2022
  • Non-ICIMOD publication

Share

572 Views
Generated with Avocode. icon 1 Mask color swatch
48 Downloads

Transmission Risk Prediction and Evaluation of Mountain-Type Zoonotic Visceral Leishmaniasis in China Based on Climatic and Environmental Variables

  • Hao Y.
  • Luo Z.
  • Zhao J.
  • Gong Y.
  • Li Y.
  • Zhu Z.
  • Tian T.
  • Wang Q.
  • Zhang Y.
  • Zhou Z.
  • Hu Z.
  • Li S.
  • Summary
With global warming and socioeconomic developments, there is a tendency toward the emergence and spread of mountain-type zoonotic visceral leishmaniasis (MT-ZVL) in China. Timely identification of the transmission risk and spread of MT-ZVL is, therefore, of great significance for effectively interrupting the spread of MT-ZVL and eliminating the disease. In this study, 26 environmental variables—namely, climatic, geographical, and 2 socioeconomic indicators were collected from regions where MT-ZVL patients were detected during the period from 2019 to 2021, to create 10 ecological niche models. The performance of these ecological niche models was evaluated using the area under the receiver-operating characteristic curve (AUC) and true skill statistic (TSS), and ensemble models were created to predict the transmission risk of MT-ZVL in China. All ten ecological niche models were effective at predicting the transmission risk of MT-ZVL in China, and there were significant differences in the mean AUC (H = 33.311, p < 0.05) and TSS values among these ten models (H = 26.344, p < 0.05). The random forest, maximum entropy, generalized boosted, and multivariate adaptive regression splines showed high performance at predicting the transmission risk of MT-ZVL (AUC > 0.95, TSS > 0.85). Ensemble models predicted a transmission risk of MT-ZVL in the provinces of Shanxi, Shaanxi, Henan, Gansu, Sichuan, and Hebei, which was centered in Shanxi Province and presented high spatial clustering characteristics. Multiple ensemble ecological niche models created based on climatic and environmental variables are effective at predicting the transmission risk of MT-ZVL in China. This risk is centered in Shanxi Province and tends towards gradual radiation dispersion to surrounding regions. Our results provide insights into MT-ZVL surveillance in regions at high risk of MT-ZVL. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.