLS are unlikely to be meaningful in an
ecological context. Unless there is a clear shift in
the region of flattening of the curve that is
discernable by eye, there is a high risk of
overinterpretation.

Interpreting Temporal Change in Ecological
Systems

The capacity to interpret shifts in community
structure is important because changes that reflect
a fundamental shift in underlying dynamics may
warrant management intervention. If the CLS is to
be useful in this context then it must be shown that
—providing a system exists in an otherwise stable
domain of attraction—the CLS is invariant to even
large changes in community structure as a result of
deterministic fluctuations. This property is expected
on the basis of the theory of non-linear time series
analysis and the derivation of the prediction error,
i.e., a non-linear oscillating system described by a
stationary attractor has a single and constant
(primary) CLS (Takens 1981, Keeling et al. 1997,
Pascual and Levin 1999). Analysis of the three-
species system presented here suggests that the CLS
demonstrates this property (Fig. 1), in line with the
results of analysis of other model ecologies (Keeling
et al. 1997, Pascual and Levin 1999, Habeeb et al.
2005).

It is possible, if unlikely, that the primary length
scale of two different attractors is the same.
However, if two systems indicate different CLSs
then, by definition, they must have different shaped
attractors and, therefore, dissimilar underlying
dynamics. In keeping with this prediction, when the
dynamics of the models presented here were
perturbed in some way, in most cases there was a
concomitant change in the length scale (Figs. 2–5).
For tightly linked systems with strongly interacting

species, even relatively subtle changes in
parameters such as the growth rate of a single
species or outcome of a particular direct interaction
could initiate significant changes in dynamics (Fig.
2). In the 20-species system, halting the endogenous
source of recruits resulted in a raft of local
extinctions soon afterward and large changes in
dynamics, reflected by a shift in the length scale
(Fig. 5). This system then experienced a period of
relative stability during which a spatially self-
organized dynamic was re-established, followed by
another set of extinctions and shift in the gross
dynamic, with a further corresponding shift in the
primary length scale (Fig. 5).

In contrast, depending on which species was
analyzed to produce the prediction-r2 spectrum,
introduction of a highly invasive species into the
20-species system, which soon proliferated to
dominate the landscape, had no detectable effect on
the CLS (Fig. 6). At first glance, this may seem to
contradict the trends indicated by the other models,
but closer inspection reveals several features that
illuminate a more complex interpretation. First, the
three species chosen arbitrarily for analysis indicate
at least two (slightly) dissimilar length scales before 
arrival of the invader (cf. Fig. 6F,H). This suggests
the existence of multiple “sub-communities” whose
dynamics are poorly connected (see below), and it
is possible that the invader affects one “sub-
community” more than another. Further evidence
of multiple sub-communities is that one of the three
species analyzed does indicate a shift in the CLS
after the invader establishes (S9; Fig. 6D,E) whereas
the other two do not. This can arise in a 20-species
system in which interaction outcomes are chosen at
random; some species may have very little influence
on others by chance. It is difficult to undertake a
more precise analysis because the complexity of
linkages in a 20-species competition system where
each species potentially competes with every other
species for space precludes a precise or systematic
analysis of connectivity. Even with as few as 20
species, Darwin’s metaphor of a tangled bank rings
true; for every direct interaction between any two
species there are about 1.74 ·1016 different possible
indirect interactions (Johnson and Seinen 2002).

A second crucial feature of the 20-species model
with invasion is that the length scale indicated by
analysis of spatio-temporal dynamics of the invader
is significantly larger than the estimate derived from
analysis of other species (Fig. 6I). This indicates
that the attractor describing the dynamic of the
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invader is most clearly observed at a different scale
to that of the other species examined. In other words,
the dynamic of the invader is not closely coupled
with that of the other species examined. This is
entirely possible because the invader is able to
overgrow only three of the 20 species in the system,
and interactions with all other species are a standoff.
Once these three species are effectively eliminated
from the system as a result of overgrowth by the
invader, the invader is maintained only because its
interaction with the other species are standoffs, and
because its ongoing recruitment is to bare patches
that arise randomly and, therefore, independently of
the dynamics of any other species (see below). This
result emphasizes the need for careful thinking
about what is meant by independence or
interdependence of dynamics. Even though S21 
grows to dominate the landscape, once it attains its
quasi-equilibrium density it has very little direct
influence on the spatial dynamic of the original 20
species other than by limiting the total amount of
space available into which they can grow. Similarly,
the 17 original species that manifest standoffs with 
S21 have little influence on the dynamics of S21 other
than to limit the total amount of space available into
which it can grow. This disconnection in dynamics
is reflected in the dissimilar length scales. This result
serves to emphasize that changes in community
structure do not necessarily indicate changes in the
dynamical connectivity of many of the component
species.

In summary, changes in the CLS of a system, by
definition, indicate changes in the underlying
dynamics, and the results presented here indicate
that in model systems this can arise even with
relatively subtle shifts in the attributes of component
species. In more complex systems, because the
underlying dynamics of different subsets of species
might be weakly connected, significant changes in
community structure do not invariably mean that all
or most species will indicate any shift in the CLS.

These results indicate that we could expect that
“phase shifts” from one stable domain of attraction
to another in ecological systems as a result of loss
of resilience (Scheffer et al. 2001, Folke et al. 2004)
are reflected as a change in length scale of the
system. Although phase shifts between alternative
stable states can be of enormous consequence to
ecosystem structure and function and to the humans
that depend on them (Folke et al. 2004), obtaining
unequivocal evidence of this kind of shift in state is
far from trivial (Scheffer et al. 2001) because a shift

in community structure does not necessarily
indicate a shift in dynamical state to a different
stable configuration. For example, on coral reefs,
phase shifts from a coral- to algal-dominated state
are, unfortunately, increasingly common and highly
problematic (e.g., Done 1992, Hughes 1994,
Nystrõm et al. 2000, Mumby et al. 2007). However,
declining coral cover on its own or declining coral
cover in combination with an increase in algal cover
do not necessarily indicate loss of resilience and that
the system has shifted to a new stable state
dominated by algae. A perturbation such as a
hurricane or outbreak of crown-of-thorns starfish
might dramatically reduce coral cover and facilitate
a flush of algal growth but, in a resilient reef system,
the corals will recover and algal cover decline over
time (Done 1992, Hughes 1994). However, a similar
shift in structure as a result of overfishing of algal
grazers (Mumby et al. 2007) could represent an
alternative state from which it would be extremely
difficult to return to the original coral-dominated
state. Given that the dynamics of different stable
states of a system are likely to be described by
different attractors, then the different states would
yield different length scales. Thus, in this way, CLSs
could be used as a diagnostic tool to determine
whether shifts in structure reflect a shift from one
domain of attraction to another, and thus loss of
resilience.

Being able to detect loss of ecosystem resilience
manifested as a phase shift from one stable state to
another is critical from a management perspective,
particularly if the shift is discontinuous or
“catastrophic.” This is because discontinuous phase
shifts, by definition, result in hysteresis (Scheffer et
al. 2001, Folke et al. 2004, Hughes et al. 2005) so
that returning the ecosystem to its original domain
of attraction becomes extremely difficult and
typically requires massive management intervention.
Thus, it is vital that managers can distinguish
changes in community structure in a resilient system
from similar changes that represent loss of
resilience, phase shift, and particularly hysteresis
because the appropriate management responses to
encourage return to the original state are vastly
different in the two circumstances. No change in the
CLS with a shift in structure indicates resilience,
whereas a change in the CLS associated with a shift
in structure indicates a phase change to a new
dynamical state and, possibly, hysteresis. Using
CLSs in this way is significant because this kind of
diagnostic tool has not previously been available.
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This same concept can also be applied to
interpreting differences in community structure in
space. Comparison of the CLS of ostensibly similar
communities in different areas will indicate whether
the underlying dynamic is likely to be similar in both
areas. This information would be useful, for
example, in identifying environmental impact.

Identifying Connectivity among Species in
Complex Ecological Systems

It was emphasized in the introduction that ecologists
have used many approaches to address the important
question of connectivity among species, including
several means to measure the strength of
interactions between species, chemical tracers to
identify trophic pathways, and “natural” and
manipulative experiments to identify trophic
cascades. The capacity to determine the CLS of
natural systems provides another means to assess
connectivity. If analysis of the space–time dynamics
of two different species on a landscape indicate
dissimilar length scales of the system then, by
definition, they are describing the dynamics of two
different attractors. This suggests that the dynamics
of those two species are, to a large extent,
independent. Estimating CLSs based on analysis of
all species in a community should reveal the number
of different groups (i.e., “sub-communities”) of
interacting species, within which the dynamics are
captured by the same attractor (although I did not
attempt this here). Importantly, an assessment of
connectivity using CLSs in this way does not require
prior knowledge of the nature and strength of
interaction between species.

Identifying connectivity in this sense is, of course,
qualitative and does not provide any information
about the strength of links among species. However,
given the complexities of interactions among
species in the “tangled bank,” estimations of the
CLS provide a relatively straightforward means to
identify groups of species that are dynamically
coupled, which is useful information.

The examples presented here highlight subtleties to
consider in the features that define connectivity. The
two models differed in the elements of connectivity
that they incorporated. Both the six- and eight-
species systems (Fig. 7A,B, respectively) had
network topologies in which interactions between
some sets of species were always a standoff, i.e.,
common borders between colonies were stationary

without either species overgrowing the other. In the
six-species system, encounters between one species
and the other five were always a standoff, whereas
in the eight-species system, interactions between
three species and the other five were always a
standoff. In this sense there was a disconnection in
the dynamics of different groups of species in the
system; in a standoff, one species is to the other no
different than a patch of unsuitable habitat.

However, the two models differ in how occupation
of space by the strongly interacting group of five
species influenced the amount of the space resource
available to the other species in the system. In the
six-species system, random disturbances create bare
patches on the landscape to which S6 recruits at a
higher rate than the other five species. Thus,
establishment of S6 at any position on the landscape
is possible irrespective of the identity of the species
initially occupying that site because disturbance can
clear a patch occupied by any species for
colonization. The high level of disconnection of the
dynamics of S6 with the other five species is
indicated clearly by the CLSs (cf. Fig. 7C,D).

The important difference between the eight- and six-
species systems is that, in the eight-species system,
there was no disturbance to clear patches on the
landscape. Thus, although all interactions between
five of the species and the remaining three were
standoffs, their dynamics were ultimately linked by
the availability of space on the landscape. Given
that most space is fully occupied most of the time,
then use of the space resource is a zero-sum game;
proliferation of one group of species inevitably
impacts on the spatial dynamics of the other despite
the disconnection in the network topology. In this
circumstance, the length scales indicated by species
from the two different groups are identical (cf. Fig.
7E,F).

CONCLUSION

Characteristic length scales are defined as a scaling
threshold, and can be estimated for real ecological
systems on the basis of dynamics among species or
habitats. They define a system-level property and
have clear potential for a decision-support role in
applied ecology. They provide an objective means
to identify appropriate scales for monitoring in
circumstances where the goal of the monitoring is
to identify community and system-level trends.
Analysis of the models presented here suggest that
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they provide a means of interpreting changes in
community structure and identifying loss of
resilience and phase shifts, and can be used to
identify whether groups of species are dynamically
linked.

An important question is whether the behavior of
CLSs extracted from models of only three to 20
species is likely to have any resemblance to their
behavior in real communities with many more
species. It is encouraging that in a real marine
fouling community of >50 species, different
interacting species with vastly dissimilar life
histories, abundances, and taxonomic affinities
indicated virtually identical length scales, whereas
another species whose dynamics are clearly
independent of the others yielded a different length
scale (Habeeb, Johnson and Wotherspoon,
unpublished manuscript), just as predicted from the
results of the models presented here. Given this, and
the considerable complexity of the dynamics of
models with as few as 20 species, there can be some
optimism to expect that the application of CLSs to
natural communities will be as useful as their
application to model ones. However, this needs
further testing empirically.

Although these applications show promise, it is
apposite to include a note of caution. Because the
capacity to estimate unambiguous length scales is
recent, there is much to learn about their properties
and how they may be interpreted. For example, the
sensitivity of the primary CLS to changes in
dynamics, whether the magnitude of changes in the
CLS relates in a systematic way to the magnitude
of change in the dynamics (however that might be
measured), and whether the magnitude of
differences in the CLS estimated by analyzing
different species on the same landscape is indicative
of the magnitude of independence of their dynamics,
needs to be determined. Initial indications are that
CLSs will not be sensitive to small changes in the
space–time dynamics of systems, but arguably this
is a desirable property. The CLSs are no panacea,
but providing that the tendency to overinterpret
spectra is resisted, they are a useful additional tool
to address several important issues in applied
ecology. If this position is accepted, then there will
be a need to ensure that data are obtained that enable
this kind of analysis. With advances in several kinds
of remote-sensing technology, the availability of
suitable space–time data will be increasingly
available.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol14/iss1/art7/responses/
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