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The Forest Resources Assessment Programme 

Forests are crucial for the well being of humanity. They provide foundations for life on earth through 
ecological functions, by regulating the climate and water resources and by serving as habitats for plants 
and animals. Forests also furnish a wide range of essential goods such as wood, food, fodder and 
medicines, in addition to opportunities for recreation, spiritual renewal and other services. 

Today, forests are under pressure from increasing demands of land-based products and services, which 
frequently leads to the conversion or degradation of forests into unsustainable forms of land use. When 
forests are lost or severely degraded, their capacity to function as regulators of the environment is also 
lost, increasing flood and erosion hazards, reducing soil fertility and contributing to the loss of plant and 
animal life. As a result, the sustainable provision of goods and services from forests is jeopardized.  

FAO, at the request of the member nations and the world community, regularly monitors the world’s 
forests through the Forest Resources Assessment Programme. The Global Forest Resources 
Assessment 2000 (FRA 2000), reviewed the forest situation by the end of the millennium. FRA 2000 
included country-level information based on existing forest inventory data, regional investigations of land-
cover change processes and a number of global studies focusing on the interaction between people and 
forests. The FRA 2000 Main report published in print and on the World Wide Web in 2001. 

The Forest Resources Assessment Programme is organized under the Forest Resources Division (FOR) 
at FAO headquarters in Rome. Contact persons are: 

Peter Holmgren   peter.holmgren@fao.org

Mohamed Saket  mohamed.saket@fao.org

or use the e-mail address: fra@fao.org

DISCLAIMER 
The Forest Resources Assessment (FRA) Working Paper Series is designed to reflect the 

activities and progress of the FRA Programme of FAO. Working Papers are not authoritative information 
sources – they do not reflect the official position of FAO and should not be used for official purposes. 
Please refer to the FAO forestry website (www.fao.org/forestry) for access to official information. 

The FRA Working Paper Series provides an important forum for the rapid release of preliminary 
findings needed for validation and to facilitate the final development of official quality-controlled 
publications. Should users find any errors in the documents or have comments for improving their quality 
they should contact fra@fao.org.



Table of Contents 

EXECUTIVE SUMMARY .................................................................................................................... 3 

I INTRODUCTION......................................................................................................................... 5 

FORESTS AND BIODIVERSITY ................................................................................................................ 5 

HUMAN IMPACTS ON FOREST BIODIVERSITY ......................................................................................... 6 

CONSTRAINTS ON EVALUATING FOREST CAPACITY FOR BIODIVERSITY PRESERVATION ........................ 6 

II ASSESSING HUMAN IMPACTS ON FOREST BIODIVERSITY......................................... 9 

FOREST AREA ....................................................................................................................................... 9 

FOREST CONFIGURATION ...................................................................................................................... 9 

Area effects ..................................................................................................................................... 9 

Edge and gradient effects.............................................................................................................. 10 

Isolation effects ............................................................................................................................. 10 
HUMAN ACTIVITY............................................................................................................................... 11

III MEASURING FOREST CONFIGURATION AND SPATIAL INTEGRITY...................... 12 

SOURCE DATA..................................................................................................................................... 12 

OTHER CONSTRAINTS ......................................................................................................................... 13 

ANALYSIS TOOLS................................................................................................................................ 14 

A PROPOSED APPROACH TO MEASURING AND MONITORING FOREST SPATIAL INTEGRITY.................... 14 

Forest Patch Size .......................................................................................................................... 15 

Shape or edge influence ................................................................................................................ 20 
Isolation and inter-connection ...................................................................................................... 24 

Forest Spatial Integrity Index ....................................................................................................... 27 

Presentation of results .................................................................................................................. 28 

IV A FOCUS ON HUMAN ACTIVITY......................................................................................... 37 

SPATIAL PATTERN .............................................................................................................................. 37

MEASURING ISOLATION FROM HUMAN ACTIVITY AT LANDSCAPE SCALES: SOME PREVIOUS

EXPERIENCE ....................................................................................................................................... 38 

Large Natural (Roadless) Areas ................................................................................................... 38 

Measuring a Continuum: the Wilderness Index ............................................................................ 45 
Measures of Accessibility, Population Density and Resource Use ............................................... 46 

DEVELOPING SPATIAL INDICATORS OF NATURALNESS FOR USE AT GLOBAL AND REGIONAL SCALES

........................................................................................................................................................... 49 

Key Attributes................................................................................................................................ 50 

An Effective Spatial Model: Basic Requirements.......................................................................... 51 

Validation...................................................................................................................................... 51 
Primary Attribute Data Availability and Quality.......................................................................... 53 

Data Scale Issues .......................................................................................................................... 53 

Presentation of Results.................................................................................................................. 55 

V CONCLUSION ........................................................................................................................... 57 

VI REFERENCES............................................................................................................................ 58 

FRA WORKING PAPERS.................................................................................................................. 64 



Page 3 

Executive Summary 

1) Efforts to assess and monitor forests, which previously focussed primarily on area 

and timber supply, are being expanded to reflect the full range of goods and 

services that forests provide, including the preservation of biological diversity.

2) In providing habitat for more than half of the world’s species, forests play a major 

role in maintaining global biodiversity.  Species richness varies among forest 

types and locations, but the capacity of any given forest to retain its original 

complement of biodiversity is a crucial factor in biodiversity trends. 

3) Human activity is affecting the capacity of forests for biodiversity preservation 

through reduction in overall forest area (deforestation), changes in the spatial 

configuration of forests (forest fragmentation) and changes to forest structure and 

composition.  While the first of these is already being monitored at global scales, 

this paper proposes approaches for monitoring changes in forest configuration at 

similar scales and for evaluating the magnitude of human influence as an indicator 

of other ecological changes 

4) The impacts on biodiversity of alteration of forest spatial configuration by 

deforestation and fragmentation are primarily through: 

Area effects – the tendency of small forest patches to support only subsets 

of the biodiversity complement of large areas and to be more vulnerable 

because of their size; 

Edge and gradient effects – the impact of the interface with non-forest 

ecosystems, which affects environmental variables and biotic interactions; 

Isolation effects – the separation of populations of forest organisms from 

similar populations and other forest areas, reducing genetic change and 

diversity and resource availability. 

5) Measuring forest configuration and spatial integrity at broad geographic scales can 

be done using geographic information systems (GIS) to quantify indices that 

address each of these impacts: 

Patch size – the area of each contiguous unit of forest cover; 

Spatially weighted forest density – the % of cells within a given radius that 

are occupied by forest; 

Connectivity – the from each forest cell to ‘core’ forest distance along a 

forested route. 

These indices can all be presented in both mapped and statistical form to support 

decision-making.  Constraints on their measurement include the coarse resolution 

of the land-cover data available for global and regional scale analyses. 

6) A single summary index of forest spatial integrity, which combines the three basic 

indices is proposed as a useful indicator of forest capacity to retain a full 

biodiversity complement.  It can be displayed in mapped form to support decision 
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making with biologically meaningful information.  It can also be summarised 

statistically to provide a baseline for monitoring. 

7) Other ecological changes brought about by human activity are better investigated 

by measuring the driver of change, human activity itself.  This can best be 

assessed by combining spatial information about settlements, infrastructure and 

land use in relation to ecosystem distribution. 

8) A well-developed example of this approach is the Australian Wilderness Index, 

which evaluates remoteness from human influence in terms of distance and land 

use intensity. 

9) This approach is illustrated applied at the global scale, and proposed as the basis 

for a measure of forest naturalness.  The forest naturalness index would be 

derived by overlaying the wilderness index with forest cover and assigning a 

wilderness index score to each forest unit. 

10) The resulting data on forest naturalness could be displayed in both mapped and 

statistical forms, and baselines could be established for monitoring work. 

11) The implementation of baseline assessments and subsequent monitoring of forest 

spatial integrity and naturalness as proposed in this paper would be a significant 

advance over current periodic forest assessments.  It would ensure that they 

addressed biodiversity preservation as one of the multiple benefits included in the 

periodic assessment of the world’s forest resources.   
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I Introduction

Until recently, efforts at assessing and monitoring forests have focused on the amount 

(area) of forest remaining and/or its standing timber volume.  Increasingly the multiple 

benefits and functions of forests, including provision of non-wood forest products, 

hydrological functions, carbon sequestration and biodiversity protection have been 

recognised, and their consideration in forest assessment has been recommended.  There 

is now a perception that not all forests are equal, whether it be for timber production or 

for conservation of biodiversity.  The international community has placed a high priority 

on assessing and monitoring the capacity of forests to provide any given range of 

services and conveying this information to policy and decision-makers and the general 

public (Nyyssonen & Ahti 1996).

In this paper we discuss: 

ways in which the capacity of forests to maintain their original biodiversity 

can be assessed at broad geographical scales;  

the problems inherent in such assessments; 

the most useful ways of presenting the results, and

steps that need to be taken to ensure effective monitoring in the future. 

Forests and biodiversity 

Biological diversity, or biodiversity, is an imprecise term that is used to refer to the 

diversity of life at the levels of genes, species and ecosystems, in a single locality or over 

broad geographic areas, including the Earth as a whole.  Biodiversity is used to refer to 

not only the numbers but the types of genes, species and ecosystems existing in the area 

in question.  There is usually an implicit assumption that naturally occurring or original 

components of biodiversity are of more value than articficially introduced or degraded 

ones, and therefore biodiversity preservation or protection is frequently understood to 

refer to the preservation of these qualities and components. 

Forests play a significant role in maintaining the world’s biodiversity.  They provide 

habitat for more than half of the world’s species (Groombridge & Jenkins 2000).  A 

forest area contributes to global forest biodiversity by the number of species present and 

shared with other areas and the number of species it contains that are found nowhere else 

(endemics).  The biodiversity complement of individual forests varies with forest type, 

and the climatic and soil factors that relate to it, as well as the biogeographic position and 

isolation of the forest.  In general forests at low latitudes and low altitudes, with warmer 

and wetter climates, have higher species richness than those at high latitude or altitude, 

or with cooler and drier climates.  Natural perturbations, such as storms and wildfires 

can also be important influences on forest biodiversity. 

Natural global patterns in biodiversity are also altered by human action (Groombridge 

& Jenkins 2000).  In the contemporary world, human activities may be the most 

important influence on forests’ capacity to maintain their original biodiversity.  Such 
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activities as commercial and artisanal logging, large scale land conversion, fuelwood 

and charcoal production, slash and burn agriculture, harvesting of non-timber forest 

products, hunting and mining all affect forest biodiversity.  Climate change resulting 

from modification of the atmosphere by anthropogenic emissions of carbon dioxide is 

also affecting the distribution and status of forest biodiversity.

Human impacts on forest biodiversity 

Each of these types of human influence affects forests differently, and the magnitude 

of the effects will depend strongly on the methods employed locally, the forest type, 

and on other factors within and around the ecosystem.  For example, commercial 

logging in temperate forests is often by clear cutting, which entirely removes forest 

cover in some areas and fragments remaining forest cover.  In contrast, commercial 

logging in tropical forests is usually by selective felling which disrupts canopies and 

forest structure and alters species composition, but may not alter total forest cover or 

its spatial configuration.  Secondary effects of logging such as increased access and 

resultant hunting are also important determinants of the status of forest biodiversity 

and the prospects for its preservation.  Small-scale timber extraction differs yet again 

in its effects on forest condition.  The effects of climate change are less localised, and 

are only beginning to be recognised.  Thus, many factors influencing forest 

biodiversity are affected in varying and complex fashions by human activity. 

In general human activities tend to affect any of three major aspects of forests: 

1) The total area of forest remaining – many of man’s activities remove forest 

cover either temporarily or permanently.  Some forest types may disappear 

locally, and reduction in the total amount of habitat is a significant pressure 

on some forest species that can lead to local extinction. 

2) The configuration of remaining forest cover – reduction in forest area is often 

accompanied by division of remaining forest cover into fragments, rather 

than continuous blocks.  Forest biodiversity is affected by the consequent 

local reduction in habitat area, by the exposure of forest edges to new 

environmental and biotic influences and by isolation from other forest areas 

(more detailed discussion below).  

3) The structure and composition of remaining forest – some human activities 

alter canopy structure, or focus disproportionately on particular species and 

specific components of their populations. 

Constraints on evaluating forest capacity for biodiversity 
preservation

Thus, useful measures of forest capacity for biodiversity preservation are likely to 

address the amount of forest remaining, its configuration or integrity and its 

‘naturalness’, or lack of anthropogenic disturbance.  However, developing measures of 

disturbance and making them operational is not straightforward.  Precise histories of 

forest disturbance and its intensity are rarely available, especially over broad 

geographical scales (Kapos & Iremonger 1998).  The problem of describing and 
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measuring human-induced change in ecosystems has been summed up by 

Groombridge (1992, p. 250) in a review of habitat/ecosystem classification: 

. . . Just as it is impossible to define rigidly the limits of any given ecosystem or habitat, so it is 

impossible to determine how much a given area of ecosystem or habitat has to change before 

it can be considered destroyed or converted. The problem is compounded by the fact that the 

natural environment is not static but rather dynamic, sometimes highly so, on a time scale 

ranging from hours to millions of years. It is thus difficult even to define an undisturbed 

ecosystem or habitat as a standard against which to measure degree of disturbance. 

There is a wide range of problems to be grappled with in successfully formulating 

methods for measuring the impact of humans in forest ecosystems. Difficulties arise 

from: 

 Different interpretations of the basic form and function of ecosystems – Some 

concerns focus on ecosystem processes, while others emphasise composition. 

Such different conceptual approaches may lead to very different conclusions 

as to appropriate sets of information for the description and measurement of 

change (O'Neill et al.,. 1986).

 Sensitivity to observation and process scale – The scale at which ecological 

phenomena are observed and measured will have a major bearing on the 

conclusions drawn (Goodall 1974; Allen et al.,. 1987; Allen and Hoekstra 

1990; 1992; Noss 1991), and the uses to which they can be put. 

 Ambiguity in identifying benchmark conditions – The notion of naturalness 

depends on a clear distinction between the presence and impact of human 

activity and natural ecological patterns and processes. This can be problematic 

if, as in much of Europe, there is little or no reference forest with little human 

influence to provide a basis for comparison 

 Establishing whether human-induced change represents a fundamental shift in 

organisation or change within normal limits of forest dynamics and ecosystem 

processes;

 Uncertainty regarding the place of humans in the environment. 

These difficulties pose significant technical problems and can give rise to potentially 

contradictory answers to questions concerning ecological change.

Two principal strategies can be adopted to address these issues and assess the 

naturalness and ecological integrity of forest ecosystems at broad geographic scales in 

biodiversity-relevant terms: 

1. Use indicators to assess key aspects of forest structure and/or function. This 

strategy has the obvious advantage of directly addressing the primary concern, 

which is the state of the ecosystem, but is subject to the difficulties described 

above concerned with the defining and measuring human-induced change in 

ecosystems.  Attention must focus on parameters that can be evaluated in a 

globally consistent manner at broad geographical scales and are clearly related to 

the status of component biodiversity within the forests.  Fragmentation of forests 

and parameters that describe it are a promising avenue for developing such 

indicators.
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2. Measure the driver of ecosystem change - human activity, rather than the response 

- ecological change. This approach avoids fundamental problems associated with 

describing and measuring ecosystem response to human activity. Separation of the 

driver (cause) and response (effect) components also allows for greater precision 

and flexibility in analysis. General indicators of naturalness or ecological integrity 

can be developed on the assumption that the greater the amount of ecosystem 

exposure to human activity the greater the potential for human intervention in 

these ecosystems.  

Indicators are measurements that convey information about more than just themselves.  

They provide means for quantifying and simplifying information on complex issues.  

They are purpose-dependent, almost always open to various interpretations, and never 

tell the whole story.  Indicators are needed because assessing and monitoring everything 

is impossible and because what is known needs to be conveyed to non-experts in policy-

relevant form. 

Good indicators are: 

scientifically valid, i.e. they relate appropriately to what they are supposed 

to represent; 

based on easily available data; 

responsive to change; 

easily understandable;

relevant to focal issues and users’ needs;

subject to target or threshold setting.

This document presents some approaches to generating indicators of forest condition in 

relation to biodiversity that could be used to conduct a globally consistent assessment.  It 

focuses primarily on indicators relating to forest fragmentation and exposure to human 

activity.
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II Assessing human impacts on forest biodiversity 

Forest area 

Of the three types of human impacts on forests mentioned above, the only one for 

which a consistent effort at assessment has been made at regional or broader scales is 

the change in forest area.  Since the 1980s FAO has provided statistical data on forest 

cover (FAO 1989, 1995), based on forest inventory, national reporting and high 

resolution remote sensing.  Since the mid-1990s a geographic overview of the current 

distribution of forest cover has been available (WCMC 1996, 1997).  Thus it is 

possible to provide statistical and mapped data about the amount of forest cover 

remaining, and to a lesser degree, about the amounts of particular types of forests and 

trends in the amount of cover.  The greater the level of detail about forest types 

available within such data sets, the more relevant to issues of the conservation of 

forest biodiversity they will become. 

Forest configuration 

The changes in forest configuration that accompany changes in land use and forest 

area can have substantial effects on the capacity of forest ecosystems to maintain their 

original biodiversity.  As forest ecosystems are divided into smaller patches, there are 

numerous effects on their biota, and the responses may vary substantially among 

species and among forest types.  The extensive literature on the effects of forest 

fragmentation suggests that the effects can be broken down into three major groups: 

area effects, edge effects and isolation effects.  What follows is a brief summary of 

characteristic components of these effects. 

Area effects 

When large forest blocks are broken into smaller ones, not all species are included in 

the remaining patches, simply because of sampling effects (Wilcox 1980).  This is 

especially true for rare species and for non-mobile organisms, such as trees and many 

invertebrates, which may be sparsely or patchily distributed within the forest.  Large 

animals and top carnivores are well known to require large areas of habitat.  These 

species are especially vulnerable to the reduction in habitat area caused by forest 

fragmentation, and they may disappear entirely from forest patches because food or 

other resources are inadequate to support them (Rylands & Keroughlian 1988, Soulé 

et al., 1979, Schaller & Cranshaw 1980, Newmark 1987, Laurance et al.,. 1997b).

Even smaller species are affected by the size of forest patches; amphibian species 

richness increased logarithmically with patch size in forest remnants in Madagascar 

(Vallan 2000).  The disappearance of some species from forest fragments can 

profoundly affect the forest itself, as shown by the effects on tree communities of the 

disappearance of seed-eating rodents from forest islands in Gatun Lake in Panama 

(Putz et al., 1990).  Other species persist, but in smaller populations, which may 

encompass less genetic diversity and lead over time to the vulnerability of those 

species to other ecological changes such as disease.  Rare species and those that 
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normally occur at low population densities are especially vulnerable to these effects 

(Laurance et al., 1997b).  Smaller forest patches may also include less environmental 

variability and therefore fewer microhabitats than more extensive forest areas.  This 

can contribute to the loss of individual species and may cause a reduction in the total 

species richness per area of forest (Scariot 1999).  Fragmentation of forest cover may 

also alter the nature and proportional impact of natural disturbance regimes and 

regeneration processes (Laurance et al.,. 1997a, Viana et al.,. 1997).

Edge and gradient effects 

Another important effect of forest fragmentation results from the creation of interfaces 

with non-forest environments.  These interfaces are associated with environmental 

gradients resulting from the exposure of the forest edge to drying winds and increased 

solar radiation (Kapos 1989, Camargo & Kapos 1995, Kapos et al.,. 1997).  The 

physical gradients affect ecological processes including canopy gap formation (Kapos 

et al.,. 1997), biomass and nutrient cycling (Laurance et al.,. 1997a, 1998a,b, Sizer et 

al.,. 2000), regeneration (Benitez-Malvido 1998, Sizer & Tanner 1999) and predation 

(Keyser et al.,. 1998) that can profoundly affect native species.  Invasive species, both 

native and non-native, are often favoured by an increased incidence of forest edges 

within the landscape, so that substantive changes in species composition have been 

documented in forest fragments (Brown & Hutchings 1997, Laurance et al.,. 1997b, 

Lynam 1997, Malcolm 1997, Viana et al.,. 1997).  Although some ‘edge effects’ have 

historically been regarded positively, principally because many game species make 

use of forest edges, they are generally regarded as detrimental to most native forest 

species.  The magnitude of edge effects within forest fragments can be strongly 

affected by the land-cover characteristics in the surrounding landscape, the matrix 

harshness (Murcia 1995, Laurance et al.,. 1997b), and they are also dynamic, 

frequently increasing in magnitude and extent over time (Gascon et al.,. 2000).

Connections among habitat fragments are an important means of reducing genetic 

isolation and providing additional foraging and refuge areas (Saunders et al.,. 1991) 

Isolation effects 

The other major group of effects of forest fragmentation results from the separation of 

the forest fragments from each other and from larger blocks of forest.  This isolation 

reduces the movement of species that are reluctant or unable to cross non-forest areas 

and for those that depend on such species for dispersal.  Reduced movement and 

dispersal also increases the chance of local extinction of individual species as a supply 

of colonisers or propagules is lacking.  Isolation of fragments may also reduce the 

genetic neighbourhood of some trees, reducing the breadth of the local gene pool for 

cross fertilisation (Nason et al.,. 1997).

Responses to all of these effects vary among species, but a body of empirical evidence 

is accumulating that facilitates predictions about the likely effects of fragmentation on 

any particular forest ecosystem.  Also from such evidence, a series of empirical 

generalisations concerning the spatial configuration of habitat with respect to 

biodiversity preservation can be paraphrased as follows (Noss & Cooperrider 1994; 

Thomas et al., 1990). 
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i. Habitat that is more widely distributed across its original range is more 

likely to persist than habitat confined to small parts. 

ii. Large blocks of habitat are superior to small blocks of habitat. 

iii. Blocks of habitat close together are better than blocks far apart. 

iv. Habitat in contiguous blocks is better than fragmented habitat. 

v. Interconnected blocks of habitat are better than isolated blocks. 

The long-term maintenance of forest integrity depends on promoting these 

characteristics in landscapes.  The more that landscapes retain these characteristics, 

the less is their vulnerability to human-induced change. These generalisations provide 

a useful basis for assessment and communication of information about forest status in 

this respect. 

Human activity 

Forest structure and composition and their implications for biodiversity are difficult to 

evaluate at broad geographic scales and may vary widely depending on (among other 

factors) the kinds and intensity of human activity and local ecological conditions.

Therefore, assessing the amount of human activity may be a useful proxy for 

evaluating its impacts on biodiversity.  It is well-documented, for example, that 

logging increases the probability of recurrent fire in Amazonian rain forests (Uhl et 

al.,. 1991, Nepstad et al., 1998), and that this in turn will lead to long term changes in 

species composition (Cochrane & Schulze 1998, 1999).  Logging also affects animal 

community composition and ecological relationships (e.g. Johns 1996, Lambert 1992, 

Ochoa 2000).  Hunting activity near settlements substantially reduces the abundance 

of mammal species (Muchaal & Ngandjui 1999) and the construction of roads 

facilitates both logging and hunting as well as land conversion and colonisation.
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III Measuring forest configuration and spatial integrity

Source data

The evaluation of forest cover configuration depends on the availability of spatially 

referenced or mapped data.  Most commonly, such data are derived from remote 

sensing, using either satellite-mounted or airborne sensors or aerial photography.  For 

continental and global scale evaluation, satellite imagery is the most appropriate data 

source.

Satellite-mounted sensors measure radiation reflected from the Earth’s surface in a 

variety of spectral bands; different land-cover types have different characteristic 

reflectances and spectral signatures. Satellite sensors vary in the frequency with which 

they return to a given portion of the earth’s surface (temporal resolution), in the 

spatial resolution, or pixel size, of the data they provide, and in the spectral resolution 

or numbers and types of spectral bands in which data are recorded. 

Satellite data are processed by adjusting them radiometrically to compensate for 

variations in atmospheric conditions, and then classifying the digital data by one of 

several methods.  Classification can be achieved by plotting reflectance in particular 

spectral bands or band ratios such as NDVI (Normalised Difference Vegetation Index) 

and visually interpreting the results.  Alternatively, satellite data can be classified 

digitally by grouping pixels with similar spectral characteristics, and by comparing 

their spectral responses to those of pixels from areas of known land cover (supervised 

classification).  Additional power can be brought to the process by incorporating 

information on variation in spectral response of an area through time (seasonal and 

other changes) and ancillary data (on land forms, land use etc.).  Expressing pixel 

composition in relation to mixtures of the spectral responses of possible component 

land covers (spectral mixture modelling) can also improve the resolution and accuracy 

of classification. 

The processing of satellite data is expensive and time consuming, requiring 

sophisticated hardware and software to deal with the large volumes of digital data 

involved.  Although very sophisticated and spatially detailed vegetation maps have 

been generated from satellite data, these have been confined to small areas because of 

the additional volume of data required for high spatial and spectral resolution 

processing.

The only currently available global land-cover data set derived from satellite data that 

have been processed in a consistent manner is the GLCCD, produced by the EROS 

Data Center and IGBP, from monthly averages of data from the AVHRR satellite 

during 1992-93 (Belward et al.,. 1999).  These data have a spatial resolution of 1 km, 

and their relatively low spectral resolution has been compensated by the large amount 

of data on temporal variation that is available and by incorporating large amounts of 

ancillary data into the classification process (Loveland et al.,. 1999).  At present, this 
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is the only data set that could be used to evaluate forest fragmentation and regional 

and global scales. 

Because of the coarse spatial resolution of the GLCCD, the data represent relatively 

coarse spatial mosaics and provide insufficient detail for certain kinds of analyses of 

forest configuration.  There are also systematic errors in that result from the coarse 

spatial resolution: small non-forest patches in areas of high forest cover remain 

undetected as do small forest patches in landscapes with low forest cover.  These 

phenomena lead respectively to over- and under- estimates of forest cover.  Although 

these errors can be reduced by calibration against high-resolution data (Mayaux & 

Lambin 1995, 1997), it is not clear whether such a process has been applied to the 

GLCCD.   Details of boundary configuration and interspersion of forest and non-

forest land cover are lost at the lower spatial resolution.  However, some consistent 

patterns that have ecological meaning for forest biodiversity do emerge.  The 

following discussion focuses on the options for evaluating forest configuration that 

are appropriate for use with data like the GLCCD, but also includes examples of 

metrics that can be used productively with higher resolution data.  The sensitivity of 

the different measures to data scale and resolution is discussed. 

Other constraints 

Defining ecosystems is an issue in the extent to which the analysis attempts to focus 

on individual forest types and their configuration within the landscape.  Ideally one 

would look at the fragmentation parameters of each forest type within a mixed matrix 

of forest and non-forest separately, but in fact it is unlikely that the source data on 

forest type distribution can support this.  It will probably be necessary to look just at 

forest cover in relation to the non-forest matrix, or perhaps at the fragmentation 

properties of rather broad or regional forest types with a minimum of overlap. 

Scale is of course an issue.  Fragmentation is differently determined for different 

components of the biota of a forest ecosystem.  A path or deforested strip of a few 

metres width may be a significant barrier to an invertebrate, whereas a deforested strip 

of several km presents little obstacle to a forest-dwelling bird of prey.  The data 

available for doing a globally consistent evaluation of forest fragmentation are 1 km 

resolution satellite data.  Therefore, any fragmentation metrics that are derived from 

these data will represent the distribution of forests only at this coarse scale, and indeed 

might be better said to represent the configuration of forested areas in the landscape 

than of individual patches of forest.  The effects of coarse resolution data on forest 

area estimates discussed above also apply to the estimation of forest fragmentation.  

Because of the problems of detecting small patches within very high or very low 

forest cover landscapes, fragmentation will be underestimated in areas of both very 

high and very low forest cover. 

The question of what is natural or a baseline condition is also an issue in evaluating 

fragmentation of forests.  Some forest types and regions are naturally more continuous 

than others.  For example, forest close to latitudinal or other limits of its distribution 

has a tendency to be naturally patchy, as in the taiga/tundra transition of the boreal 
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regions and some forest-savanna boundaries.  Similarly forests that exist on 

mountains in non-forested landscapes because of the greater humidity at higher 

altitudes are inherently restricted in area and isolated from each other.  The 

fragmented nature of these systems has a great significance for biodiversity that is 

entirely distinct from that of the fragmentation of continuous forest cover by human 

activity. 

Some level of forest fragmentation may also result from natural disturbance and 

dynamic processes within forests. However, the scales of these processes are usually 

such that they will be beneath the resolution of any global or regional scale analyses. 

Although some kinds of storm damage or wildfire impact may be at scales that could 

be detected by these analyses, the issue of whether changes in forest fragmentation 

parameters are within or outside the range of natural variation is unlikely to arise. 

Analysis tools 

A number of packages for use with geographic information systems (GIS) permit the 

analysis and characterisation of landscapes in terms of their patch composition, spatial 

relations and dynamics.  One such package, FRAGSTATS (McGarigal and Marks 

1995) is widely used for the description and analysis of landscape configuration.  It 

offers a wide range of measures of varying complexity. 

A proposed approach to measuring and monitoring forest spatial 
integrity

The choice of measures of forest fragmentation for use as indicators of forest capacity 

to retain biodiversity is dictated both by the source data and by the range of biological 

effects being targeted.  Summary statistics of landscape metrics are of little use for 

predicting responses of individual species without more detailed information about 

both species requirements and environmental variation on the ground.  However, to 

provide both an overview of forest status in relation to biodiversity and baselines to 

track changes that may affect forest biodiversity simple statistical expressions of 

forest configuration can be useful.  It is also important that the metrics chosen be 

easily communicated and understood by the anticipated audience for the overview and 

monitoring, so conceptually complex indices are generally less useful. 

Landscape ecological theory and GIS technology have generated a number of 

measures of the spatial distribution of habitat that express different aspects of its 

fragmentation in ways that relate to ecological processes.  These have mostly been 

used in the evaluation of habitat and landscape processes at management unit scales.  

For example, Kramer (1997) used these analyses to describe landscape change as a 

result of management of two national parks in Costa Rica.  She found that as forest 

cover increased, patch size increased and patch shapes became more compact for the 

shrinking pasture areas, but remained similar or became more complex over time for 

the expanding forest.  Landscape diversity declined as the pasture areas shrank.  In 

another example, Helmer (2000) used similar analyses to show that in the mountains 

of Costa Rica secondary forest is strongly associated with primary forest and occurs in 

smaller patches with more complex shapes.  Logsdon et al.,. (2000) used 
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FRAGSTATS to analyse and describe landscape composition, configuration and 

heterogeneity from remotely sensed data for a small part of central Amazonia.  In one 

of the few studies that directly addresses the relationship between landscape 

parameters and potential management actions, Ranta et al.,. (1998) used landscape 

analysis to characterise the fragmentation of Atlantic rain forest in Brazil and to 

simulate the likely impacts of land use change or forest restoration.  Still other studies 

have characterised forest fragmentation at broader scales.  Skole & Tucker (1993) 

evaluated forest fragementation and potential edge impacts for the whole of the 

Amazon Basin, and substantial research has been done to characterise and describe 

patterns of fragmentation throughout the tropics (Jeanjean et al.,. 1994, 1995). 

As these examples show, spatial analysis of landscapes and the metrics it produces 

have been the subject of much research and have been used widely for descriptive 

purposes.  However, they represent a complex suite of ecological processes and 

effects that are beyond the detailed understanding of many decision-makers.  Also, 

they often focus at scales (such as the 100 m edge effect postulated by Helmer 2000) 

that are beyond the resolution of currently available classified satellite data on 

landcover at regional and global scales.  Furthermore, they have rarely been used to 

identify the likely relative value of different patches of habitat in the context of 

fragmentation, as a basis for monitoring changes in that condition or for making 

policy and management decisions.   

Thus, there is a need for an easily understood summary index that can be used both as 

a basis for visualising the relative biodiversity preservation capacity of different forest 

areas and to establish a baseline for tracking forest landscape change.  Both of these 

uses support decision-making and evaluation of policy effectiveness.  Such an index 

needs to reflect all three types of fragmentation effects outlined above: 

area or patch size; 

interface with non-forest, or edge effects 

isolation from, or interconnection with other patches. 

In this section of the paper, we develop a set of tools for quantifying forest 

fragmentation in relation to these three types of effects and displaying them in ways 

that can be meaningful to decision-makers.  The use of each tool is illustrated using 

the forest cover of Paraguay (Figure 1) as an example data set.  The data are part of a 

global data set derived from 1 km resolution AVHRR satellite data, and are therefore 

characteristic of forest cover data that could be used in global assessment and 

monitoring of forest fragmentation.  Throughout the paper it will be useful to compare 

the mapped indices of fragmentation with this base map of forest cover to evaluate the 

additional information they convey and their potential utility for supporting decision 

making. 

Forest Patch Size 

Area effects are most easily represented in terms of patch size.  A GIS can be used to 

identify all patches of forest within the area of study, to measure their areas and assign 

them to a patch size class.  If the data used are coarse resolution satellite data, this 
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evaluation will identify contiguous blocks where forest is the predominant land cover, 

even if there may be some breaks in the forest cover at sub-pixel level.

The appropriate size class intervals can be selected empirically to provide a 

distribution with an easily analysed shape.  The thresholds can also be adjusted to suit 

different regional characteristics or to address specific conservation issues and values.  

For example, selection of patch size thresholds might be related to average individual 

home range size or sustainable micro-population area of forest animals. Other criteria 

might be based on the spatial scale of natural regeneration and successional processes 

that provide continuity of forest ecosystems after disturbance.  However, it is 

important to recognise that consistency of classes between sampling times is an 

essential component of any monitoring or comparative work. 
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For the evaluation of forest fragmentation based on global datasets (mostly 1 km
2

pixel size), a conservative analysis would assume that details of forest patches smaller 

than 10 km
2
 cannot be analysed reliably because of the high impact of variation in 

shape and sub-pixel level structure.  It can also be accepted that all forest patches 

larger than 300 km
2
 (30,000 ha) can be regarded as continuous forest, and thus make 

up the largest patch size class.  

In the present analysis (Fig. 2), and potentially for future broad scale monitoring and 

data integration activities, logarithmic type scales are used, with the size class 

intervals delineated by rounded values in km
2
.  (This minor distortion relative to a 

truly logarithmic scale will not affect the majority of statistical tests that could be 

applied in comparing patch size distributions).  When higher resolution data are 

available, the scale might be extended to split the smaller patch size classes, while still 

keeping the established pattern of scaling.  Equally, the upper end of scale could be 

expanded for broad scale or global level studies.

For the purpose of developing an integrated index of fragmentation, numeric ranks 

ranging from 1 (1-10 km
2
 patch) to 10 (> 300 km

2
) were assigned to classes, and each 

1 km
2
 cell classed as forest was assigned to one of these ranks according to the size of 

patch it belongs to.  The result (Fig. 2) is a visualisation of where forest occurs in 

large patches and where it occurs in small ones that may be clearer to non-experts 

than simple maps of forest cover.  Such an analysis can also generate a statistical 

distribution of forest area among patch size (Ps) classes that can be used as a baseline 

for assessment and monitoring of forest condition in relation to the capacity for 

biodiversity preservation (Fig 3; see section on presentation issues below). 

A limitation of the patch size analysis is that it tends to identify barely connected 

and/or irregularly shaped patches of forest as belonging to larger size classes than may 

be appropriate in terms of their ecological function.  For example, [A] and [B] in 

figure 2 indicate forest patches of comparable size that are classed differently because 

of the presence or absence of small connections (of the order of the resolution of the 

raster data) to larger patches.  Given the characteristics of coarse resolution data and 

the implications of connections or breaks between forest patches at this scale, 

additional components are needed to improve the strength of the evaluation.

Furthermore, the patch size analysis alone does a poor job of distinguishing between 

the capacities to support biodiversity of outlying narrow branches of patches and core 

areas of forest patches within the same size class. 
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Figure 3. Statistical distribution of the forest area of Paraguay among different patch size 

classes.  Such a distribution is an initial assessment of forest condition with respect to 

fragmentation and can be used as a baseline for monitoring purposes.  If 

fragmentation of the forest increases, the amount of forest in the largest patch sizes 

will decrease and that in the smaller size classes will increase.  However, it is 

common for deforestation to cause the disappearance of the smallest patches and a 

consequent reduction in the importance of that size class.  Distributions can be 

compared between assessment times by using non-parametric statistical tests.  

Shape or edge influence 

The effect of the interface between forest and non-forest (edge effects) can be 

addressed through the relatively commonly employed shape indices, such as perimeter 

to area ratios  and edge-to-core ratios.  However, these measures are more appropriate 

to ground level studies or high resolution data sets in which the forest cover is real 

and the extent of edge influence is well understood.  For coarse resolution data in 

which patches may or may not represent actually contiguous forest, an alternative 

approach is to evaluate the percentage of the neighbouring cells that contain forest 

within a given radius of each cell (Spatially Weighted Forest Cover Density – SF).

The radius can be chosen in the light of known scaling issues and concerns about 

specific ecological phenomena.  In the current illustrative example (Fig. 4) a radius of 

5 km was chosen as being consistent with the spatial accuracy of the data.  

As can be seen in Figure 4,the value of SF is high when the sample cell belongs to the 

interior of, or is near a dense or solid patch that is comparable in size or larger than 

the radius used for calculation of SF.  For areas at the periphery of, or distant from 

large continuous forest patches, SF is lower and mostly dependent upon patch shape 

and isolation.  Small isolated patches have small amounts of forest in their immediate 

neighbourhoods ([A] in Fig. 4); the extreme case is the single-pixel forest patch that is 
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separated by more than the SF evaluation radius from any other forest.  Points along 

patch edges ([B]), and in patches of complex shape or in narrow strips of forest, where 

edge effects may influence forest status, also have low proportions of forest cover in 

their neighbourhoods, while points within larger patches [C] or continuous forest are 

entirely surrounded by forest.  Therefore, spatially weighted forest density, SF

provides a basis for expressing the role of edge effects, without dependence on 

accurate definition of the edge or limit of a given patch. 

Like the patch size analysis, this analytical approach can be presented in a way that 

provides a clear spatially referenced visualisation (Fig. 4).  This shows where forests 

are subject to edge and isolation effects as distinct from forest that is both part of a 

large patch (that is predominantly forested) and distant from the interface between 

forest and non-forest.  Although the implications of these effects for forest 

biodiversity are strongly dependent on forest type and location, change in the amount 

and location of forest subject to such influences is likely to result in changing 

biodiversity status.  Therefore, establishment of both visual and statistical baselines 

for this parameter is an essential step in the monitoring of forest biodiversity status.  

Spatially weighted forest cover density, SF, is measured directly in percentage units.  

In the present example, (Fig 4 and 5), the scale is broken into ten equal intervals and 

the lower percentages are assigned to lower ranks.  This reflects an implicit 

assumption that forest habitat that is less subject to the influences of edges and 

isolation is of greater value for forest biodiversity.  Although this assumption may be 

invalid in some cases, it is a realistic view at the global scale.  As with the patch size 

distribution, appropriate breaks between classes can be selected on theoretical and 

empirical grounds, and a statistical summary of the forest area in each class can 

provide a basis for assessment and monitoring of forest condition in this context (Fig. 

5).  However, consistency in approach between assessments is a critical component of 

any monitoring or comparative analysis.  The use of GIS tools that retain the source 

data and intermediate parameters in separate grids, provides flexibility and ensures 

that a consistent approach can be applied across all data sets in a time series. 
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Figure 5. Statistical distribution of Paraguay’s forest area among different classes of 

spatially weighted forest cover density, SF, forest occurrence within a 5 km radius.  

Such a distribution is an initial assessment of forest condition with respect to 

fragmentation, which reflects proximity to non-forested areas and edges, and can be 

used as a baseline for monitoring purposes.  If fragmentation of the forest increases, 

the amount of forest in the highest classes (i.e. those forest cells that are completely 

surrounded by forest) will decrease, and that in the smaller classes will increase.  

Distributions can be compared between times using non-parametric statistical tests. 

A simplified version of the forest cover density analysis can be used to identify forest 

density zones, generalised outlines of the forest areas that are likely to have the 

highest integrity, those of least integrity and the intermediate values (Fig. 6).  This 

approach provides a useful way of defining “core” forest areas (see below).  It also 

provides a means of focussing attention on the forest areas of intermediate ‘quality’ or 

integrity.  These are the areas that may appear least distinct to the non-expert 

observer, but are most likely to be immediately affected by policy and management 

decisions.  Separate focus on this zone of intermediate forest density can enhance the 

visibility of pattern and change in the statistical data (see section on presentation 

below).
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Isolation and inter-connection 

Quantification of the third component the effects of fragmentation, isolation, requires 

some measure of distance to other forest areas.  However, the degree of isolation 

and/or the positive effects of interconnection are also dependent on the characteristics 

of the neighbouring forest.  It is also true that many forest species are unable and/or 

reluctant to cross areas without forest cover (Laurance et al.,. 1997b), so forest areas 

that are directly connected to other forest areas are likely to be of greater value and 

more accessible to a greater range of forest species.  The possibilities of dispersal to 

and from a particular forest area depend on the species of interest and the forest stand 

characteristics (among other factors).   

Furthermore, the overall sustainability of biological systems is increased by the 

presence of relatively intact “core” areas surrounded by peripheral areas that are 

important in buffering the system as a whole against external impacts (see Fig. 6).  

These peripheral areas, in their turn, also benefit from connection to “core” areas, 

which provide necessary genetic resources (via animal migration or plant dispersal) 

that can be key to maintaining ecosystem function after natural or anthropogenic 

disturbance.  Therefore, forest patches that are connected by forest to core forest areas 

may be viewed as more sustainable and of higher biological value that areas of similar 

forest cover density and overall shape that are not connected to core forest.

Core forest area, and connection to it, may be defined using thresholds appropriate to 

the particular components of biodiversity of interest, management considerations and 

properties of individual forest types.  In the present study, for general illustration core 

forest area was defined using two criteria that are appropriate to the coarse scale of the 

data (Fig. 6):  

1. Core area is represented by continuous forest with density (SF ) more than 90% 

2. The size of an individual core area must be at least 100 km
2

The distance to core forest areas, via cells containing forest cover, estimates the 

degree of connection of forest cells to core areas.  The connectivity, CF, is inversely 

proportional to distance from core areas, ranging from 10 (core area) to 1 (24-27 km), 

and in this example, forest cells at distances greater than a threshold of 27 km from 

core forest are regarded as effectively isolated and assigned a CF value of 0.  Forest 

cells that are connected to core forest by between one and 27 km of forest are 

assigned to intermediate classes of connection (Figure 7). 

Like the previous two indicators, this approach can be used to provide both a spatially 

referenced visualisation and a statistical summary (Figure 8) of which forest areas are 

likely to be in the best condition for preserving forest species.  In this case, the best 

condition refers to the closest connection to core forest, and therefore the greatest 

accessibility to the greatest range of forest species.  Although this approach is 

proposed for the analysis of relatively low resolution (1 km) data, where individual 

pixels may include mosaic patterns, and species diversity and successional stage may 

not be incorporated, the same principles would apply at more detailed scales. 
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Figure 8.  Statistical distribution of forest area in Paraguay among different classes of 

connectivity, CF.  This distribution could serve as a baseline for monitoring the 

changes in forest capacity to retain biodiversity.  As forest fragmentation increases, 

the amount of core and highly connected forest will decrease, and unconnected or 

remotely connected forest area will increase both absolutely and as a proportion of the 

total.  Some scenarios of forest regeneration could result in increasing amounts of 

connected forest. 

Forest Spatial Integrity Index 

Despite the individual limitations of each of the above indices, between them they 

cover all three important aspects of forest fragmentation effects and make it possible 

to quantify most variations in the spatial distribution of forest cover.  Patch size, Ps,

facilitates comparison of forest stands larger than some minimal patch size threshold 

and below a size that can be regarded as continuous forest, regardless of variation.

Spatially weighted forest cover density, SF, provides a way of identifying both small, 

dispersed patches and areas subject to edge effects.  However, it provides little detail 

at intermediate values and gives insufficient information about the interconnection of 

forest patches with forest patches of different status.  The connectivity index, CF,

permits ranking patches of similar size in relation to their probable accessibility to 

forest species, and provides a way of distinguishing among forest areas of 

intermediate sizes and densities.   
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As all three indices range between 0 and 10, it is feasible to integrate them, using 

averaging or some more complicated method of combination, to provide a combined 

measure that is similarly easy to understand and interpret.  The contributions of the 

individual indices can be adjusted using numeric coefficients to reflect the conceptual 

weight attached to the different factors:

FF = x(PS) + y(SF) + z(CF)

As patch size and forest density are interrelated, while connectivity is conceptually 

distinct and potentially very important in sustaining forest biodiversity, we suggest the 

following composite index of forest spatial integrity as a starting point for analysis of 

forest condition: 

FF = 0.25PS + 0.25SF+ 0.5CF

Other coefficients could be adopted to reflect a different focus. 

The example application of this forest spatial integrity index, FF, to the forest cover 

data for Paraguay (Fig. 9) demonstrates the visual impact and clarity provided by this 

approach, which could ensure its utility for decision making. The statistical 

distribution of forest area among the different integrity index classes (Fig. 10) 

provides a baseline for monitoring forest spatial integrity over time.  Such monitoring 

is an essential component of evaluating policy effectiveness and the impact of 

management decisions.  

Presentation of results 

Great care must be taken in the presentation of results of such assessment and 

monitoring.  Data in a mapped context may be the most useful for supporting site-

specific decision-making and, conceivably, for scenario testing.  Data in statistical 

form are potentially more useful for monitoring and evaluation of policy 

effectiveness.  It is crucial that consistent methods are applied for comparisons in 

space and time and that original data and analyses are retained to permit reanalysis in 

the event that changes in thresholds or approaches are deemed appropriate.  

Statistical data need to be presented in absolute areas rather than as percentages.  

Changes in percentages of forest cover in lower integrity categories may reflect either 

an improvement in the integrity of formerly low value areas, or simply a loss of forest 

area from those categories without an increase in others. 
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Figure 10.  Statistical distribution of the forest area of Paraguay among different 

classes of spatial integrity as expressed by the Index of Forest Spatial Integrity, FF,

which combines information on patch size, shape and isolation. Such a distribution 

can be used as a baseline for monitoring forest condition with respect to 

fragmentation.  If deforestation reduces forest area uniformly, the totals will decrease 

uniformly across the distribution.  The loss of small isolated forest remnants or 

irregular patches will be reflected in a reduction in the area in the lower integrity 

classes, while the loss of forest with high integrity can be detected from a loss of 

forest area with high integrity value.  Distributions can be compared between 

assessment times by using non-parametric statistical tests.  

Added clarity of both mapped and statistical presentation of data on forest spatial 

integrity may be obtained by delineating the three different forest density zones (Fig. 

11) as derived from the simplified presentation of the Spatially Weighted Forest 

Density (Fig. 6).  This presentation might help the non-expert user to visualise the 

spatial relations among forest patches in relation to their overall spatial integrity index 

and to anticipate the effects of changes in the landscape more vividly.  It also makes it 

possible to view the statistical distribution among intermediate integrity classes in 

more detail (Fig. 12), as the scale can be expanded by excluding large areas of high 

and low integrity forest from the presentation. 
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Figure 12a 

Figure 12b 
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Figure 12.  Statistical distribution of the forest area of Paraguay, according to the 

three component indices and the integrated Index of Forest Spatial Integrity.  These 

graphs include only the forest falling within the zone of intermediate density (cf. Fig 

6) and permit greater scrutiny of the distribution of forest among intermediate classes 

of each index and, potentially its change over time, than Figure 10.  Forest areas of 

intermediate integrity are those most likely to be affected by changes in policy and 

management, and therefore such a form of presentation may be of use to inform 

decision-makers. 

Figure 12c 

Figure 12d 
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Another application, to data from the Ukraine (Figs 13 and 14), shows that the 

analysis produces visually consistent results and that it is feasible to apply this 

approach widely.  It shows clearly that the Ukraine has smaller amounts of core and 

high integrity forest, but retains some areas of intermediate integrity that can be 

identified and prioritised in policies to promote forest conservation and sustainable 

use. This analytical approach could be implemented in a global assessment of forest 

fragmentation to provide a baseline for monitoring change in forest cover and its 

integrity and provide insight into the changing capacity of the world’s forests to retain 

their biodiversity. 

Spatial integrity is not in itself a sufficient measure of forest capacity to maintain 

biodiversity.  Of the other influences that are important, a key factor is the influence 

of human population and activity on remaining forest areas.  This is discussed in the 

following section. 
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Figure 14. Statistical distribution of the forest area of Ukraine among different classes of spatial 

integrity as expressed by the Index of Forest Spatial Integrity, FF, which combines information on patch 

size, shape and isolation.  Such a distribution can be used as a baseline for monitoring forest condition 

with respect to fragmentation or for comparison with data from other locations (e.g. Fig 11). In (a) the 

distribution is shown for all the forest area of the Ukraine, while in (b) only forest falling within the 

zone of intermediate density (see Fig. 13) is included, allowing more detailed scrutiny of the 

distribution among intermediate integrity classes. 

Figure 14a 

Figure 14b 
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IV A Focus on Human Activity 

To this point discussion has focussed on methods for measuring change in the forest 

itself, insofar as this can be detected from coarse resolution data. An alternative 

strategy is to switch focus from ecological change to describing the factors that drive

ecological response; in this case human activity itself (Lesslie 1997). 

Shifting emphasis in this way means that generalisations can be made about the level 

and extent of human intervention in ecosystems and, in turn, the exposure or 

vulnerability of these ecosystems (Lesslie 1997).  It also alleviates difficulties 

associated with identifying and measuring key ecosystem phenomena, facilitates an 

explicit treatment of scale issues, improves prospects of acquiring suitable data, and 

removes the necessity to ascertain whether particular ecological outcomes are 

attributable to human activity or natural processes. 

Spatial Pattern 

The analysis of spatial pattern in human activity in the landscape has a strong tradition 

in human geography, particularly from the 1930s to the 1970s, from which several 

key principles have emerged. Firstly, the spatial distribution of human activity reflects 

an ordered adjustment to distance.  Of particular relevance is the notion of the 

attenuation of pattern or process with distance, as expressed in Tobler's 'first law of 

geography' which states that everything is related to everything else, but near things 

are more related than distant things (Tobler 1970).  Secondly, human activity is 

generally located to minimise the 'frictional' effects of distance (Losch 1954).  A 

related principle is the notion of accessibility or functional centrality.  Finally, human 

activity agglomerates in settlements.  

Generalisations concerning the spatial configuration of habitat (Noss & Cooperrider 

1994) are encapsulated in the broader generalisation that the integrity of habitat is 

usually associated with spatial isolation from human activity.  This broader principle 

also relates to more traditional geographical perspectives on the pattern of human 

activity in the landscape and the attenuation of pattern and process with distance.

However, a reliance on spatial pattern to explain human interaction with ecosystems 

does have limitations.  It involves, for instance, the necessary assumption that there is 

a direct relationship between the spatial location of human activity and its ecological 

effects.  This precludes any satisfactory accounting for processes (e.g. hydrologic and 

atmospheric) where spatially distributed effects are non-linear or highly complex (e.g. 

multi-scale processes).
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Measuring Isolation from Human Activity at Landscape Scales: 
Some Previous Experience 

Spatially explicit indicators of ecological integrity, which are consistent with a 

strategy based on measuring isolation from human activity in the landscape, should 

have the following characteristics: 

 The index should be quantitative and the methodology should have the 

capacity to measure variation in exposure to human activity across the 

landscape.  

 Index values should derive directly from primary attribute data in a systematic 

and repeatable manner, and they should reflect the scale characteristics of 

primary data inputs. 

 The methodology should be transparent and as simple as possible. Notions of 

ecological integrity and naturalness (or isolation from human activity) are 

complex and difficult to deal with in a precise way. There is, therefore, little 

advantage gained from pursuing complex modelling techniques when these are 

likely to have deficiencies of a similar order of magnitude to simpler 

procedures. Complex modelling also has the disadvantage that it can become 

difficult to understand and interpret. Any modelling procedure in this area will 

have contentious aspects and it is far better for these to be explicit and well 

understood. Complex modelling also generally requires primary attribute data 

of accuracy and precision that is typically not available at global or regional 

scales. Global consistency and comparability is improved if the modelling 

procedure does not make demands for sophisticated primary attribute data. 

 The methodology should be amenable to elaboration in a staged and 

systematic manner. This is essential to enable the model to benefit from new 

or improved attribute data and knowledge. A capacity for elaboration may also 

be useful in local or regional situations where its possible to take advantage of 

additional or enhanced local attribute data, or where particular local factors 

have a known and significant impact on ecological integrity. 

Large Natural (Roadless) Areas 

All other factors being equal, the core of a large natural area will be less exposed to 

(more isolated from) human activity than the core of a small natural area. The 

exposure of a natural area to human activity is therefore fundamentally related to its 

size.

Current interest in the size of natural areas, as a measure of relative isolation from 

human activity, is complemented by its long history in nature conservation science. 

Since the 19th century, for instance, it has been recognised that there is a link between 

the human-induced break-up of large natural areas and the extinction of species (De 

Candolle 1874). The importance of size in nature conservation science has, however, 

been promoted most strongly by island biogeography theory (MacArthur & Wilson 

1967) and the species-area relationships of Preston (1962), which hold that larger 
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areas typically support a greater diversity of habitats and contain more species and 

larger populations of individual species than smaller areas. Size is today similarly 

recognised as important in process-functional terms. Larger natural areas have the 

capacity to better accommodate change in larger-scale processes (eg shifts in climate 

patterns) and disturbance events (eg fire) (Forman 1996).  

The systematic evaluation of natural areas for conservation, based on size, is first 

evident in the US early in the 20th century with the emergence of interest in 

wilderness and roadless areas.  During the 1930s the US Forest Service prepared an 

inventory of available wilderness areas within National Forest, rating undeveloped 

roadless areas on the basis of size. The US Wilderness Act of 1964 set up a 

framework for wilderness identification and protection in the US that is still in place 

today. It requires relevant Federal land-holding agencies to identify and assess 

roadless areas.  

Interest in the identification of large natural areas that have limited exposure to 

modern technological society is not restricted to the US. It has been a mainstream 

aspect of nature conservation assessment in other 'frontier' regions of the world where 

there is a relatively clear distinction between the presence and impact of human 

activity and natural ecological patterns and processes. This is especially the case in 

Australia, Canada and New Zealand.  Notably, the concept has also been pursued in 

parts of the world where this distinction is not so clear and where there is continuing 

indigenous habitation. This includes countries such as Finland (Kajala & Watson 

1997), South Africa (Elliot 1996), and Italy (Zunino 1995). Identification and 

assessment methodologies typically involve criteria that specify minimum size and 

shape characteristics and require a 'primary' vegetation cover, no urban, agricultural or 

other commercial land use, minimal constructed access and no permanent settlement. 

Detailed specifications vary on a regional basis and from study to study. 

Several assessments of this type have been conducted at the global level. The first 

global 'reconnaissance-level' assessment of large areas with minimal impact and 

proximity to modern technological society was completed by McCloskey and 

Spalding (1989).  Using 1:1,000,000 scale Jet and Operational Navigation Charts as a 

database, that study identified areas of at least 400,000 ha with no mapped human 

structures or roads. The global distribution of these areas is (Figure 15) is heavily 

dominated by arctic and desert regions and includes little area in forested zones. 

A second global-level evaluation of human activity (Hannah et al.,. 1994) mapped 

relatively undisturbed (not simply roadless) natural areas, and reduced the minimum 

size of mapped 'undisturbed' areas to 100,000 ha.  It defined undisturbed and two 

classes of non-natural areas as follows: 

undisturbed - a record of primary vegetation and a very low population 

density (<10 persons per km2 density or <1 per km2 density in arid/semi-arid 

and tundra communities) 

partially disturbed - a record of shifting or extensive agriculture, or other 

record of human disturbance; and 
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human dominated - a record of permanent agriculture or urban settlement, or 

where primary/potential vegetation is removed 

Data were derived from a variety of information sources. Overall, the world was 

found to have around half of its total surface, but only 27% of its habitable surface 

undisturbed by man.  A number of important forest areas, especially in the 

Indomalayan biogeographic realm, had no undisturbed area remaining and very little 

partially disturbed territory. 
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An evaluation of the status of the world's 'frontier forests' represents a third instance 

of a global-scale study involving the identification of relatively large natural areas 

(Bryant et al.,. 1997) (Figure 16). This assessment focuses solely on forest 

environments, distinguishing three classes of threat: 

frontier forests under low or no threat - large intact forest ecosystems that are 

relatively undisturbed and large enough to maintain their biodiversity 

frontier forests under medium or high threat - on-going or planned human 

activity (eg logging, agricultural clearing, mining)  

non-frontier forests - secondary forest, plantations, degraded forest, and 

patches of primary forest. 

The threat classification in this mapping exercise was drawn largely from expert 

opinion.  No specific size threshold was applied in identifying frontier forests, 

although it was required that areas be of sufficient size to maintain biodiversity and to 

absorb large-scale disturbances. 

These three global-scale spatial studies represent simple and useful assessments of the 

naturalness or integrity of ecosystems.  Each study primarily relies on the assumption 

that isolation from the impacts and influences of human activity is a reasonable 

indicator of ecological integrity, although some reference is made to certain 

biophysical conditions in the latter two instances.  In each case the accuracy and 

precision of results is dependent upon the quality of available suitable data of global 

extent.

A greater concern, particularly in the latter two studies, is that the analyses are 

not explicitly scaled; nor are they systematic and repeatable. This 

means that the precision of the mapping and the accuracy of attribute 

class allocations are not transparent and direct expressions of the data 

and the analytical procedure.  It also means that they can not form the 

basis for any kind of consistent assessment programme to monitor 

change through time. 

Moreover, the selection of particular size thresholds to identify places that are isolated 

from the impacts and influences of human activity can be questioned.  Exposure to 

human activity is not simply a matter of presence or absence, it is a matter of degree.  
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Measuring a Continuum: the Wilderness Index 

Recognition of problems with the use of fixed size thresholds, qualitative terms and a 

lack of repeatability gave rise, in the early 1980s, to new quantitative indicator-based 

approaches to the identification of remote natural areas.  For example, emphasis 

switched from the identification of wilderness areas based on qualitative thresholds to 

the 'continuum' concept of wilderness (Lesslie and Taylor 1985), involving the 

quantitative measurement of relative variation in remoteness from human activity 

across the landscape (Kirkpatrick & Haney 1980; Lesslie et al., 1988).  This type of 

approach underpinned the Australian government's National Wilderness Inventory 

(Lesslie & Maslen 1995) and the production of similar remote and natural lands 

databases elsewhere (e.g. Husby 1995). 

The Australian wilderness study places emphasis on measuring the extent to which 

points in the landscape are remote from, and undisturbed by, the influence of modern 

technological society. It does so by quantitatively measuring variation in remoteness 

and naturalness across the landscape using four indicators:

remoteness from settlement (remoteness from places of permanent 

habitation);  

remoteness from access (remoteness from established access routes);  

apparent naturalness (the degree to which the landscape is free from the 

presence of permanent structures associated with modern technological 

society); and,

biophysical naturalness (the degree to which the natural environment is free 

from biophysical disturbance caused by the influence of modern technological 

society).

The two remoteness indices and the apparent naturalness index are based on a 

measurement of Euclidean distance between each point in the landscape and ordered 

classes of settlement and infrastructure.  Variations in exposure to different types of 

settlement and infrastructure features are accommodated through a weighting and 

distance-decay regime whereby more prominent feature types (such as highways or 

commercial centres) are accorded greater influence than less prominent types (such as 

vehicle tracks or residences).  In this way, distance-based measures represent spatial 

pattern that is specific to the location of individual landscape features, allowing for 

the attenuation of levels of technological activity according to the distance from the 

feature and its prominence or likely influence.  The use of distance measures in this 

context is not based on any empirical relationship between distance and the flow of 

resources associated with types of technological activity. 

The biophysical naturalness index is rated according to the intensity of land use in 

areas where the primary vegetation structure is essentially intact.  Land use, in this 

context, refers to activity that is not confined to defined physical structures (settlement 

and infrastructure) and includes a variety of forms of spatially distributed resource 

procurement activity, such as timber production and livestock grazing.  Land use 

intensity is rated on the basis of historical records or of land use likelihood modelling.  
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The distribution of wilderness quality across Australia, or Australian Wilderness 

Index (AWI) was obtained by linear un-weighted combination of the four component 

measures as illustrated in Figure 17.  

This type of approach has a number of advantages over conventional mapping 

methods.  Of particular relevance to the question of periodic assessments and 

monitoring is the fact the analysis is quantitative and repeatable. Estimates of isolation 

or exposure to human activity produced by the analysis are a direct expression of the 

data and the modelling that is applied. This means that the scale of the analysis can be 

explicitly matched to the accuracy and precision of data inputs. GIS-based application 

of the model, which effectively automates the analysis, also promotes flexibility so 

that new primary attribute data can readily be introduced and the analysis repeated or 

manipulated in a variety of ways.  

Measures of Accessibility, Population Density and Resource Use 

The Australian wilderness index measures environmental exposure or isolation from 

human activity in the landscape in terms of Euclidean distance from classes of 

settlement and infrastructure, along with a rating of land use intensity.  No attempt is 

made to represent exposure or isolation in ways that are more exact or 'real'. The 

notion of exposure to, or isolation from human activity may be elaborated in two 

ways: 1) the refinement of the spatial, distance-based aspects, and 2) enhanced 

calibration of the intensity of human activity, taking account of data relating to 

appropriation and use of resources. 

One obvious way in which the spatial, distance-based component of isolation may be 

enhanced is through use of more refined measures of accessibility.  The accessibility 

of places in the landscape is not simply a function of Euclidean distance from access 

points and the quality of that access.  Accessibility is also dependent, for example, on 

terrain. For instance, a forest that is located in rugged terrain at a given distance from 

a road is generally less accessible to timber harvesting than a forest that is located at 

the same distance from a road in flat or undulating terrain. The improving quality of 

digital elevation modelling and the increasing availability of elevation data sets means 

that it is now practicable to introduce terrain factors into accessibility modelling at 

region and global scale. A global digital elevation data set (DEM) modelled from 

satellite imagery is,  now available at a grid resolution of approximately 1 km
2
 (USGS 

EROS Data Center 1996).  The accessibility of forest environments has recently been 

modelled at regional scale using slope measures derived from elevation data at that 

scale (Lorenzini 1998).
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Enhancements of this kind should, however, be treated with caution.  There is no doubt 

that terrain-related factors have significant impact on accessibility in the real world, but 

terrain attributes are highly sensitive to DEM accuracy and precision, and estimations 

should be treated very cautiously.  Typically, a DEM grid resolution in the order of 20 m 

is required if the tilt components of topographic variation are to be faithfully reflected in 

model output (Moore et al.,. 1993).  It is therefore doubtful that terrain data at the scale 

presently available have the capacity to add meaningfully to accessibility analyses of the 

kind under discussion.  However, the prospects for this type of analysis will certainly 

improve over time.  

The second area of model elaboration involves calibration of the intensity of human 

activity.  One simple way this may be developed is by factoring in statistical data on 

population and spatially relating this to settlement and infrastructure patterns. Indeed, 

patterns of population density have already been derived in this way on a global basis and 

show promise in this regard (Tobler et al.,. 1995).

The calibration of the intensity of human activity could potentially be further refined by 

combining population data with information about resource use.  The intensity of demand 

pressure on forest ecosystems may, for example, be calibrated by inclusion of demand 

estimates for forest resources.  A demand surface for fuelwood could be developed by 

using statistical data on fuelwood consumption, and distributing this spatially around 

urban and rural settlements on the basis of population density, forest cover, accessibility 

and known patterns of fuel wood consumption.  A similar surface representing the 

pressures caused by industrial demand for timber resources could be developed and 

spatially distributed through settlement, infrastructure and land use components. 

Developing Spatial Indicators of Naturalness for Use at Global and 
Regional Scales 

Discussion to this point reveals some key principles that guide the development of spatial 

indicators for assessing the naturalness of forests. 

 Indicators based on ecological response to human perturbation can only provide 

limited, and possibly contradictory, answers to questions concerning ecological 

change at the ecosystem level. 

 Indicators of naturalness that focus on human activity - the driver of human-

induced ecosystem change - are highly promising in generic, landscape-scale 

applications.  Such indicators rely on the assumption that the greater the exposure 

to human activity, the greater the probability of human interaction and 

intervention in ecosystems. 

 Spatially explicit measures of relative environmental isolation from human 

activity can provide a generic foundation for describing and measuring the 

potential for human intervention in ecosystems.  

 Methods for measuring relative environmental isolation should be quantitative, 

repeatable, transparent, appropriate to the input data, simple to interpret and 

amenable to elaboration. 
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Key Attributes 

Human activity in the landscape can be described in terms of spatial patterns of land use 

and land occupation. Categories of landscape modification can be represented 

unambiguously in terms of (1) settlement, (2) infrastructure, and (3) land use. 

1. Settlement can be defined as permanent human occupation. It is the focal point for 

human activity in the landscape where resources are transformed and used. 

Settlements range in scale from a single point of permanent occupation, such as a 

house, through to conurbations which may extend over thousands of square 

kilometres.  

2. Infrastructure is the built fabric around which human activity concentrates. 

Infrastructure provides the physical means for accessing, distributing and 

transforming resources. Infrastructure includes all built structures, including those 

associated access and settlement.  

3. Land use includes any resource procurement or transformation activity that can be 

spatially delimited on the land surface. 

The representation of human activity using primary data sets comprising settlement and 

infrastructure features and land use has a number of advantages. 

 These features represent fundamental elements through which the pattern of 

human activity in the landscape can be measured and described at both small and 

large scale, encapsulating complex resources procurement and transformation 

processes.

 These features are unambiguous landscape phenomena, which are amenable to 

classification and measurement. This provides for some control over accuracy and 

precision in spatial (and temporal) representation. It also facilitates analyses that 

use spatial information technologies. 

 These features provide flexibility in relating human activity in the landscape to 

ecological effects, allowing for either aggregated or disaggregated analyses. 

Using settlement, infrastructure and land use features for representing human activity 

does, however, have the important limitation of excluding resource manipulation 

techniques that rely on naturally occurring physical or biotic phenomena, such as fire or 

specific plants and animals, commonly associated with indigenous societies. In modern 

societies at least, there may be some association between the distribution of these factors 

and discernible patterns of settlement, infrastructure and land use. 
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An Effective Spatial Model: Basic Requirements 

Spatial analytical technologies such as GIS provide powerful tools for modelling patterns 

of human activity in the landscape. Established theory connected with the spatial 

structure of settlement and urban structure provides also some useful principles to guide 

development of a modelling framework for representing spatial isolation from 

technological activity in the landscape.

A set of spatial indicators that represent a gradient of exposure to technological activity 

can be developed using distance-decay functions to rate locations across the landscape on 

the basis of their relative exposure to settlement, exposure to infrastructure, and land 

use intensity.  Relatively high levels of exposure to technological activity are 

encountered in places that are close to urban areas.  Relatively low exposure is associated 

with places that are isolated from the settlement, infrastructure and land use practices 

associated with modern technological society (Lesslie 1997).  

The procedures devised for measuring the Australian wilderness index (Lesslie et al.,.

1988, Lesslie & Maslen 1995) offer a simple and coherent starting-point for measuring 

exposure to technological activity at the global scale (Figure 18).  In the first instance, 

data on settlement, access and infrastructure features have been drawn from Digital Chart 

of the World, and the analysis conducted using a grid resolution of 2.,500 m.  No land 

cover or landuse information was available for use in this analysis, so land use intensity 

is not included in this pilot analysis.  However, in future an appropriate surface could be 

derived on the basis of elementary land use and land cover information.  

This representation of naturalness can then be applied to forest area to provide a 

characterisation of forest naturalness, which can be displayed in both mapped and 

statistical forms. 

Validation

Any attempt to link ecological integrity or naturalness with measures of exposure to 

human activity raises the issue of validation. It has already been stated that an emphasis 

on human activity alone means that specific ecological impacts cannot be inferred.  

However, some form of validation is critical in order to establish the extent to which 

there is agreement between the model and the real world.  The validation process consists 

of showing that a model accords with facts as known, with what is accepted as true or 

reasonable, or is justifiable and appropriate for a stated set of purposes (Caswell 1976).  

One attempt at validating the AWI approach, which was carried out at WCMC (Kapos 

1997), focused on forest reserves in Uganda and Sri Lanka.  The study compared a 

number of measures, including average wilderness scores and surrounding human 

population density, with expert on-the-ground evaluations of the relative condition or 

naturalness of each reserve. The AWI averages were the measure most closely correlated 

with the expert evaluations, and were more effective than, for example, human 

population density in predicting forest condition.  This suggests that the approach may 

well be appropriate as an indicator of forest naturalness at broader scales.  Additional 

validation exercises would be useful.
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Primary Attribute Data Availability and Quality 

Primary attribute data availability is a key issue in determining appropriate procedures 

for modelling global environmental phenomena.   The data used in producing this 

global analysis were extracted from the Digital Chart of the World  (DCW) database, 

which is drawn from the Defense Mapping Agency’s Operational Navigation Charts 

at 1:1,000,000.  Although it remains the principle source of data on access and 

settlement at global and regional scales, DCW is geographically inconsistent in the 

level of detail it provides and is rather outdated as some of the ONC charts on which 

it is based date to the mid-1970’s.  Therefore, improvement of the spatial data on 

settlement and infrastructure would be a necessary part of a global assessment of 

forest naturalness using this approach.  Some progress can be made by drawing on the 

available higher quality national and regional data sets. 

Data Scale Issues 

The accuracy and spatial precision of any value obtained from a spatial model can be 

no better than the accuracy and precision of the primary attribute data from which it is 

derived. This means that the scale of the primary attribute data that are available to an 

analysis of ecological integrity or naturalness, in effect, represents a limit to the 

confidence that may be placed on results and their interpretation.  

The impact that the accuracy and spatial precision of primary attribute data may have 

on derived index measures is well illustrated by comparing the results drawn from 

two analyses of the Australian island state of Tasmania using AWI methodology (Fig. 

19).  In one case the data are drawn from the global analysis shown in Figure 18, for 

which the primary attribute data come from DCW.  In the other, the data are derived 

from the Australian assessment, shown in Figure 17, which was derived from a range 

of very high quality primary attribute data.  Most access, settlement and infrastructure 

data were extracted from local 1:100,000 and 1:25,000 scale topographic mapping. 

High quality land use and land cover data were utilised, drawn directly from relevant 

land management and mapping agencies.  The Australian assessment was conducted 

at a grid resolution of 500m. 

A comparison of the results of these two analyses shows that both successfully 

discriminate places with the highest relative wilderness quality. The south-west of 

Tasmania is notable in this regard as a stand-out feature of both studies.  This region 

is regarded as one of the three key cool temperate wilderness areas of the Southern 

Hemisphere.  Both studies also pick out most other places that are regarded as 

significant as wilderness within the Australian context.  

However, scale difference between these two analyses is evident in the ability of each 

to discriminate smaller areas of significance as wilderness, and in the accuracy and 

precision of these assessments.  Only the Australian study is capable of identifying 

areas that may have significance as wilderness in a local or Tasmanian context. 

Moreover, only the Australian study has sufficient accuracy and precision to be useful 

for operational evaluation and planning purposes. The global analysis is far too 

imprecise and incomplete in this respect. 
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Presentation of Results 

Bearing in mind the constraints on analysis and interpretation discussed above, this 

approach remains a promising one for providing insight into forest naturalness at 

global and regional scales.  Once a wilderness surface has been generated, it can be 

intersected or overlaid with mapped forest cover distribution to assign all forest cover 

to a wilderness quality or naturalness category (Fig. 20).  This can is turn be displayed 

as Forest Naturalness maps that are analogous to the Forest Spatial Integrity maps 

shown in Figures 9, 11 and 13.  Alternatively, statistical summaries of forest area by 

naturalness class (cf. Figs 10, 12 and 14) can be generated to provide a baseline for 

monitoring.  The maintenance of forest naturalness within some target range would 

provide a useful basis for evaluating policy and management relating to forests in the 

context of forest biodiversity preservation. 
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V Conclusion

This paper has presented two approaches that could be applied at global and regional scales to 

deliver significant advances in assessment and monitoring of the status of forests and their 

biodiversity.  The first of these is the evaluation of forest spatial integrity, which encompasses 

the size, configuration and isolation from each other of forest areas.  Declining spatial integrity 

of forests is a consequence of many types of human activity, especially land conversion, and is 

likely to have adverse effects on the natural biodiversity complements of remaining forests. 

Other impacts of human activity are less easily measured directly, and can be evaluated better 

by estimating the likelihood of human influence on the ecosystem.  A naturalness indicator, such 

as the Australian wilderness index, permits the construction of a surface measuring remoteness 

from human influence that can be overlaid with forest cover data to derive indices of forest 

naturalness. 

Both of these indices can be displayed in mapped form, with each unit of forest cover given its 

own index value.  They can also be used to generate statistical summaries of forest spatial 

integrity and naturalness that can be used as baselines for monitoring if the same transparent 

methodologies are applied consistently through time. 

The implementation of baseline assessments and subsequent monitoring of forest spatial 

integrity and naturalness as proposed in this paper would be a significant advance over current 

practice, and would incorporate biodiversity preservation as one of the multiple benefits of 

forests included in the periodic assessment of the world’s forest resources.  This would make it 

possible to follow trends, not only in forest quantity, but also in its quality with respect to 

preserving biodiversity. 
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